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COMPACT SPACES WITH A P-DIAGONAL

ALAN DOW AND KLAAS PIETER HART

ABSTRACT. We prove that compact Hausdorff spaces with a P-diagonal are
metrizable. This answers problem 4.1 (and the equivalent problem 4.12)
from [].

INTRODUCTION

The purpose of this note is to show that a compact space with a P-diagonal is
metrizable.

To explain the meaning of this statement we need to introduce a bit of notation
and define a few notions. For a space M (always assumed to be at least completely
regular) we let JC(M) denote the family of compact subsets of M. Following [3] we
say that a space X is M-dominated if there is a cover {Cx : K € K(M)} of X by
compact subsets with the property that K C L implies Cx C C7.

In the case that we deal with, namely where M is the space of irrational num-
bers, we can simplify the cover a bit and make it more amenable to combinatorial
treatment. The space of irrationals is homeomorphic to the product space w®,
where w carries the discrete topology. We shall reserve the letter P for this space.

The set P is ordered coordinatewise: f < g means (Vn)(f(n) < g(n)). Using
this order we simplify the formulation of P-dominated as follows. If K is a compact
subset of P then the function fx, given by fx(n) = max{g(n) : g € K} is well-
defined. Using this one can easily verify that a space X is P-dominated iff there is
a cover (Ky: f € P) of X by compact sets such that f < g implies Ky C K,. We
shall call such a cover an order-preserving cover by compact sets.

Finally then we say that a space X has a P-diagonal if the complement of the
diagonal, A, in X? is P-dominated. Problem 4.1 from [1] asks whether a compact
space with a P-diagonal is metrizable. The authors of that paper proved that the
answer is positive if X is assumed to have countable tightness, or in general if
MA(R;) is assumed. The latter proof used that assumption to show that X has a
small diagonal, which in turn implies that X has countable tightness so that the
first result applies. Thus, Problem 4.12 from [I], which asks if a compact space
with a P-diagonal has a small diagonal, is a natural reformulation of Problem 4.1.

The main result of [2] states that compact spaces with a P-diagonal are metrizable
under the assumption of the Continuum Hypothesis. The proof establishes that a
compact space with a P-diagonal that has uncountable tightness maps onto the
Tyhconoff cube [0,1]“* and no compact space with a P-diagonal maps onto the
cube [0, 1]¢.
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The principal result of this paper closes the gap between Ny and ¢ by establishing
that no compact space with a P-diagonal maps onto [0, 1]“?.

SOME PRELIMINARIES

Since we shall be working with the Cantor cube 2“' we fix a bit of notation.
First, if I is some set then Fn(7,2) denotes the set of finite partial functions from I
to 2. We also use the binary tree 2<“! of countable sequences of zeros and ones.
If s € Fn(wy,2) then [s] denotes {x € 2¥1 : s C x}, the basic open set determined
by s. Similarly, if p € 2<% then [p] = {z € 2¥* : p C z}.

In the proof of Lemma [3] we shall need the following result due to Todorcevié.

Lemma 1 ([4, Theorem 1.3]). If b =Ry then w“' has a subset, X, of cardinality ¥,
such that for every A € [X|™ there are D € [A] and § € wy such that m5|D] =
{d | (w1 \6):de D} is dense in w\. O

This lemma also holds with w replaced by 2, simply map w“! onto 2“* by taking
all coordinates modulo 2. In that case the density of ms[D] can be expressed by
saying that for every s € Fn(w; \ d,2) the intersection D N [s] is nonempty.

Above we implicitly introduced 75 to denote the projection of I“' onto I¥\9,
when [ =w or I = 2.

BIG SETS IN 2¢!

Let us call a subset, Y, of 2%t BIG if it is compact and projects onto some
some final product, that is, there is a § € w; such that 75[Y] = 21\, The latter
condition can be expressed without mentioning projections as follows: there is a
d € wy such that for every s € Fn(wq \ 0,2) the intersection Y N [s] is nonempty
(and a dense set that is closed is equal to the whole space).

BIG sets are also big combinatorially, in the following sense.

Lemma 2. IfY is a BIG subset of 2“1 then there is a node p in the tree 2<“* such
that [p] C Y.

Proof. Let Y be BIG and fix a § witnessing this. After reindexing we can assume
d=wand welet By={z €2¥ :tCx}and Y; =Y NB; for t € 2<%,

Starting from to = () and sgp = @ we build a sequence (¢, : 7 € w) in 2<¥ an a
sequence (S, : n € w) in Fn(w; \ w,w) such that [s,] C 7s5[Y3,] for all n.

