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TIGHTNESS IN ¢-COMPACT SPACES

ALAN DOW AND JUSTIN MOORE

ABsTrACT. In 1993 Arhangelskii and Stavrova defined the notion
of the k-tightness number of a space and its hereditary version.
They proved that the hereditary k-tightness of a compact space is
equal to the standard notion of tightness. Out of this grew the
notion of what one might call o-compact tightness: the closure
of a set is the union of the closures of all its o-compact subsets.
We contribute to the question of whether o-compact tightness is
equivalent to countable tightness.

1. INTRODUCTION

From the paper [1], the cardinal invariant ¢, (X) is defined for a space
X and is called the k-tightness of the space. The subscript & is a common
method of referring to the notion of compactness. A subset B of a space
X is called T-compact, for a cardinal 7, if B can be written as a union of a
family of cardinality at most 7 consisting of compact subsets of X (or B).
The k-tightness, tx(X), does not exceed 7 if for every set M C X which is
not closed in X, there is a 7-compact set B C X such that M N B is also
not closed in X. This is a natural generalization of a k-space, since in a
k-space X aset M C X is closed if M N B is closed for every compact set
B C X. Now, still following [1], let htx(X) denote the hereditary version
of t,(X). Thus, htx(X) < 7 if for each A C X, we have that t,(A) < 7.
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2 ALAN DOW AND JUSTIN MOORE

It is shown in [1] that htg(X) is equal to ¢(X) for compact spaces.
Recall that the tightness, t(X), of a space X is the least infinite cardinal
7 such that whenever a point z is in the closure of A C X, then there is
a set B C A of cardinality at most 7, such that x is in the closure of B.
Of course it follows that every subspace of X has tightness no larger than
the tightness of X.

Proposition 1.1. [1] If X is a compact space, then hii(X) = t(X).

A similar, perhaps more natural, generalization of ¢(X) is also formu-
lated in [1].

Definition 1.2. Define t}(X) < 7 iff for every A C X and z € A, there
is a T-compact B C A such that = € B.

Furthermore, it is established that

Proposition 1.3 ([1]). For every X we have that htx(X) < t5(X) <
t(X).

In answer to one of the questions from [1, Problem 19], we show that
there are examples of a hereditarily Lindelof and ccc o-compact spaces
for which w = ht;(X) < ¢(X). These examples also (partially) answer [1,
Problem 25].

The very interesting question of whether ¢} (X) = w implies, in general,
that t(X) = w, remains open, but we are able to establish that the answer
is affirmative for spaces with weight at most w;. We present examples
which we feel illustrate the complexity of the problem, and we establish
the following result about locally compact spaces of countable tightness.

Theorem 1.4. FEach locally compact space of countable tightness has a
dense subset with the property that every o-compact subset of it is con-
tained in the closure of a countable subset of X.

2. HEREDITARY k-TIGHTNESS

In [1, Problem 19], it is asked if each o-compact (or Lindeldf) space X
with htg(X) < w will have countable tightness.

Theorem 2.1. There is a hereditarily Lindeldf space X with htp(X) = w
and uncountable tightness.

Proof. 1t is well-known that the second author proved that there is a
hereditary Lindel6f space L which has countable tightness, weight wi,
and is nowhere separable [9]. Such a space is cce, and it is shown in [5],
that w x L has a remote point p. That is, p is a point in the Stone-Cech
remainder of w x L which is not in the closure of any nowhere dense
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subset of w x L. Our example is X = (w x L) U {p}. Since X is nowhere
separable and p is a remote point, it follows that p is not a limit point of
any countable subset of X. Therefore X has uncountable tightness. Since
wx L has countable tightness, it follows immediately that htx(wx L) < w.
To show that X itself satisfies that hty(X) < w we assume that ¥ C X
and that A C Y is not closed in Y. We must find a o-compact set B C Y
such that BN A is not closed in Y. If p is not a limit of A, then the fact
that ¢(L) = w, implies there is a countable subset of A which accumulates
to a point of Y \ A4; and so B can be taken to be such a countable set.
Otherwise, we may assume that p is a limit point of A. Since p is a
remote point of w x L, and L has no isolated points, there is an n such
that AN ({n} x L) is not discrete. Choose B to be any countable subset
of AN ({n} x L) which is not closed in Y. Again, such a B is a witness
to tg (Y) = w. O

Now we turn our attention to this question for o-compact spaces. Let
us also mention Problem 25 from [1] which asks if ht;(X) < w implies
t(X) = w for spaces X that are equal to a countable union of compact
subspaces of countable tightness. More generally they ask what additional
conditions are sufficient to ensure countable tightness. We consider spaces
of the form {p}uUlJ,, X,, where X =(J,, X,, is o-compact and of countable
tightness. Surprisingly, it turns out that the answer is generally no, even
with additional properties imposed on the subspace X. We first obtain a
condition that ensures that ht;(X U {p}) < w holds for such spaces.

Lemma 2.2. If X is o-compact and has countable tightness, then for
any extension X U{p} of X, htx(X U{p}) < w providing p has countable
tightness with respect to discrete subsets of X.

Proof. Suppose that Y C X U{p} and that A C Y is not closed in Y. We
must produce a o-compact B C Y such that AN B is not closed in Y.
Since X has countable tightness, it follows that we may do so long as A
has any limit points in X NY. Otherwise we have that AN X is discrete
and p € Y is the only limit point in Y. |

Rather than simply getting examples with hty(X U {p}) = w < (X U
{p}), we seek examples where p is not in the closure of any countable
subset of X. In view of Lemma 2.2 and [3], such a space X U {p} may be
called a discrete-remote weak-P-extension of X, that is, the point p is a
non-isolated weak P-point in the space X U {p} which is also not in the
closure of any discrete subset of X.

For spaces which are not ccc one has the following result of van Mill for
finding weak P-points, but little is known, in ZFC, for finding discrete-
remote points.



