
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-1

Synchronous Computations

Chapter 6

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-2

Synchronous Computations

In a (fully) synchronous application, all the processes synchronized

at regular points.

Barrier

A basic mechanism for synchronizing processes - inserted at the

point in each process where it must wait.

All processes can continue from this point when all the processes

have reached it (or, in some implementations, when a stated

number of processes have reached this point).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-3

P0 P1 P2 Pp−1

Processes

Barrier

Processes reaching barrier at different times

Time

Active

Waiting

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-4

P0

Processes

Barrier();

P1

Barrier();

Pp−1

Barrier();
Processes
wait until all
reach their
barrier call

In message-passing systems, barriers provided with library

routines:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-5

MPI

MPI_Barrier()

Barrier with a named communicator being the only parameter.

Called by each process in the group, blocking until all members of

the group have reached the barrier call and only returning then.

similar barrier routine used with a named group of processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-6

P0

Processes

Barrier();

P1

Barrier();

Pp-1

Barrier();

Counter, C

Increment
and check for p

Barrier Implementation

Centralized counter implementation (a linear barrier):

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-7

Good barrier implementations must take into account that a barrier

might be used more than once in a process.

Might be possible for a process to enter the barrier for a second

time before previous processes have left the barrier for the first time.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-8

Counter-based barriers often have two phases:

• A process enters arrival phase and does not leave this phase

until all processes have arrived in this phase.

• Then processes move to departure phase and are released.

Two-phase handles the reentrant scenario.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-9

Example code:

Master:

for (i = 0; i < n; i++)/*count slaves as they reach barrier*/
recv(Pany);

for (i = 0; i < n; i++)/* release slaves */
send(Pi);

Slave processes:

send(Pmaster);
recv(Pmaster);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-10

for(i=0;i<n;i++)
recv(Pany);

for(i=0;i<n;i++)
send(Pi);

Master

Barrier implementation in a message-passing
system

Arrival
phase
Departure
phase

send(Pmaster);
recv(Pmaster);

Barrier:

send(Pmaster);
recv(Pmaster);

Barrier:

Slave processes

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-11

Tree Implementation
More efficient. O(log p) steps
Suppose 8 processes, P0, P1, P2, P3, P4, P5, P6, P7:

1st stage: P1 sends message to P0; (when P1 reaches its barrier)

P3 sends message to P2; (when P3 reaches its barrier)

P5 sends message to P4; (when P5 reaches its barrier)

P7 sends message to P6; (when P7 reaches its barrier)

2nd stage: P2 sends message to P0; (P2 & P3 reached their barrier)

P6 sends message to P4; (P6 & P7 reached their barrier)

3rd stage: P4 sends message to P0; (P4, P5, P6, & P7 reached barrier)

P0 terminates arrival phase;
(when P0 reaches barrier & received message from P4)

Release with a reverse tree construction.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-12

P0 P1 P2 P3 P4 P5 P6 P7

Arrival
at barrier

Departure
from barrier

Tree barrier

Sychronizing
message

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-13

1st stage

2nd stage

3rd stage

P0 P1 P2 P3 P4 P5 P6 P7

Time

Butterfly Barrier

1st stage P0 ↔ P1, P2 ↔ P3, P4 ↔ P5, P6 ↔ P7

2nd stage P0 ↔ P2, P1 ↔ P3, P4 ↔ P6, P5 ↔ P7
3rd stage P0 ↔ P4, P1 ↔ P5, P2 ↔ P6, P3 ↔ P7

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-14

Local Synchronization

Suppose a process Pi needs to be synchronized and to exchange

data with process Pi−1 and process Pi+1 before continuing:

Not a perfect three-process barrier because process Pi−1 will only

synchronize with Pi and continue as soon as Pi allows. Similarly,

process Pi+1 only synchronizes with Pi.

Process Pi-1 Process Pi Process Pi+1

recv(Pi); send(Pi-1); recv(Pi);
send(Pi); send(Pi+1); send(Pi);

recv(Pi-1);
recv(Pi+1);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-15

Deadlock

When a pair of processes each send and receive from each other,

deadlock may occur.

Deadlock will occur if both processes perform the send, using

synchronous routines first (or blocking routines without sufficient

buffering). This is because neither will return; they will wait for

matching receives that are never reached.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-16

A Solution

Arrange for one process to receive first and then send and the other

process to send first and then receive.

