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COMPACT SPACES WITH A P-DIAGONAL

ALAN DOW AND KLAAS PIETER HART

Abstract. We prove that compact Hausdorff spaces with a P-diagonal are
metrizable. This answers problem 4.1 (and the equivalent problem 4.12)
from [1].

Introduction

The purpose of this note is to show that a compact space with a P-diagonal is
metrizable.

To explain the meaning of this statement we need to introduce a bit of notation
and define a few notions. For a space M (always assumed to be at least completely
regular) we let K(M) denote the family of compact subsets of M . Following [3] we
say that a space X is M -dominated if there is a cover {CK : K ∈ K(M)} of X by
compact subsets with the property that K ⊆ L implies CK ⊆ CL.

In the case that we deal with, namely where M is the space of irrational num-
bers, we can simplify the cover a bit and make it more amenable to combinatorial
treatment. The space of irrationals is homeomorphic to the product space ωω,
where ω carries the discrete topology. We shall reserve the letter P for this space.

The set P is ordered coordinatewise: f 6 g means (∀n)(f(n) 6 g(n)). Using
this order we simplify the formulation of P-dominated as follows. If K is a compact
subset of P then the function fK , given by fK(n) = max{g(n) : g ∈ K} is well-
defined. Using this one can easily verify that a space X is P-dominated iff there is
a cover 〈Kf : f ∈ P〉 of X by compact sets such that f 6 g implies Kf ⊆ Kg. We
shall call such a cover an order-preserving cover by compact sets.

Finally then we say that a space X has a P-diagonal if the complement of the
diagonal, ∆, in X2 is P-dominated. Problem 4.1 from [1] asks whether a compact
space with a P-diagonal is metrizable. The authors of that paper proved that the
answer is positive if X is assumed to have countable tightness, or in general if
MA(ℵ1) is assumed. The latter proof used that assumption to show that X has a
small diagonal, which in turn implies that X has countable tightness so that the
first result applies. Thus, Problem 4.12 from [1], which asks if a compact space
with a P-diagonal has a small diagonal, is a natural reformulation of Problem 4.1.

The main result of [2] states that compact spaces with a P-diagonal are metrizable
under the assumption of the Continuum Hypothesis. The proof establishes that a
compact space with a P-diagonal that has uncountable tightness maps onto the
Tyhconoff cube [0, 1]ω1 and no compact space with a P-diagonal maps onto the
cube [0, 1]c.
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The principal result of this paper closes the gap between ℵ1 and c by establishing
that no compact space with a P-diagonal maps onto [0, 1]ω1.

Some preliminaries

Since we shall be working with the Cantor cube 2ω1 we fix a bit of notation.
First, if I is some set then Fn(I, 2) denotes the set of finite partial functions from I
to 2. We also use the binary tree 2<ω1 of countable sequences of zeros and ones.
If s ∈ Fn(ω1, 2) then [s] denotes {x ∈ 2ω1 : s ⊆ x}, the basic open set determined
by s. Similarly, if ρ ∈ 2<ω1 then [ρ] = {x ∈ 2ω1 : ρ ⊆ x}.

In the proof of Lemma 3 we shall need the following result due to Todorčević.

Lemma 1 ([4, Theorem 1.3]). If b = ℵ1 then ωω1 has a subset, X, of cardinality ℵ1

such that for every A ∈ [X ]ℵ1 there are D ∈ [A]ℵ0 and δ ∈ ω1 such that πδ[D] =
{d ↾ (ω1 \ δ) : d ∈ D} is dense in ωω1\δ. �

This lemma also holds with ω replaced by 2, simply map ωω1 onto 2ω1 by taking
all coordinates modulo 2. In that case the density of πδ[D] can be expressed by
saying that for every s ∈ Fn(ω1 \ δ, 2) the intersection D ∩ [s] is nonempty.

Above we implicitly introduced πδ to denote the projection of Iω1 onto Iω1\δ,
when I = ω or I = 2.

BIG sets in 2ω1

Let us call a subset, Y , of 2ω1 BIG if it is compact and projects onto some
some final product, that is, there is a δ ∈ ω1 such that πδ[Y ] = 2ω1\δ. The latter
condition can be expressed without mentioning projections as follows: there is a
δ ∈ ω1 such that for every s ∈ Fn(ω1 \ δ, 2) the intersection Y ∩ [s] is nonempty
(and a dense set that is closed is equal to the whole space).