4 ALAN DOW AND JUSTIN MOORE

Proposition 2.3 ([8]). If X = XX, is nowhere ccc, and if D is a nowhere
dense subset of X, then there is a free filter F of closed sets with the
property that for each ccc E C X, there is an F' € F such that FNE U D
is empty. In particular, X has a weak P-point extension.

In fact, for locally compact spaces of countable tightness, weak P-
points exist so long as the space is nowhere separable.

Theorem 2.4. If X is a locally compact, nowhere separable, o-compact,
non-compact space of countable tightness, then X has a weak P-point
extension.

For the sake of continuity, we defer the proof of Theorem 2.4 until the
end of this section. In a positive direction, in terms of getting htx(X U
{p}) = w to imply countable tightness, we have the following two Fréchet
non-ccc examples. The main idea to these results is that in these examples
we can show that a discrete-remote point must be a remote point, and
the fact from [4] that such products of cellularity larger than w; do not
have remote points.

Proposition 2.5. If A(ws) is the one-point compactification of the dis-
crete space wa, then X = w x (A(w2))¥ has no discrete-remote weak-P-
extension.

Proof. Tt is shown in [4] that this space X has no remote points. The result
will follow once we show that each nowhere dense subset of (A(wy)) is
contained in the closure of a discrete set. Let K C (A(wsz))* be non-
empty and nowhere dense. For ¢ € ws®, let [t] denote the basic clopen
set {z € (A(wq))¥ : t C x}. Let T denote the set of t € wy* which are
minimal with respect to having [t] disjoint from K. Since K is nowhere
dense and the family {[t] : ¢ € wy“} is a m-base for (A(w2))“, we have
that (J{[t] : t € T'} is dense. Let T} denote the set of one-point extensions
in ws* of members of T. For each ¢ € T; we will choose a single point
x¢ € [t]; it is evident that D = {z; : t € T} } will be a discrete subset of
(A(w2))¥. The selection can be inductively defined so as to ensure that
for each basic clopen subset of (A(ws))* which meets K will also meet
D. Since (A(w2))“ has weight ws, this selection can be made so long as
we can show that for each clopen set W meeting K, the set of t € T}
satisfying that W N [¢] is non-empty has cardinality ws.

A basic clopen set W will have the form II;.,, W; where for each i < n,
either W; is a singleton set from wy, or W; = A(ws) \ F; for some finite
F; C wy. Assume that W meets K. If each W; is a singleton, then
W = [s] for s = (5; : i < n) and [s] N K # (. Therefore there is an
extension ts € T of s and we have that W contains [t] for each t € T}
which extends t;. Otherwise, let ¢ be the minimal element of n such that



TIGHTNESS IN o-COMPACT SPACES 5

Wi is not a singleton. Then, for each 8 € wo \ F;, there is some tg € T}
satisfying that [tg]) N W # 0 and ts(¢) = 8. This completes the proof. O

By similar reasoning we have the following result for a first-countable
non-ccc space.

Proposition 2.6. If K is the lexicographically ordered square, then X =
w X K has a discrete-remote weak-P-extension if and only if the contin-
uum hypothesis holds.

Proof. The same argument as used in the proof of Lemma 2.5 shows that
a discrete-remote point of X is also a remote point. Also, if ¢ > wi,
then it follows from [4] that X has no remote points. On the other hand,
it is shown in [7, 1.3] that X does have remote points if the continuum
hypothesis holds. O

Now we turn to considering ccc examples and the existence of discrete-
remote weak P-point extensions; hence the failure of o-compact tightness
implying countable tightness. We first use a space constructed by Bell
[2] to provide a ccc first-countable example. We will also show that it is
independent of the usual axioms as to whether there is a locally compact
ccc example.

We begin by recalling the ingenious example from [2].

Definition 2.7. The Pixley-Roy space F[2¥] over the Cantor set 2¢ is a
topology on the family of non-empty finite subsets of 2¢ in which a base
for the topology is given by the collection of sets [H,0] = {G € F[2¥] :
H C G C O} where O is a clopen subset of 2¢.

Proposition 2.8 ([2], 7.1 [13]). There is a first-countable o-compact ex-
tension B of the Pizley-Roy space F[2¢]. That is, the Pizley-Roy space is
a dense subspace of B; hence B is ccc and nowhere-separable.

Definition 2.9. A point p of 5X \ X is a remote point if p is not in the
closure of any nowhere dense subset of X. A collection £ of subsets of a

space X is a remote collection if for each nowhere dense set D C X, there
isan L € £ so that L and D have disjoint closures.

Proposition 2.10 ([3]). If a space X has, for each n € w, a remote
n-linked collection, then the free sum X, X has remote points.

The ideas for this next proof are taken from [6].

Lemma 2.11. If F[2¥] is dense in a space K then K has remote n-linked
collections for each n € w.

Proof. Let {O; : j € w} be an enumeration of the clopen subsets of 2¢.
For each m € w, let P,, denote the collection {[H,0;] : j < m,|H| <
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m,H C O;}. Let P be the union of the increasing chain {P; : j € w}.
Choose any increasing sequence {my : k € w} C w with the property
that (my)? < myy1 and each non-empty finite intersection of members of
{O; : j < my} is a member of {O, : j < my41}. It follows then that each
non-empty intersection of at most mj members of P,,, is an element of
Prigeys-

For a finite subset L of P, let us say that L is in ’P]"»" if |J L meets every
member of P;.

Claim 1. If {A; : i € w} C P has dense union, then, for each j € w, there
is an n; € w such that {4; : i <n;} € 7737".

We prove the Claim by contradiction. For each n € w, assume there
is an [Hy,Oy,] € P; which is disjoint from (J,_,, A;. By passing to a
subcollection, we may assume that there is a pair m,¢ < j such that
each H,, has cardinality m and each ¢, is equal to ¢. Identifying each
H,, with a member of the compact product space O}*, we may assume
that the sequence {H,, : n € w} converges to some H € O}’. Choose
any k € w so that A, meets [H,Oy]. Let Ay = [H',O’] and notice that
HUH' CcO'NOy. Since {Hy, : n € w} converges to H, there is an n > k
so that H, C O’. Tt follows that Ay N [H,, Oy, ] is not empty, which is a
contradiction.