Example

Linear pipeline, deadlock can be avoided by arranging so the even-

numbered processes perform their sends first and the odd-

numbered processes perform their receives first.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-17

Combined deadlock-free blocking
sendrecv() routines

Example

MPI provides MPI_Sendrecv() and MPI_Sendrecv_replace().

MPI sendrev()s actually has 12 parameters!

Process Pi-1 Process Pi Process Pi+1

sendrecv(Pi); sendrecv(Pi-1);
sendrecv(Pi+1); sendrecv(Pi);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-18

Synchronized Computations

Can be classififed as:

• Fully synchronous

or

• Locally synchronous

In fully synchronous, all processes involved in the computation must

be synchronized.

In locally synchronous, processes only need to synchronize with a

set of logically nearby processes, not all processes involved in the

computation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-19

Fully Synchronized Computation Examples

Data Parallel Computations

Same operation performed on different data elements

simultaneously; i.e., in parallel.

Particularly convenient because:

• Ease of programming (essentially only one program).

• Can scale easily to larger problem sizes.

• Many numeric and some non-numeric problems can be

cast in a data parallel form.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-20

Example

To add the same constant to each element of an array:

for (i = 0; i < n; i++)
a[i] = a[i] + k;

The statement:

a[i] = a[i] + k;

could be executed simultaneously by multiple processors, each

using a different index i (0 < i ≤ n).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-21

a[0]=a[0]+k; a[n-1]=a[n-1]+k;a[1]=a[1]+k;

Instruction
a[] = a[] + k;

a[0] a[n-1]a[1]

Data Parallel Computation

Processors

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-22

forall construct

Special “parallel” construct in parallel programming languages to
specify data parallel operations

Example

forall (i = 0; i < n; i++) {

body

}

states that n instances of the statements of the body can be
executed simultaneously.

One value of the loop variable i is valid in each instance of the
body, the first instance has i = 0, the next i = 1, and so on.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-23

To add k to each element of an array, a, we can write

forall (i = 0; i < n; i++)
a[i] = a[i] + k;

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-24

Data parallel technique applied to multiprocessors and
multicomputers

Example

To add k to the elements of an array:

i = myrank;
a[i] = a[i] + k;/* body */
barrier(mygroup);

where myrank is a process rank between 0 and n − 1.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-25

Data Parallel Example - Prefix Sum Problem

Given a list of numbers, x0, …, xn−1, compute all the partial

summations (i.e., x0 + x1; x0 + x1 + x2; x0 + x1 + x2 + x3; …).

Can also be defined with associative operations other than addition.

Widely studied. Practical applications in areas such as processor

allocation, data compaction, sorting, and polynomial evaluation.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-26

Data parallel method of adding all partial sums of
16 numbers

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-27

Σ
i=0

0
Σ
i=0

1
Σ
i=0

2
Σ
i=0

3
Σ
i=0

4
Σ
i=0

5
Σ
i=0

6
Σ
i=0

7
Σ
i=0

8
Σ
i=0

9
Σ
i=0

10
Σ
i=0

11
Σ
i=0

12
Σ
i=0

15
Σ
i=0

14
Σ
i=0

13

Σ
i=0

0
Σ
i=0

1
Σ
i=1

2
Σ
i=2

3
Σ
i=3

4
Σ
i=4

5
Σ
i=5

6
Σ
i=6

7
Σ
i=7

8
Σ
i=8

9
Σ
i=9

10
Σ

i=10

11
Σ

i=11

12
Σ

i=14

15
Σ

i=13

14
Σ

i=12

13

Σ
i=0

0
Σ
i=0

1
Σ
i=0

2
Σ
i=0

3
Σ
i=1

4
Σ
i=2

5
Σ
i=3

6
Σ
i=4

7
Σ
i=5

8
Σ
i=6

9
Σ
i=7

10
Σ
i=8

11
Σ
i=9

12
Σ

i=12

15
Σ

i=11

14
Σ

i=10

13

Σ
i=0

0
Σ
i=0

1
Σ
i=0

2
Σ
i=0

3
Σ
i=0

4
Σ
i=0

5
Σ
i=0

6
Σ
i=0

7
Σ
i=1

8
Σ
i=2

9
Σ
i=3

10
Σ
i=4

11
Σ
i=5

12
Σ
i=8

15
Σ
i=7

14
Σ
i=6

13

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15Numbers

Step 1

Step 2

Step 3

Final step

Add

Add

Add

Add

(j = 0)