BIG sets are also big combinatorially, in the following sense.

Lemma 2. If Y is a BIG subset of 2ω1 then there is a node ρ in the tree 2<ω1 such

that [ρ] ⊆ Y .

Proof. Let Y be BIG and fix a δ witnessing this. After reindexing we can assume
δ = ω and we let Bt = {x ∈ 2ω1 : t ⊂ x} and Yt = Y ∩Bt for t ∈ 2<ω.

Starting from t0 = 〈 〉 and s0 = ∅ we build a sequence 〈tn : n ∈ ω〉 in 2<ω an a
sequence 〈sn : n ∈ ω〉 in Fn(ω1 \ ω, ω) such that [sn] ⊆ πδ[Ytn ] for all n.

Given tn we can choose in < 2, and set tn+1 = tn ∗ in, such that [sn]∩ πδ[Ytn+1
]

has nonempty interior. Then choose an extension sn+1 of sn such that [sn+1] ⊆
πδ[Ytn+1

]. With a bit of bookkeeping one can ensure that
⋃

n dom sn is an initial
segment of ω1 \ ω. We let ρ be the concatenation of

⋃

n tn and
⋃

n sn.
To see that ρ is as required let x ∈ [ρ]. By construction we have x ∈ [sn] for all n,

so that, again for all n, there is yn ∈ Ytn such that yn and x agree above domρ. If
s ∈ Fn(ω1, 2) determines a basic neighbourhood of x then there is an m such that
dom s∩ domρ is a subset of dom tm ∪ dom sm. Then yn ∈ [s] for all n > m, so that
the sequence 〈yn : n ∈ ω〉 converges to x, which shows that x ∈ Y . �

Existence of BIG sets

It is clear that a compact space is P-dominated: simply let Kf be the whole
space for all f . However, in our proof we shall encounter P-dominating covers that
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may consist of proper subsets. Our next result shows that such a cover of 2ω1 by
compact sets must contain a BIG subset.

Lemma 3. If 〈Kf : f ∈ P〉 is an order-preserving cover of 2ω1 by compact sets

then there is an f such that Kf is BIG.

Proof. We consider three cases.
First we assume d = ℵ1. In this case we show outright that there are ρ ∈ 2<ω1

and f ∈ P such that [ρ] ⊆ Kf . Let 〈fα : α ∈ ω1〉 be sequence that is 6-dominating.
Working toward a contradiction we assume no ρ and f , as desired, can be found.

This implies that for every ρ and every f the intersection Kf ∩ [ρ] is nowhere dense
in [ρ]. Indeed, if such an intersection has interior then there is s ∈ Fn(ω1, 2) such
that [s]∩ [ρ] is nonempty and contained in Kf . It would then be an easy matter to
find σ ∈ 2<ω1 that extends both ρ and s, and then [σ] ⊆ Kf .

This allows us to choose an increasing sequence 〈ρα : α ∈ ω1〉 in 2<ω1 such that
[ρα] ∩ Kfα = ∅ for all α. Then the point x =

⋃

α ρα does not belong to any Kf

because the Kfα are cofinal in the whole family.

Next we assume d > b = ℵ1. We apply b = ℵ1 to find a special subset X of 2ω1

as in the comment after Lemma 1. In what follows, when t ∈ ω<ω we let K(t)
denote the union

⋃

{Kf : t ⊆ f}.
We choose an increasing sequence 〈tn : n ∈ ω〉 in ω<ω, together with, for each n,

an uncountable subset An of X , a countable subset Dn of An, and δn ∈ ω1 such
that An ⊆ K(tn) and for all s ∈ Fn(ω1 \ δn, 2) the intersectionDn∩[s] is nonempty.
Simply use that K(t) =

⋃

k K(t ∗ k) for all t.
Let δ = supn δn and enumerate each Dn as 〈d(n,m) : m ∈ ω〉.
For each s ∈ Fn(ω1 \ δ, 2) each Dn intersects [s] so that we can define hs ∈ ωω

by hs(n) = min{m : d(n,m) ∈ [s]}.
By d > ℵ1 there is g ∈ ωω such that {n : hs(n) < g(n)} is infinite for all s.
Now let E = {d(n,m) : m < g(n), n ∈ ω} and observe that E meets [s] for every

s ∈ Fn(ω1 \ δ, 2), so that πδ[E] is dense in 2ω1\δ.
For each n there is fn ∈ P that extends tn and is such that {d(n,m) : m <

g(n)} is a subset of Kfn . As fm(n) = tn+1(n) if m > n we may define f ∈ P by
f(n) = max{fm(n) : m ∈ ω} for all n. Thus we find a single f such that E ⊆ Kf ,
which immediately implies that Kf is BIG.