We define the desired n-linked remote collections by induction. Let Lg
be equal to the entire collection P (i.e. of singleton elements of P).

For each n € w, we have that for a finite L C P, |J L is a member of
Ly41, if there is k such that (J(L N P,,,) is a member of £,, and L is a

member of P}, . We prove that each £, is n-linked.

Claim 2. For each n € w and {L; : i < n} C L,, there is a selection
P; € L; (i < n) such that (] P; is non-empty.

We prove this claim by induction. Suppose that it holds for n and let
{L; : i < n+ 1} be a family of finite subsets of P so that |JL; € L,+1
for each i < n+ 1. Choose the indexing so that there is m; witnessing
that L, € L,41, as in L, is a member of P;ng and, so that for all
i<n+1, J(L; " Pp,) is a member of £,,. By the inductive assumption,
there is a selection {P; : i < n} with non-empty intersection such that
P; € LiNPy,, for each i < n. Recall that (,_,, P; € Pr,,,,, and therefore
there is a P, € L, meeting this intersection.

We finish the proof by showing each £, is a remote collection. Let
D be any closed nowhere dense subset of K. Let A C P be all those
members of P whose closure in K is disjoint from D. Since F[2¥] is
dense in K, |JA is dense in K. Since F'[2¥] is ccc, there is a countable
subcollection {A4; : i € w} C A which also has dense union. By induction
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on n, assume there is a value 4,, such that | J{A4; : i <i,} € L,. Fix k so
that {A; : ¢ < in} C Pp,, and then, by Claim 1, choose i,4+1 > 4, so that
{AZZ<Zn+1}EP;; O

k41"

Corollary 2.12. There is a o-compact ccc first-countable space X with
a discrete-remote weak P-extension.

Proof. Let X = ¥,,B with B as in Proposition 2.8. Since ¥, F[2*] is a
dense subset of X it follows from Lemma 2.11 and Proposition 2.10 that
X has a remote point p. Since X is nowhere separable we have that p is
not in the closure of any countable subset of X. a

We now turn our attention to locally compact spaces of countable tight-
ness. This next result is offered to highlight the fact that Bell’s space can
not be made to be locally compact.

Proposition 2.13. The space B (and F[2*]) does not have a compacti-
fication with countable tightness.

We obtain the proof of the following based on Sapirovskii’s more general
result given below in 2.18.

Proof. Suppose that K is a compactification of F[2¥]. Let {z, : a €
w1} C 2% be distinct points. For each a € wj, there is a clopen set
Cy 3 x4 such that [{z,},C,] and F[2¢]\ [{z4},2¢] have disjoint closures
in K. By shrinking the family, we may assume that there is a single
clopen set C such that C, = C for all a € w;.

For each «, the family

Fo={[{zs},C): B < al U{F12°]\ [{2,},2°] < v}
has the finite intersection property. If H € [w;|<* and Hy = H N «, then

choose any clopen O C C so that O N H = Hy. Then it is easily checked
that [Hy, O] is contained in

M Hzsh0lN U Hay,2¢
BEH, ~yEH\Hy

We may choose k, € K so that k, is in the closure of each F' from the
filter generated by F,. Since {kg : § < a} is contained in the closure of
[{za}, C] and {k, : v > a} is contained in the closure of F[2¥]\ [{za},2*],
it follows that {k, : @ € w1} is a free sequence in K. O

In our construction of weak P-points and of discrete-remote points, we
will need this next result.

Proposition 2.14 ([5]). If X = £X,, is ccc and has m-weight at most
w1, then X has remote points.
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We are now able to utilize some powerful results of Todorcevic and
Sapirovskii to establish this next independence result.

Theorem 2.15. The existence of a locally compact ccc countably tight
[first-countable] space with a discrete-remote weak P-point extension is
equivalent to the failure of MA(w)

Before giving the proof, let us recall the needed results of Todorcevic
and Sapirovskii.

Proposition 2.16 ([13, 3.4]). If MA(w1) fails, there is a compact ccc
first-countable space of weight wy which is nowhere separable.

Proposition 2.17 (|11]). If MA(wy) holds, then each locally compact ccc
space of countable tightness is separable.

Proof of Theorem 2.15. If MA(w) fails, then let K be the space provided
by Proposition 2.16. By Proposition 2.14, X = w x K has a remote point
p € X\ X. Since K is nowhere separable, p is also a weak P-point of X.
On the other hand, suppose that MA (w;) holds and that X is a locally
compact ccc countably tight space. By Proposition 2.17, X is separable.
Therefore X does not have a weak P-point extension. O

In preparation for the proof of Theorem 2.4, we will also need the
following easy consequence of [13, 3.1].

Proposition 2.18 (Sapirovskii, Todorcevic). If X is compact, nowhere
separable, and has countable tightness, then there is a continuous map f
onto a space Y which has weight wy and is also nowhere separable.

Proof. The actual statement from Todorcevic [13, 3.1] is that compact
countably tight spaces have a point-countable m-base. Let x be the m-
weight of X and fix any standard embedding e of X into I*(X). Let
B = {b, : @ € Kk} be a point-countable m-base of e[ X] so that each b, is the
intersection with X of a cozero subset of I*(X). Let M be an elementary
submodel of H(0) for suitably large 6 with e, X, B € M. Assume also that
wp C M and that M has cardinality w;. Simple elementary submodel
properties implies that {b, | M : & € kN M} is a w-base for e[X] | M
(under suitable identifications). We check that ¥ = e[X] | M is nowhere
separable. Assume that ap € x N M is such that b,, [ M is separable.
Let J = {a € K : by Nby, # 0}. Since J is uncountable, it follows
that J N M is uncountable, and that there is some y € Y such that
Jy={ae MnJ:ye€eb,) | M} is uncountable. Choose any z € X
such that e(z) [ M = y. It follows that = € b, for all & € J,, which is
clearly a contradiction. |
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Theorem 2.19. If X is a locally compact o-compact non-compact nowhere
separable space of countable tightness, then X has a weak P-point exten-
siom.