(j = 1)

(j = 2)

(j = 3)

Data parallel prefix sum operation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-28

Sequential code

for (j = 0; j < log(n); j++)/* at each step, add*/
for (i = 2j; i < n; i++)/* to accumulating sum */
x[i] = x[i] + x[i - 2j];

Parallel code

for (j = 0; j < log(n); j++) /* at each step, add */
forall (i = 0; i < n; i++)/*to sum */

if (i >= 2j) x[i] = x[i] + x[i - 2j];

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-29

Synchronous Iteration

(Synchronous Parallelism)

Each iteration composed of several processes that start together at

beginning of iteration. Next iteration cannot begin until all processes

have finished previous iteration.

Using forall construct:

for (j = 0; j < n; j++)/*for each synch. iteration */
forall (i = 0; i < N; i++) {/*N procs each using*/
body(i); /* specific value of i */

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-30

Using message passing barrier:

for (j = 0; j < n; j++) {/*for each synchr.iteration */
i = myrank; /*find value of i to be used */

body(i);
barrier(mygroup);

}

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-31

Another fully synchronous computation example

Solving a General System of Linear Equations by Iteration

Suppose the equations are of a general form with n equations and n

unknowns

where the unknowns are x0, x1, x2, … xn−1 (0 ≤ i < n).

an-1,0x0 + an-1,1x1 + an-1,2x2 … + an-1,n-1xn-1 = bn-1
.
.
.

a2,0x0 + a2,1x1 + a2,2x2 … + a2,n-1xn-1 = b2
a1,0x0 + a1,1x1 + a1,2x2 … + a1,n-1xn-1 = b1
a0,0x0 + a0,1x1 + a0,2x2 … + a0,n-1xn-1 = b0

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-32

By rearranging the ith equation:

to

xi = (1/ai,i)[bi−(ai,0x0+ai,1x1+ai,2x2…ai,i−1xi−1+ai ,i+1xi+1…+ai,n−1xn−1)]

or

This equation gives xi in terms of the other unknowns.

Can be be used as an iteration formula for each of the unknowns to

obtain better approximations.

ai,0x0 + ai,1x1 + ai,2x2 … + ai,n-1xn-1 = bi

xi
1

ai i,
-------- bi ai j, x j

j i≠
∑–=

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-33

Jacobi Iteration

All values of x are updated together.

Can be proven that the Jacobi method will converge if the diagonal

values of a have an absolute value greater than the sum of the

absolute values of the other a’s on the row (the array of a’s is

diagonally dominant) i.e. if

This condition is a sufficient but not a necessary condition.

ai j,
j i≠
∑ ai i,<

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-34

Termination

A simple, common approach. Compare values computed in one

iteration to values obtained from the previous iteration.

Terminate computation when all values are within given tolerance;

i.e., when

for all i, where is the value of xi after the tth iteration and is

the value of xi after the (t − 1)th iteration.

However, this does not guarantee the solution to that accuracy.

xi
t xi

t 1–– error tolerance<

xi
t xi

t 1–

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-35

Computed
value

Error

Iteration

Exact value

Convergence Rate

t+1t

xi

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-36

Parallel Code

Process Pi could be of the form

x[i] = b[i]; /*initialize unknown*/
for (iteration = 0; iteration < limit; iteration++) {

sum = -a[i][i] * x[i];
for (j = 0; j < n; j++) /* compute summation */
sum = sum + a[i][j] * x[j];

new_x[i] = (b[i] - sum) / a[i][i];/* compute unknown */
allgather(&new_x[i]); /*bcast/rec values */
global_barrier(); /* wait for all procs */

}

allgather() sends the newly computed value of x[i] from
process i to every other process and collects data broadcast from
the other processes.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-37

Allgather(); Allgather();

data

Allgather();

datadata

Process 0 Process n − 1Process 1

Send

Receive

buffer

buffer

xn−1x0 x1

Allgather

Broadcast and gather values in one composite construction.

Introduce a new message-passing operation - Allgather.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-38

Partitioning

Usually number of processors much fewer than number of data

items to be processed. Partition the problem so that processors

take on more than one data item.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-39

block allocation – allocate groups of consecutive unknowns to

processors in increasing order.

cyclic allocation – processors are allocated one unknown in order;

i.e., processor P0 is allocated x0, xp, x2p, …, x((n/p)−1)p, processor P1

is allocated x1, xp+1, x2p+1, …, x((n/p)−1)p+1, and so on.