Our last case is when b > ℵ1. We let A be the set of members, t, of ω<ω for
which there is a ρ ∈ 2<ω1 such that K(t) ∩ [ρ] is Gδ-dense in [ρ].

As K(〈 〉) = 2ω1 we have 〈 〉 ∈ A.
We show that if t ∈ A, as witnessed by ρ, then there is an nt such that t ∗n ∈ A

whenever n > nt; as K(t ∗ m) ⊆ K(t ∗ n) whenever m 6 n it follows that we
need to find just one n such that t ∗ n ∈ A. Build, recursively, an increasing
sequence ρ = ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ · · · in 2<ω1 such that ρ0 = ρ and, if possible,
[ρn+1] ∩K(t ∗ n) = ∅; if such a ρn+1 cannot be found then K(t ∗ n) ∩ [ρn] is Gδ-
dense in [ρn] and we are done. So assume that the recursion does not stop and set
̺ =

⋃

n ρn; then [̺] is disjoint from
⋃

n K(t∗n), which is equal to K(t). This would
contradict Gδ-density of K(t) in [ρ].

We can define h ∈ P recursively by h(n) = nh↾n, together with an increasing
sequence 〈ρn : n ∈ ω〉 in 2<ω1 such that K(h ↾ n) ∩ [ρn] is Gδ-dense in [ρn]. Let
ρ =

⋃

n ρn, then K(h ↾ n) ∩ [ρ] is Gδ-dense in [ρ] for all n.
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Let δ = domρ and let s ∈ Fn(ω1 \ δ, 2). We know that K(h ↾ n) ∩ [ρ] ∩ [s] 6= ∅

for all n. So for every n we can take hs,n ∈ P that extends h ↾ n and is such that
Khs,n

∩ [ρ] ∩ [s] 6= ∅. Because hs,n(m) = h(m) if n > m we can define hs ∈ P by
hs(m) = maxn hs,n(m).

As b > ℵ1 we can find f > h such that hs 6∗ f for all s. We claim that
Kf ∩ [ρ]∩ [s] 6= ∅ for all s, so that [ρ] ⊆ Kf (the closed set Kf ∩ [ρ] is dense in [ρ]).

To see this take an s and let n be such that f(m) > hs(m) for m > n. It follows
that f(m) > h(m) = hs,n(m) for m 6 n and f(m) > h(m) > hs,n(m) for m > n.
This implies that Kf meets [ρ] ∩ [s]. �

Remark 4. The previous result is valid for all BIG sets: simply work inside [ρ],
where ρ is as in the conclusion of Lemma 2.

Remark 5. Lemma 3 generalises itself to the following situation: let X be compact,
let ϕ : X → 2ω1 be continuous and onto and let 〈Kf : f ∈ P〉 be an order-preserving
cover of X by compact sets. Then there is an f such that ϕ[Kf ] is BIG.

One can go one step further: take a closed subset Y of X such that ϕ[Y ] is BIG
and conclude that for some f ∈ P the image ϕ[Y ∩Kf ] is BIG. Simply take ρ such
that [ρ] ⊆ ϕ[Y ] and work in the compact space Y ∩ ϕ←

[

[ρ]
]

.

The main result

Now we show that that a compact space with a P-diagonal does not admit a
continuous map onto [0, 1]ω1 and deduce our main result.

Theorem 6. Assume X is a compact space that maps onto 2ω1 . Then X does not

have a P-diagonal.