Proof. Choose any unbounded positive real-valued function f on X. As-
sume that {r, : n € w} is contained in the range of f and that 7,41 >
rn + 2 for each n. For each n, choose a cozero set U,, of X so that the
closure, X,,, is compact, f[X,] is a subset of (r, — 1,7, + 1) and so that
U,, is either ccc or nowhere ccc. It is well-known that the closure in
BX of the subspace ¥, X,, = |J,, X;, is homeomorphic to (X, X,). Let
D = J,, X, \ U, and note that D is a nowhere dense subset of 3, X,,.
Since X is normal, it follows that if ' C |J,, U, is a closed subset of X,
then F and X \ ¥, X,, have disjoint closures in 8X.
We proceed by cases.

Case 1. There are infinitely many n such that U, is nowhere ccc.

Let I be the set of n such that U, is nowhere ccc. Apply Proposition
2.3, to Yner X, and D N X,c1 X, to obtain the described filter F. If
p € B(X,X,) is any point which is the closure of each member of F,
then clearly p is not a limit point of any countable subset of ¥, X,,. In
addition, p is not in the closure of X\ |J,c; U, because X is normal, and
there are members F' of F which are disjoint from D.

Case 2. There is an infinite I C w such that U, is ccc for each n € I.

For each n € I, fix a space Y,, as in Proposition 2.18 with a mapping f,
from X, onto Y,,. In the proof of Proposition 2.18, choose each member of
the m-base B to be a subset of U,,. In this way we obtain that f[X,, \U,] is
nowhere dense in Y;,. By Proposition 2.14, there is a point ¢ in 8 (X,e1Yn)
which is a remote point. The mapping ¥,,c; f, maps X,cr X, onto X, c1 Y,
and extends to a mapping f between the Stone-Cech compactifications.
Choose p € 8 (X,erX,,) so that f(p) = ¢. Since each countable subset A
of ¥, X, maps to a nowhere dense subset of X,,cY,,, it follows that p is
not in the closure of such a set A. In addition, let us note that p is not in
the closure of | J,,.; Xy \ Uy since g is remote. Again, it follows from the
normality of X and basic properties of the Stone-Cech compactification,
that p is not in the closure of X \ |J,,c; X». It should now be clear that
p is not in the closure of any countable subset of X. O

3. ON 0-COMPACT TIGHTNESS

We interpret the property t;(X) < w as that the space X has o-
compact tightness. As mentioned above, it is shown in [1] that each com-
pact space having o-compact tightness actually has countable tightness.
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In fact, this statement follows easily from Arhangelskii’s earlier result that
a compact space with uncountable tightness must contain an uncountable
free sequence. It is immediate that no complete accumulation point of the
uncountable free sequence is in the closure of a o-compact subset of the
same free sequence.

Our main new idea in the investigation of o-compact tightness is the
following observation about left-separated families of Gs’s. Say that a
family {Z, : a € u} is left-separated if, for each o < p, Z, is disjoint
from the closure of ,_,, Zs-

Theorem 3.1. If {Z, : a € u} is a left-separated family of Gs subsets of
a space X, then each compact subset of the union is covered by a countable
subcollection.

Proof. Let B C |J{Z, : « € u} be compact. Assume that Ip = {a € p :
BN Z, # 0} is uncountable. For each a € Iy, choose any b, € BN Z,.
Since B is compact, we may choose 3y € Iy minimal such that the family
{ba : @ € Iy} has a complete accumulation point zp in Zg,. Since Zg,
is a Gy, it has an open neighborhood Uy such that Iy = {« € Ij : b, ¢
Up} is uncountable. Let 8; be minimal such that {b, : a € I1} has
a complete accumulation z; point in Zg,. Notice that By < 1. We
may continue this process and thereby choose an increasing sequence f;
(1 € w) with points z; € BN Zg,, together with a decreasing sequence
{I; : i € w} of uncountable subsets of u, so that for each i, z; is a
complete accumulation point of {b, : a € I;}, and no point of U"/<Bi Z
is a complete accumulation point of {b, : @ € I;}.

It follows from these assumptions that the set {z; : ¢ € w} has no
accumulation point in the compact set B — which is the contradiction we
seek. To see this, notice that any accumulation point z of {z; : i € w} is
a complete accumulation point of {b, : a € I;} for each i € w. By the
minimality of §;, z ¢ Z, for any v < ;. On the other hand, since the
family is left-separated, it is also the case that z ¢ Z, for all v > sup{g; :
i€ w}. O

A set Z C X is called a Gg-set, for a cardinal k, if Z is equal to the
intersection of a family of at most k-many open sets. The following result
is extracted from Arhangelskii’s investigation of free sequences.

Lemma 3.2. If t¢(X) < 7 for a compact space X, then for each non-
empty closed Z C X which is a G+ set, there is a set S C X of cardinality
at most T such that S contains a non-empty G, subset of Z.