Cyclic allocation no particular advantage here (Indeed, may be

disadvantageous because the indices of unknowns have to be

computed in a more complex way).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-40

322824201612840
0

1 × 106

2 × 106

Effects of computation and communication in
Jacobi iteration

Consequences of different numbers of processors done in textbook.

Get:

Overall
Communication

Computation

Execution

Number of processors, p

time
(τ = 1)

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-41

Locally Synchronous Computation

Heat Distribution Problem

An area has known temperatures along each of its edges.

Find the temperature distribution within.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-42

Divide area into fine mesh of points, hi,j.

Temperature at an inside point taken to be average of temperatures

of four neighboring points. Convenient to describe edges by points.

Temperature of each point by iterating the equation:

(0 < i < n, 0 < j < n) for a fixed number of iterations or until the

difference between iterations less than some very small amount.

hi j,
hi 1– j, hi 1+ j, hi j 1–, hi j 1+,+ + +

4
---=

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-43

hi,j

hi−1,j

hi,j−1 hi,j+1

hi+1,j

j

i

Heat Distribution Problem

Enlarged

In this example
assumes a square
boundary

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-44

xi-1

xi

xi+1

xi+m

xi-m

x1 x2 xm-1

xm+1 xm+2

xm

x2m-1

xm2

x2m

Natural ordering of heat distribution problem

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-45

Number points from 1 for convenience and include those

representing the edges. Each point will then use the equation

Could be written as a linear equation containing the unknowns xi−m,

xi−1, xi+1, and xi+m:

xi - m + xi - 1 - 4xi + xi + 1 + xi - m = 0

Notice: solving a (sparse) system of linear equations.

Also solving Laplace’s equation.

xi

xi 1– xi 1+ xi m– xi m++ + +

4
---=

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-46

Sequential Code

Using a fixed number of iterations

for (iteration = 0; iteration < limit; iteration++) {
 for (i = 1; i < n; i++)
 for (j = 1; j < n; j++)
 g[i][j] = 0.25*(h[i-1][j]+h[i+1][j]+h[i][j-
1]+h[i][j+1]);
 for (i = 1; i < n; i++)/* update points */
 for (j = 1; j < n; j++)

 h[i][j] = g[i][j];
}

using original numbering system (n × n array).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-47

To stop at some precision:

do {
 for (i = 1; i < n; i++)
 for (j = 1; j < n; j++)
 g[i][j] = 0.25*(h[i-1][j]+h[i+1][j]+h[i][j-1]+h[i][j+1]);

 for (i = 1; i < n; i++)/* update points */
 for (j = 1; j < n; j++)
 h[i][j] = g[i][j];

 continue = FALSE; /* indicates whether to continue */
 for (i = 1; i < n; i++)/* check each pt for convergence */
 for (j = 1; j < n; j++)
 if (!converged(i,j) {/* point found not converged */
 continue = TRUE;
 break;
 }

} while (continue == TRUE);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-48

Parallel Code

With fixed number of iterations, Pi,j (except for the boundary points):

for (iteration = 0; iteration < limit; iteration++) {
g = 0.25 * (w + x + y + z);
send(&g, Pi-1,j); /* non-blocking sends */
send(&g, Pi+1,j);
send(&g, Pi,j-1);
send(&g, Pi,j+1);
recv(&w, Pi-1,j); /* synchronous receives */
recv(&x, Pi+1,j);
recv(&y, Pi,j-1);
recv(&z, Pi,j+1);

}

Important to use send()s that do not block while waiting for
recv()s; otherwise processes would deadlock, each waiting for a
recv() before moving on - recv()s must be synchronous and wait
for send()s.

Local
barrier

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-49

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j);
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j);
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j);
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j);
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j);
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

Message passing for heat distribution problem

i

j

column

row

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-50

Version where processes stop when they reach their required
precision:

iteration = 0;
do {

iteration++;
g = 0.25 * (w + x + y + z);
send(&g, Pi-1,j); /* locally blocking sends */
send(&g, Pi+1,j);
send(&g, Pi,j-1);
send(&g, Pi,j+1);
recv(&w, Pi-1,j); /* locally blocking receives */
recv(&x, Pi+1,j);
recv(&y, Pi,j-1);
recv(&z, Pi,j+1);

} while((!converged(i, j)) || (iteration < limit));
send(&g, &i, &j, &iteration, Pmaster);