Given t,, we can choose i, < 2, and set t,11 = t, * iy, such that [s,] N 7s[Y;, ]
has nonempty interior. Then choose an extension $,41 of s, such that [s,41] C
75[Ys, . ]- With a bit of bookkeeping one can ensure that | J,, dom s, is an initial
segment of wy \ w. We let p be the concatenation of | J,, t,, and J,, sn-

To see that p is as required let « € [p]. By construction we have z € [s,,] for all n,
so that, again for all n, there is y,, € Y3 such that y,, and = agree above dom p. If
s € Fn(wn,2) determines a basic neighbourhood of = then there is an m such that
dom s N dom p is a subset of domt,, Udom s,,,. Then y,, € [s] for all n = m, so that
the sequence (y, : n € w) converges to x, which shows that z € Y. O

EXISTENCE OF BIG SETS

It is clear that a compact space is P-dominated: simply let Ky be the whole
space for all f. However, in our proof we shall encounter P-dominating covers that
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may consist of proper subsets. Our next result shows that such a cover of 2** by
compact sets must contain a BIG subset.

Lemma 3. If (K¢ : f € P) is an order-preserving cover of 2“' by compact sets
then there is an f such that Ky is BIG.

Proof. We consider three cases.

First we assume 0 = N;. In this case we show outright that there are p € 2<“1
and f € P such that [p] C K. Let (f, : & € w1) be sequence that is <-dominating.

Working toward a contradiction we assume no p and f, as desired, can be found.
This implies that for every p and every f the intersection KN p] is nowhere dense
in [p]. Indeed, if such an intersection has interior then there is s € Fn(wy,2) such
that [s] N [p] is nonempty and contained in K ;. It would then be an easy matter to
find o € 2<“1 that extends both p and s, and then [o] C K.

This allows us to choose an increasing sequence (p, : @ € wy) in 2<% such that
[pa] N Ky, = @ for all a. Then the point = |J, po does not belong to any Ky
because the Ky, are cofinal in the whole family.

Next we assume 0 > b = N;. We apply b = N; to find a special subset X of 2“1
as in the comment after Lemma [Il In what follows, when ¢t € w<¥ we let K(t)
denote the union [ J{Ky: ¢ C f}.

We choose an increasing sequence (t,, : n € w) in w<“, together with, for each n,
an uncountable subset A,, of X, a countable subset D,, of A,, and §,, € wy such
that A,, C K(t,) and for all s € Fn(w; \ dx, 2) the intersection D,,N[s] is nonempty.
Simply use that K (t) = |J, K(t * k) for all ¢.

Let § = sup,, 0, and enumerate each D,, as (d(n,m) : m € w).

For each s € Fn(w; \ 6,2) each D,, intersects [s] so that we can define hs € w®
by hs(n) = min{m : d(n,m) € [s]}.

By 0 > N there is g € w* such that {n: hs(n) < g(n)} is infinite for all s.

Now let E = {d(n,m): m < g(n),n € w} and observe that F meets [s] for every
s € Fn(w; \ 6,2), so that 75[F] is dense in 2¢1\%,

For each n there is f, € P that extends ¢, and is such that {d(n,m) : m <
g(n)} is a subset of Ky,. As fim(n) = tyy1(n) if m > n we may define f € P by
f(n) = max{fm(n) : m € w} for all n. Thus we find a single f such that £ C Ky,
which immediately implies that K is BIG.

Our last case is when b > N;. We let A be the set of members, ¢, of w<“ for
which there is a p € 2<“* such that K () N [p] is Gs-dense in [p].

As K({)) = 2“1 we have () € A.

We show that if t € A, as witnessed by p, then there is an n; such that txn € A
whenever n > ny; as K(t x m) C K(t x n) whenever m < n it follows that we
need to find just one n such that ¢t *x n € A. Build, recursively, an increasing
sequence p = po C p1 C p2 C --- in 2<%t such that pg = p and, if possible,
[pn+1] N K(t xn) = @; if such a p,41 cannot be found then K (¢t *n) N [p,] is Gs-
dense in [p,] and we are done. So assume that the recursion does not stop and set
0 =, pn; then [g] is disjoint from | J,, K (t*n), which is equal to K (t). This would
contradict Gs-density of K(¢) in [p].

We can define h € P recursively by h(n) = npp,, together with an increasing
sequence {p, : n € w) in 2<¥* such that K(h [ n) N [p,] is Gs-dense in [p,]. Let
p=U, pn, then K(h [n)N[p] is Gs-dense in [p] for all n.
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Let 6 = domp and let s € Fn(wy \ 6,2). We know that K(h [n)N[p]N[s] # @
for all n. So for every n we can take hy, € P that extends h [ n and is such that
Ky, N[p]N[s] # @. Because hyy,(m) = h(m) if n > m we can define hy € P by
hs(m) = max,, hs n(m).

As b > Ny we can find f > h such that hy <* f for all s. We claim that
KyN[p]N[s] # @ for all s, so that [p] C K (the closed set KN [p] is dense in [p]).