Proof. Let Z be any non-empty closed set which is a G,-set in X. Assume
we recursively choose points {z3 : § < a < 77} from Z together with a
descending sequence {Z3 : 8 < a < 77} of non-empty closed G, subsets
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of Z so that z3 € Zz and Zg is disjoint from {z¢ : £ < §}. This recursion
must stop at some a < 7T, since otherwise, we will have constructed a
free sequence of length 77, which would contradict ¢(X) < 7. Evidently,
the failure implies that for some «, the non-empty G,-set, (\{Zg : 5 < a}
is contained in the closure of the set {z5: 8 < a}. O

Corollary 3.3. Ift;(X) < w and a point p € X is in the closure of | J,, By
where {B,, : n € w} is a pairwise disjoint family of compact subsets of X,
then p is in the closure of a countable subset of |J,, B

Proof. Since t;(X) < w, each B, has countable tightness. For each n,
let Z, be the collection of closed relative Gs subsets of B, which are
contained in the closure of a countable subset of B,,. Fix any maximal
left-separated subfamily {Z(n,«) : @ < p,} of Z,. By Lemma 3.2, the
union of this collection is a dense subset of B,,. By the assumption that
t7(X) < w and Theorem 3.1, there is a countable subcollection Z, of the
collection {Z(n,a) : n € w,a € p,} whose union has p in its closure.
Since each Z € Z, is contained in the closure of a countable subset of
\U,, Bn, we have that p also is contained in the closure of a countable
subset of | J,, Bn. O

If X is a space with ¢} (X) < w which does not have countable tightness,
then it is evident that there is a point p € X and a countable increasing
sequence S = {X,, : n € w} of compact subsets of X, such that p is in
the closure of | J,, X, but is not in the closure of any countable subset of
U,, X»n. By passing to a subspace, we can assume that X = {p}UlJ,, X».

Definition 3.4. Say that a space X is an S-example if ¢} (X) <w, Sisa
countable increasing sequence of compact subsets, X is equal to {p}Ul S,
and a set F' C |JS is closed in X\ {p} if, for each S € S, FNS is compact.

We next show that if there is such an example, we can assume that
the subspace J,, X, is equipped with the finest topology in which each
X, is compact. The sequence S = {X,, : n € w} will be a parameter
in discussing the example. Notice that if a countable increasing union of
compact Hausdorff spaces are endowed with the fine topology, then this
topology is completely regular. We should also remark that a different
selection of the sequence S can result in a different topology. Observe also
that if X is an S-example then the subspace | J S has countable tightness.

Lemma 3.5. If there is a space X which has o-compact tightness and
uncountable tightness, then there is a nowhere locally compact S-example
with uncountable tightness.

Proof. Assume that p € X is in the closure of A C X but is not in the
closure of any countable subset of A. Since ¢;(X) < w, there is a family
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{X,, : n € w} of compact subsets of A such that p is in the closure of
\U,, X». Consider the space {p} U], X, with the possibly finer topology
in which the neighborhood base for p is from the usual subspace topology,
but each F' C |J,, Xy, is declared closed if FF'N X, is closed for each n.
This is a finer topology, hence it still has uncountable tightness at p with
respect to | J,, X,,. In addition, since we are not changing the topology at
p, it is easy to check that if p is in the closure of some Y C J,, X,,, then
Y will contain a o-compact set (in the old topology) which has p in the
closure. It is easily checked that such a o-compact set is also o-compact
in the finer topology. Also, |J,, X, with the fine topology has countable
tightness since each X, has countable tightness.

Let U be the open set of points of X that have a compact neighbor-
hood, and let U be any maximal pairwise disjoint family of regular-closed
compact subsets of U. The point p can not be in the closure of U since by
Corollary 3.3, p would not be a limit point of any countable subfamily of
U, which contradicts that ¢} (X) < w. By passing to the subspace X \ U,
we may thereby assume that X is nowhere locally compact and each X,
is a nowhere dense subset. (]

If there were a Tychonoff example (in fact regular) example of such a
space with uncountable tightness, then this raises the obvious question of
whether there is a bound on the value of ¢(p, X) for p € 8X with X being
a o-compact space of countable tightness. We discuss this in example
3.10 below.

We define a special notion which is an S version of a nowhere dense
zero-set. A set is a zero-set if it is the preimage of 0 under a real-valued
continuous function.

Definition 3.6. For a zero-set Z C X and an increasing sequence S
of compact subsets of X, the S-acccessible points of Z, S-acc(Z), will
be defined as all those points of Z which are in the closure of S\ Z for
some S € S. In other words, Z N|Jgcs S\ Z is the set of S-accessible
points. Analogously, the S-interior of Z, denoted S-int(Z), will be the
points of Z which are not in the closure of the S-accessible points, namely
S-int(Z)=Z\ ZNUges S\ Z.

Using our method of constructing left-separated families of G4’s, we are
able to exclude a large family of S-spaces as potential counterexamples.

Theorem 3.7. If X is an S-example with uncountable tightness, then
p is not in the closure of the union of all zero-sets which have empty
S-interior.

Proof. Let Z be the family of all zero-sets of | JS which have empty S-
interior. Notice that any zero-set which is contained in a member of Z is
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itself a member of Z. Let Y = |J Z and assume that p € Y. Recursively
choose a maximal left-separated family {Z, : « < pu} C Z. That is,
having chosen {Zs : B < a} C Z,if Y\ U{Zs : 8 < a} is non-empty, we
may choose Z, € Z to be disjoint from (J{Zs : B < a}. Clearly, there
will be some p so that | J{Z, : o € p} is dense in Y. This of course means
that p is in the closure of the union of this left-separated collection of
G(;’S.

We apply the hypothesis that X is a t;-space and find that, by Theorem
3.1, there is a countable subfamily of {Z3 : § < p} which has p in the
closure of its union. By re-indexing, we may assume that p is in the
closure of | J{Z; : j € w}.

Fix an enumeration, {X,, : n € w} of S. Let K denote the closure of
U; Z; and let S = {X, N K : n € w}. We may view {p} UK as an
Sk-example. With this change the Si-interior of some of the Z;’s may
be non-empty, and Sk-acc(Z;) may be strictly smaller than S-acc(Z;)
for some j.

We break into two cases.

Case 1. p is in the closure of |J; Sx-acc(Z;).

Select any increasing sequence {Lj : k € w} of compact sets such that
Ly € U, Sk-acc(Z;) and p is in the closure of |J, Lx. For each j,n,k,
let Ljn = Li N Z; N X, NK\ Z;. Tt follows that Ly € U, Ljgn. It
is evident that L; , is contained in the closure of | J{Z, N X, : £ > n},
and so we have that p is in the closure of the union of the collection
{ZyN X, : ¢ € w}. By Corollary 3.3, we have that ¢(p, X) = w.