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-51

To handle the processes operating at the edges:

if (last_row) w = bottom_value;
if (first_row) x = top_value;
if (first_column) y = left_value;
if (last_column) z = right_value;
iteration = 0;
do {
iteration++;
g = 0.25 * (w + x + y + z);
if !(first_row) send(&g, Pi-1,j);
if !(last_row) send(&g, Pi+1,j);
if !(first_column) send(&g, Pi,j-1);
if !(last_column) send(&g, Pi,j+1);
if !(last_row) recv(&w, Pi-1,j);
if !(first_row) recv(&x, Pi+1,j);
if !(first_column) recv(&y, Pi,j-1);
if !(last_column) recv(&z, Pi,j+1);

} while((!converged) || (iteration < limit));
send(&g, &i, &j, iteration, Pmaster);

MPI has a construct to help here

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-52

Example
A room has four walls and a fireplace. Temperature of wall is 20°C,
and temperature of fireplace is 100°C. Write a parallel program
using Jacobi iteration to compute the temperature inside the room
and plot (preferably in color) temperature contours at 10°C intervals
using Xlib calls or similar graphics calls as available on your system.

20°C
100°C

10ft

10ft

4ft

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-53

Sample student output

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-54

P0

P1

P1

P0

Pp−1

Pp−1

Blocks Strips (columns)

Partitioning

Normally allocate more than one point to each processor, because

many more points than processors.

Points could be partitioned into square blocks or strips:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-55

Square blocks

Block partition

Four edges where data points exchanged.
Communication time given by

tcommsq 8 tstartup
n

p
-------tdata+ 

 =

n

p

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-56

Strips

Strip partition

Two edges where data points are exchanged.
Communication time is given by

tcommcol 4 tstartup ntdata+()=

n

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-57

Optimum

In general, strip partition best for large startup time, and block

partition best for small startup time.

With the previous equations, block partition has a larger

communication time than strip partition if

(p ≥ 9).

tstartup n 1 2

p
-------– 

  tdata>

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-58

1000100101
0

1000

2000

Strip partition best

Block partition best

tstartup

Processors, p

Startup times for block and strip partitions

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-59

Ghost points

Process i

Process i+1

One row
of points

Array held
by process i

Array held
by process i+1

Copy

Ghost Points

Additional row of points at each edge that hold values from adjacent
edge. Each array of points increased to accommodate ghost rows.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-60

Safety and Deadlock

When all processes send their messages first and then receive all
of their messages is “unsafe” because it relies upon buffering in the
send()s. The amount of buffering is not specified in MPI.

If insufficient storage available, send routine may be delayed from
returning until storage becomes available or until the message can
be sent without buffering.

Then, a locally blocking send() could behave as a synchronous
send(), only returning when the matching recv() is executed.
Since a matching recv() would never be executed if all the
send()s are synchronous, deadlock would occur.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-61

Making the code safe

Alternate the order of the send()s and recv()s in adjacent

processes so that only one process performs the send()s first:

}

Then even synchronous send()s would not cause deadlock.

Good way you can test for safety is to replace message-passing

routines in a program with synchronous versions.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-62

MPI Safe Message Passing Routines

MPI offers several alternative methods for safe communication:

• Combined send and receive routines:

MPI_Sendrecv()
which is guaranteed not to deadlock

• Buffered send()s:
MPI_Bsend()

here the user provides explicit storage space

• Nonblocking routines:
MPI_Isend() and MPI_Irecv()

which return immediately.
Separate routine used to establish whether message has been received:
MPI_Wait(), MPI_Waitall(), MPI_Waitany(), MPI_Test(),
MPI_Testall(), or MPI_Testany().

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-63

Other fully synchronous problems

Cellular Automata

The problem space is divided into cells.

Each cell can be in one of a finite number of states.

Cells affected by their neighbors according to certain rules, and all

cells are affected simultaneously in a “generation.”

Rules re-applied in subsequent generations so that cells evolve, or

change state, from generation to generation.

Most famous cellular automata is the “Game of Life” devised by

John Horton Conway, a Cambridge mathematician.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-64

The Game of Life

Board game - theoretically infinite two-dimensional array of cells.
Each cell can hold one “organism” and has eight neighboring cells,
including those diagonally adjacent. Initially, some cells occupied.

The following rules apply:

1. Every organism with two or three neighboring organisms
survives for the next generation.

2. Every organism with four or more neighbors dies from
overpopulation.

3. Every organism with one neighbor or none dies from isolation.
4. Each empty cell adjacent to exactly three occupied neighbors

will give birth to an organism.