To see this take an s and let n be such that f(m) > hs(m) for m > n. It follows
that f(m) = h(m) = hs,(m) for m < n and f(m) = h(m) = hs n(m) for m > n.
This implies that Ky meets [p] N [s]. O

Remark 4. The previous result is valid for all BIG sets: simply work inside [p],
where p is as in the conclusion of Lemma

Remark 5. Lemma [3 generalises itself to the following situation: let X be compact,
let ¢ : X — 2t be continuous and onto and let (K : f € P) be an order-preserving
cover of X by compact sets. Then there is an f such that ¢[Ky] is BIG.

One can go one step further: take a closed subset Y of X such that ¢[Y] is BIG
and conclude that for some f € P the image ¢[Y N K| is BIG. Simply take p such
that [p] C ¢[Y] and work in the compact space Y N [[p]].

THE MAIN RESULT

Now we show that that a compact space with a P-diagonal does not admit a
continuous map onto [0, 1]“* and deduce our main result.

Theorem 6. Assume X is a compact space that maps onto 2**. Then X does not
have a P-diagonal.

Proof. Let ¢ : X — 2“! be continuous and onto. We use Remark [} and say that a
closed subset, Y, of X is BIG if its image [Y] is. That is, Y is BIG if there is a
§ € wy such that Y N¢* [[s]] # @ for all s € Fn(w; \ 4,2).

We observe the following: if Y is BIG, as witnessed by J, then for every s €
Fn(w: \ 6,2) the intersection Y N ¢* [[s]] is BIG as well; this will be witnessed by
any ~ that contains the domain of s.

In order to prove our theorem we assume that X does have a P-diagonal, wit-
nessed by (K : F' € P), and reach a contradiction.

In order for the final recursion in the proof to succeed we need some preparation.
Enumerate w<¥ in a one-to-one fashion as (t, : n € w), say in such a way that
tm C t,, implies m < n (so that to = ()). We set Zyp = X and given a BIG set Z,
we determine a BIG set Z,, 11 as follows. We check if there is a BIG subset Z
of Z, with the property that for no point z in Z are there a BIG subset Y of Z
and an f € P with ¢, C f such that {z} x Y C K. If there is such a Z then
every subset of it also has this property so we can pick one that is a proper subset
of Z,, and let it be Z,11; if there is no such Z then Z,,;1 = Z,,. In the end we set
Y = ﬂn Zy,. The set Y is BIG: for each n we have v, € w; witnessing BIGness
of Z,,, then §y = sup,, 7, will witness BIGness of Y.

Pick yo € Y, take ip € 2 distinct from ¢(yo)(do), let so = {(do,%0)}, and set
Yo =Y N [[so]]. By the observation above, Yy is BIG. Also: ¢(yo) ¢ ¢[Yo), so
that {yo} x Yp is disjoint from the diagonal, A, of X. By Remark [fl we can find a
BIG subset Y7 of Yj and fy € P such that {yo} x Y1 C Kjy,.

The point yo belongs to all Z,, and for any n such that ¢, > fo (meaning that
tn(i) = fo(i) for i € domt,,) it, the point yg, witnesses that Z, 11 = Z,, in the
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following sense. The reason for having Z, 1 be a proper subset of Z,, would be
that for all z € Z and all BIG Z’ C Z and all f € P with ¢, C f we would have
{z} x Z' € Ky. However, yo and Y7 and fy show that this did not happen.

The conclusion therefore is that for every such t,, we know that every BIG Z C Y
does have an element z and a BIG subset Z’ such that {z} x Z' C K for some
f € P that extends t,.

This allows us to construct sequences (y, : n € w) (points in Y), (Y, : n € w)
(BIG subsets of V), and (f,, : n € w) (in P) such that

(1) yn €Y, except for n =0,

(2) Yn+1 g Yna

(3) {yn} X Yn+1 g Kfnv

(4) fn+l>fn and fn—i-l;fnr(n'i'l)

As before we note that f,,,(n) = fn(n) whenever m > n, so we can define a func-
tion f € P by f(n) = max{fn(n) : m € w}. Note that f > f, for all n so
that

{yn} X Yp41 € Ky, C Ky

for all n.

It follows that (Ym,yn) € Ky whenever m < n. This shows that (y.,,y) € Ky
whenever m € w and y is a cluster point of (y, : n € w). But then (y,y) € Ky for
every cluster point y of (y, : n € w). However, K was assumed to be disjoint from
the diagonal of X. O

We collect all previous results in the proof of our main theorem.
Theorem 7. Every compact space with a P-diagonal is metrizable.

Proof. As noted in the introduction the authors of [2] proved that a non-metrizable
compact space with a P-diagonal will map onto the Tychonoff cube [0,1]“* or,
equivalently, that it has a closed subset that maps onto 2“*.

However that closed subset would be a compact space with a P-diagonal that
does map onto 2“'. Theorem [0l says that this is impossible. O
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