Case 2. p is in the closure of |J; S-acc(Z;) but not in the closure of
U; Sk-ace(Z;).

For each j, let {U(4,£) : ¢ € w} be a sequence of open neighborhoods of
Zjsothat U(j,0+1) C U(j,¢) and (), U(j,€) = Z;. We may also assume
that for each i < j < ¢, U(4,¢) and U(i,¢) have disjoint closures.

Again choose a sequence {L; ., : j,k € w} of compact sets so that,
for each j,k,n, Ljxn C (Xn\ Z;) N Z; \ Sk-acc(Z;) and so that p is in
the closure of the union of the sequence {L; ., : j, k,n € w}. We may
assume that for each j,k,n, Ljxn C Ljkn+1 C Ljkt1,n+1-

Now we use the fact that each L, , is contained in the Sk-interior
of Z;. For each n, choose a sequence {W;, : j < n} of open sets with
disjoint closures so that, for each j <n, U, ., Ljxn C Wj, and ij N

(Xn N UZ# Zg) is empty. By induction on n, we may then also ensure
that W, is disjoint from W, ,, for all j #i < m < n.
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For each j < n € w, now set B(j,n) to be the closure of

Xn N U Wj,m N (U(]7 n) \ U(],’I’L + 1))
m<n
Note that W; ,,, N X,,,NU(j,m) C UJ,, B(j,n) and that L; , ,, is contained
in the closure of W; ,,, N X, \ Z;. Therefore it follows that Uk,m Ljgm is
contained in the closure of the union of the family {B(j,n) : n € w}.

Let us again note that for i # j, the set (J, W, is disjoint from
U,, Win, and therefore | J, B(j,n) is disjoint from |J,, B(i,n). Further-
more, for n — m > 1, we have that B(j,n) and B(j, m) are disjoint since
B(3,m)NU(j,m + 1) is empty and B(j,n) C U(j,m + 1). Since p is in
the closure of the union of one of the two collections {B(j,2n) : n € w},
{B(j,2n+ 1) : n € w}, we are again done by invoking Corollary 3.3. O

A well-known class of spaces are the almost P-spaces. These are the
spaces in which every non-empty Gs has non-empty interior. The natural
generalization (weakening) to S-spaces is relevant.

Definition 3.8. An S-example X is an almost S-P-space if every non-
empty zero-set has non-empty S-interior.

It follows immediately from Theorem 3.7 that if there is a space with o-
compact tightness and uncountable tightness, then there is an increasing
countable sequence S of compact subsets whose closure is of uncountable
tightness and which is an almost S-P-space.

Lemma 3.9. If an S-example X is an almost S-P-space then for each
x €S, there is an S € S such that for each zero-set Z of X with x € Z,
x in the closure of the set of points of S which are in the S-interior of Z.

Proof. If the lemma fails for some =z € S, then, for each S € S there is
a zero-set Zg such that © € Zg and there is a zero-set neighborhood Wg
of x such that S N Wg is disjoint from S-int(Zg). Since S is countable,
the set Z = ({ZsNWs: S € S} is also a zero-set with « € Z. For each
S € S, the set SN(S-int(Z)) is a subset of WgNS-int(Zs). Clearly then
Z has empty S-interior, contradicting that X is an almost S-P-space. O

We next present an instructive example of an almost P-space which
also shows that there is no bound on the tightness for Tychonoff one-
point extensions of o-compact spaces. The verification that no one-point
extension of this space will have o-compact tightness seems to require new
ideas. These ideas allow us to at least rule out examples of weight ws.
However we first present a similar example (first discovered by Okunev
[10]) to illustrate the tightness behavior for points in the Stone-Cech ex-
tension.
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Example 3.10. For each uncountable cardinal  there is a o-compact
Fréchet-Urysohn space X = |J,, X,, for which there are points z € X
such that t(z,X) > k.

Proof. Fix any uncountable cardinal x. For each n, let X,, = [k]=" be
the subsets of k with cardinality at most n. The set Xy has the single
element (). As usual, [k]<¥ denotes the family of all finite subsets of x
and X = [r]<v.

For each disjoint pair ¢, F' € [k]<%, let

t;Fl={se k]~ :tCsCr\F}

and topologize X by using this family as an open base. Since [z; t\z]N[t; F]
is empty for « € [k]<“\ [t; F], it follows that these sets are clopen.

For each n, X,, with the subspace topology is easily seen to be compact.
It is also Fréchet-Urysohn, since a point ¢ is a limit of a set A C [¢; 0] if
and only if {« : AN[tU{a};0] # 0} is infinite. The space X is not
an almost P-space since, for each infinite set S C « and t € X, the set
{[t;{a}] : @« € S\ t} is nowhere dense.

Now consider the filter base F = {[t;0] : ¢t € [s]<“}. Choose any
point z € SX such that z € clgx[t; 0] for all ¢ € [k]<¥. If Y C X has
cardinality less than #, then (JY (the union of this family of finite sets)
has cardinality less than x. Then for any o € x\ |JY, we have that
clgx[{a}; 0] is a clopen neighborhood of z which misses Y. O

The space in Example 3.10 is not an almost P-space, but the following
slight modification is. We do not know if there is an almost P-space as in
Example 3.10.

Example 3.11. For each uncountable cardinal , the set k<% (of ordered
finite sequences) has the natural o-compact Fréchet-Urysohn topology in
which each set [t] = {s € k<¥ : ¢ C s} is clopen. This space is an
almost P-space. Each one-point extension k<“U{p} which has o-compact
tightness, also has countable tightness. Each z € (k<) is in the closure
of some subset of k<% of size at most c.

Proof. We content ourselves with proving that if x<“U{p} has o-compact
tightness, then p is in the closure of some countable subset of k<% because
this is the feature that is important in our investigation. The proof is
easily adapted to show that x<“ U {p} has countable tightness.

Of course we assume that p is not isolated. We first prove that p is
in the closure of a nowhere dense set. We next show that each nowhere
dense set is contained in the closure of a discrete set, which of course
completes the verification.