These rules were derived by Conway “after a long period of
experimentation.”

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-65

Simple Fun Examples of Cellular Automata

“Sharks and Fishes”

An ocean could be modeled as a three-dimensional array of cells.

Each cell can hold one fish or one shark (but not both).

Fish and sharks follow “rules.”

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-66

Fish

Might move around according to these rules:

1. If there is one empty adjacent cell, the fish moves to this cell.
2. If there is more than one empty adjacent cell, the fish moves to

one cell chosen at random.
3. If there are no empty adjacent cells, the fish stays where it is.
4. If the fish moves and has reached its breeding age, it gives

birth to a baby fish, which is left in the vacating cell.
5. Fish die after x generations.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-67

Sharks

Might be governed by the following rules:

1. If one adjacent cell is occupied by a fish, the shark moves to
this cell and eats the fish.

2. If more than one adjacent cell is occupied by a fish, the shark
chooses one fish at random, moves to the cell occupied by the
fish, and eats the fish.

3. If no fish are in adjacent cells, the shark chooses an
unoccupied adjacent cell to move to in a similar manner as fish
move.

4. If the shark moves and has reached its breeding age, it gives
birth to a baby shark, which is left in the vacating cell.

5. If a shark has not eaten for y generations, it dies.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-68

Sample Student Output

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-69

Similar examples:

“foxes and rabbits” - Behavior of rabbits to move around happily

whereas behavior of foxes is to eat any rabbits they come across.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-70

Serious Applications for Cellular Automata

Examples

• fluid/gas dynamics

• the movement of fluids and gases around objects

• diffusion of gases

• biological growth

• airflow across an airplane wing

• erosion/movement of sand at a beach or riverbank.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-71

Partially Synchronous Computations

Computations in which individual processes operate without

needing to synchronize with other processes on every iteration.

Important idea because synchronizing processes is an expensive

operation which very significantly slows the computation .and a

major cause for reduced performance of parallel programs is due to

the use of synchronization.

Global synchronization done with barrier routines. Barriers cause

processor to wait sometimes needlessly.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-72

Heat Distribution Problem Re-visited

To solve heat distribution problem, solution space divided into a two-

dimensional array of points. The value of each point computed by

taking average of four points around it repeatedly until values

converge on the solution to a sufficient accuracy.

The waiting can be reduced by not forcing synchronization at each

iteration.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-73

Sequential code
do {

 for (i = 1; i < n; i++)

 for (j = 1; j < n; j++)

 g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] + h[i][j-1] + h[i][j+1]);

 for (i = 1; i < n; i++) /* find max divergence/update pts */

 for (j = 1; j < n; j++) {

 dif = h[i][j] - g[i][j];

 if (dif < 0) dif = -dif;

 if (dif < max_dif) max_dif = dif;

 h[i][j] = g[i][j];

 }

} while (max_dif > tolerance); /* test convergence */

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-74

First section of code computing the next iteration values based on

the immediate previous iteration values is traditional Jacobi iteration

method.

Suppose however, processes are to continue with the next iteration

before other processes have completed.

Then, the processes moving forward would use values computed

from not only the previous iteration but maybe from earlier

iterations.

Method then becomes an asynchronous iterative method.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-75

Asynchronous Iterative Method - Convergence

Mathematical conditions for convergence may be more strict.

Each process may not be allowed to use any previous iteration

values if the method is to converge.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-76

Chaotic Relaxation

A form of asynchronous iterative method introduced by Chazan and

Miranker (1969) in which the conditions are stated as:

“there must be a fixed positive integer s such that, in carrying out

the evaluation of the ith iterate, a process cannot make use of any

value of the components of the jth iterate if j < i - s” (Baudet, 1978).

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-77

The final part of the code, checking for convergence of every

iteration can also be reduced. It may be better to allow iterations to

continue for several iterations before checking for convergence.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc. All rights reserved.

slides6-78

Overall Parallel Code

Each process allowed to perform s iterations before being

synchronized and also to update the array as it goes. At s iterations,

maximum divergence recorded. Convergence is checked then.

The actual iteration corresponding to the elements of the array

being used at any time may be from an earlier iteration but only up

to s iterations previously. May be a mixture of values of different

iterations as array is updated without synchronizing with other

processes - truly a chaotic situation.