Proof. Let ϕ : X → 2ω1 be continuous and onto. We use Remark 5 and say that a
closed subset, Y , of X is BIG if its image ϕ[Y ] is. That is, Y is BIG if there is a
δ ∈ ω1 such that Y ∩ ϕ←

[

[s]
]

6= ∅ for all s ∈ Fn(ω1 \ δ, 2).
We observe the following: if Y is BIG, as witnessed by δ, then for every s ∈

Fn(ω1 \ δ, 2) the intersection Y ∩ ϕ←
[

[s]
]

is BIG as well; this will be witnessed by
any γ that contains the domain of s.

In order to prove our theorem we assume that X does have a P-diagonal, wit-
nessed by 〈Kf : F ∈ P〉, and reach a contradiction.

In order for the final recursion in the proof to succeed we need some preparation.
Enumerate ω<ω in a one-to-one fashion as 〈tn : n ∈ ω〉, say in such a way that
tm ⊆ tn implies m 6 n (so that t0 = 〈 〉). We set Z0 = X and given a BIG set Zn

we determine a BIG set Zn+1 as follows. We check if there is a BIG subset Z
of Zn with the property that for no point z in Z are there a BIG subset Y of Z
and an f ∈ P with tn ⊂ f such that {z} × Y ⊆ Kf . If there is such a Z then
every subset of it also has this property so we can pick one that is a proper subset
of Zn and let it be Zn+1; if there is no such Z then Zn+1 = Zn. In the end we set
Y =

⋂

n Zn. The set Y is BIG: for each n we have γn ∈ ω1 witnessing BIGness
of Zn, then δ0 = supn γn will witness BIGness of Y .

Pick y0 ∈ Y , take i0 ∈ 2 distinct from ϕ(y0)(δ0), let s0 = {〈δ0, i0〉}, and set
Y0 = Y ∩ ϕ←

[

[s0]
]

. By the observation above, Y0 is BIG. Also: ϕ(y0) /∈ ϕ[Y0], so
that {y0} × Y0 is disjoint from the diagonal, ∆, of X . By Remark 5 we can find a
BIG subset Y1 of Y0 and f0 ∈ P such that {y0} × Y1 ⊆ Kf0 .

The point y0 belongs to all Zn and for any n such that tn > f0 (meaning that
tn(i) > f0(i) for i ∈ dom tn) it, the point y0, witnesses that Zn+1 = Zn in the
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following sense. The reason for having Zn+1 be a proper subset of Zn would be
that for all z ∈ Z and all BIG Z ′ ⊆ Z and all f ∈ P with tn ⊆ f we would have
{z} × Z ′ 6⊆ Kf . However, y0 and Y1 and f0 show that this did not happen.

The conclusion therefore is that for every such tn we know that every BIG Z ⊆ Y
does have an element z and a BIG subset Z ′ such that {z} × Z ′ ⊆ Kf for some
f ∈ P that extends tn.

This allows us to construct sequences 〈yn : n ∈ ω〉 (points in Y ), 〈Yn : n ∈ ω〉
(BIG subsets of Y ), and 〈fn : n ∈ ω〉 (in P) such that

(1) yn ∈ Yn, except for n = 0,
(2) Yn+1 ⊆ Yn,
(3) {yn} × Yn+1 ⊆ Kfn ,
(4) fn+1 > fn and fn+1 ⊇ fn ↾ (n+ 1)

As before we note that fm(n) = fn(n) whenever m > n, so we can define a func-
tion f ∈ P by f(n) = max{fm(n) : m ∈ ω}. Note that f > fn for all n so
that

{yn} × Yn+1 ⊆ Kfn ⊆ Kf

for all n.
It follows that 〈ym, yn〉 ∈ Kf whenever m < n. This shows that 〈ym, y〉 ∈ Kf

whenever m ∈ ω and y is a cluster point of 〈yn : n ∈ ω〉. But then 〈y, y〉 ∈ Kf for
every cluster point y of 〈yn : n ∈ ω〉. However, Kf was assumed to be disjoint from
the diagonal of X . �

We collect all previous results in the proof of our main theorem.

Theorem 7. Every compact space with a P-diagonal is metrizable.

Proof. As noted in the introduction the authors of [2] proved that a non-metrizable
compact space with a P-diagonal will map onto the Tychonoff cube [0, 1]ω1 or,
equivalently, that it has a closed subset that maps onto 2ω1.

However that closed subset would be a compact space with a P-diagonal that
does map onto 2ω1 . Theorem 6 says that this is impossible. �
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