The set £ = J{x*" : n € w} is dense and so p is in the closure. By the
assumption of o-compact tightness, we choose a sequence {Ly, : k € w} of
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compact subsets of £ so that p is in the closure of | J,, L. We check that
Ux L is nowhere dense.

To do so, we observe that for each t € k<% \ E, there is an « such
that [t U {a}] is disjoint from |J, L. If there were no such «, then there
would be a k such that {« : [t U {a}] N Ly # 0} is uncountable. This is
impossible since this would imply that ¢ was in the closure of Ly.

Now that we know that | J, Ly is nowhere dense, we may simply work
with any closed nowhere dense set L which has p in its closure. We set
T to be the collection of all minimal ¢ € xk<“ with the property that
[t] N Uy, Lk is empty. A special property of this space ensures that L is
contained in the closure of the set 7. To see this assume that s € L —
hence no initial segment of s is in 7. For each o € &, thereis a t, € T
which extends s and satisfies that t(|s|) = «. Now note that s is in the
closure of each infinite subset of {t, : a € K}.

It is immediate that the set T is a discrete subset of k<%, and so the
only o-compact subsets of T" are countable. |

Now we use the ideas developed the analysis of Example 3.11 to estab-
lish our final result.

Theorem 3.12. If a space with o-compact tightness has the property that
each compact subset has weight at most wy, then the space has countable
tightness.

Proof. Let X be a space with o-compact tightness and assume that each
compact subset of X has weight at most w;. Suppose that a point p is in
the closure of the union of an increasing sequence S = {X,, : n € w} of
compact subsets of X. We must show that pis in the closure of a countable
subset of |J,, X,,. As we showed in the proof of Lemma 3.5, we may assume
that X is an S-example and that X is nowhere locally compact. Therefore,
by Definition 3.4, we have that for each m, n, X,NJ, <, X& \ X is dense
in X,,. Also, by Theorem 3.7, we may assume that (J,, X, is an almost
S-P-space.

We will build a tree {Z; : t € w} of zero-sets of |J,, X, in an effort
to mimick the approach in Example 3.11. We let Zy = |J,, X, and one
of our inductive assumptions is that for s C ¢, Z; is contained in the
S-interior of Z;. We will also arrange that Z; is disjoint from X;|. The
family {Z;~o : @ € wy} will be S-left-separated and the union will be
dense in Z;. By S-left-separated we mean that, for each o« < w; and each
n € w, Zi~q will be disjoint from the closure of Xnng<a Zi~g. In other
words, for each n, the family {Z;~,NX,, : @ € wy} will be left-separated.

Here is an informal description of the construction. We will be devel-
oping a listing {z(¢,7) : v € w1} of points which will be a dense subset of
Z\U{Z:~qa : @ € w1 }. This is easily done, modulo standard enumeration
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methods, by using the fact that the weight of each X, is at most wy, and,
so choosing, for each a € wy, a dense subset of the set of limit points of
the family {Z,~5: 8 < a}.

For each n € w, let {W(n,v) : v € w1} C P(X,,) enumerate an open
base for X,,. For convenience, we may assume that each element is listed
cofinally many times.

Fix a one-to-one function ¢ from w x w; onto w; so that g(n,a) > «
for all (n,a) € w X wy. Also let < be any well-ordering of X. We may
suppose that g(m,0) = m for each m € w. For each «, we will choose
a point x(t,«) € Z;. To start, if W(m,0) meets Z;, choose z(t,m) to
be the <-minimum point in Z; N W (m,0), otherwise let z(¢,m) be the
<-minimum point of Z;. Whenever we specify a choice of an z(t,7y) we
will assume without further mention that we make the <-least possible
choice. Notice that for all ¢ such that W (m,¢) = W(m,¢), our choice
convention ensures that (¢, g(m, ()) is also chosen to be the same point.
In this way, we have a natural method of ensuring that each point is listed
uncountably many times.

For each m, let Z(m,t,0) denote the set of £ € wy such that W (m,¢)
contains an S-accessible point of Z;. We begin by choosing z(t, g(m, £))
for all (m, &) such that either m < |t| or £ € E(m, t,0). If m < |t| then we
note that W (m, §) C Xy is disjoint from Z; and we define, for all £ € wy,
x(t, g(m,&)) be the <-minimum point of Z;. It m > || and £ € Z(m,t,0),
then W(m,¢) contains an S-accessible point of Z; and we set x(¢,7) to
be the <-least such point.

Observe that each Z;~, is required to avoid all the points that have
been so selected. We continue by induction on o € w;. We choose each
Zi~o as well as ensuring that z(t, «) has been chosen, along with possibly
many more choices for points z(¢,y). Assume that {Z;~5 : 8 < a} have
been chosen.

At stage «, we first add to the list of selected points. For each ¢ € w,
let L(¢,t,a) denote the set of limit points of the collection {X, N Z;~4 :
B < a}, more precisely

L(g,t,()é) = U XgﬂZtA[g\ U XeNZi~p .
B<a B<a

If @ < worm < |Jt|, then L(¢,t,«) is empty. For each m and 0 < «,
let =(t,m, o) = {&£: W(m, &) NU, L(¢,t,a) # 0} . Of course =(¢,m, j) is
empty for all 0 < j € w. We note that for £ € Z(m, t,0), x(t, g(m,§)) has
been defined above. We inductively assume that, at stage «, x(¢,7) has
been defined for precisely all v in the set

aU{g(m,&) :m < |t 0r§€U{E(m,t,ﬁ) w< p<at}.
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Now we choose, if necessary x(t,«), and points z(t,g(m,§)) for each
m > |t and each { € E(m,t,a) \ Uz, E(m,t,8). If |t| < m and
£ € E(m,t,a) \Us, E(m, t, B), then W(m, §) meets |J, L(¢,t, a); choose
x(t,g(m,€)) to be any point in the intersection. If z(t,«) has not yet
been chosen, then set z(t, o) = z(t, 0).

We must choose Z;~, to be contained in Z: \ U, Us,, Xe N Zi~5 (ie.
the S-interior). First identify the unique (m, &) so that g(m,§) = a. If
m = 2k for some integer k, then the only additional demand on Z;~, is
that if W(k, &) meets Z; \ U, Ug<, X¢ N Zi—p then Zi~, must also meet
W (k,&). If m = 2k+1, then we go about getting Z;~, to be contained in
the first o many neighborhoods of z(t, £). That is, first choose a zero-set
Z(t,a) with z(t,€) € Z(t,«) and ensure that X; N Z(t,a) C W(3,() for
each ¢ < « and each j for which z(¢t,£) € W (j,{). Since for some j,
x(t,€) € X; is not isolated we may ensure that z(¢,&) is in the S-interior
of Z(t, ). Additionally, we arrange that Z(t,a) N Z,~3 is empty for all
B < «. Then, since X is an almost S-P-space, we may choose Z;~, to be
contained in the S-interior of Z(¢, ) (which means that x(¢,£) ¢ Zi~4).

This completes the construction of the family of zero-sets {Z; : t €
wr¥}, and the associated points {x(t,a) : t € WY, a € w1 }.

Claim 1. For each ¢t € wy®, the set {z(t,7) : v € w1} is dense in Z; \
U{Zi~a : @ € w1}

Proof. Suppose that x € Z;\|U{Zi~a : @ € w1} and choose any k > |¢| so
that x € Xy, and by Lemma 3.9, so that for every zero set Z containing
xz, x is in the closure of the points of X; which are in the S-interior of
Z. The first step of the construction of the collection {x(t,7) : v € w1}
was to choose a dense subset of the collection of the S-accessible points
of Z;, so we may as well assume that x is not an S-accessible point of Z,.
Choose any £,( € w; so that z € W(k, &) and W (k,&) € W(k,¢) and,
towards a contradiction, suppose that W (k, () is disjoint from the closure
of the set {z(¢t,7) : v € wi1}. Let a = g(2k,&) and counsider the stage «
in the construction. Since X} is compact, it follows from the selection
of z(t,g(k,()) that W(k, &) must meet only finitely many of the sets in
{Zt~« : @ € w1} (otherwise W(k, () would include a limit point). Since
W (k,§) is listed cofinally often, we can assume that £ is so large that
W (k, &) is disjoint from Z;~,. However, this now contradicts our choice
of Zi~q, since W(k, &) does, by the assumption from Lemma 3.9, meet

Z\U,Upea Xs N Zims. u

Claim 2. For each (t,v) € wi* x wy and each countable sequence {W,, :
m € w} of neighborhoods of x(¢,~), there are uncountably many « with
Zi~a €y Win-
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Proof. Fix any (k,&) so that g(k,€) = 7. Let n be minimal such that
x(t,vy) € Xpn. For each £ > n and m € w, choose By, ¢ so that z(t,7) €
W (£, Bme) C Wy, Remember that there are uncountably many ¢ so that
£(t,g(k.C)) = 2(t,7). For each ¢ > supc, fms and o = g(2h + 1,0),
Z(t, o) was chosen so that Z(t, )N X is contained in W (¢, 8,5, ¢) for each
¢ € w\ n. Therefore Z(t, ) is contained in W, and so is Zi~,. O

It follows from Claim 1 that the set {z(t,7) : t € wy® , v € wy} is
dense in X. By symmetry, we will now assume that p is in the closure
of Y = {x(t,y) : t € U,wi" ,v € wi}. By the o-compact tightness
assumption, we choose a sequence {L,, : n € w} of compact sets so that
L, c X, NY for each n, and so that p is in the closure of | J,, Ly,.

Let T be the set of minimal elements of {t € wi* : Z, N{Y,, Ln = 0}.

Evidently, T is an antichain in w;*.

Claim 3. For every n, the family {X,, N Z; : t € T} is left-separated.

We use the lexicographic ordering on members of T: specifically s <, ¢
providing there is a k € dom(s) Ndom(t) such that s(k) < t(k). Let t € T
and for each j € dom(t), let L(T,t,j) ={s€TnNw :s]jCt , s(j) <
t(4)}. It suffices to show that, for each j € dom(t), Z; is disjoint from
the closure of the union of the family {Z, : s € L(T\,t,j)}. Notice that
for s € L(T,t,j), Zs C Zgpj+1. Also, Z, C Z;;; and by construction,
Zyy; is disjoint from the closure of the union of the family {Z;41 : s €
L(T,t,j)}. Therefore the union of the family {Z, : s € L(T,t,j)} is
contained in the union of the family {Z;;41 : s € L(T,t, j)}, and we have
established the Claim.

Claim 4. p is in the closure of the set {z(¢,0) : t € T'}.

To establish this claim, we simply show that (J,, L, is contained in the
closure of the set {x(¢,0) : t € T}. Choose any point y € J,, L, and
fix (s,7) € w™ x wy so that y = x(s,7). Since z(s,v) € U,, Ln, no
initial segment of s is a member of T'. Let W be any open set containing
x(s,7), we show there is a t € T such that z(¢,0) € W. Applying Claim
2, there is an extension ¢ of s with dom(t) = dom(s) + 1, such that
Z; C W. Since dom(t) is an odd integer, x(¢,§) ¢ U,, L, for all . If
Z; is disjoint from |J,, Ly, then t € T and we have found our desired
x(t,0) € W. Otherwise we now check that there is « such that t~a € T.
Since z(t"«,0) € Zi~o C Z; C W this will complete the proof of the
claim. For each m, choose an open W,,, containing x(t,0) wich is disjoint
from L,,. Again we use Claim 2 to choose an « so that Z;~, C (,, Wi,
and this completes the proof of the Claim.

Claim 5. The point p is in the closure of a countable subset of X.
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Putting Theorem 3.1 and Claim 3 together, we have that each o-
compact subset of {x(¢,0) : ¢ € T} is countable. Since we are assuming
that {p} U X has o-compact tightness, we are done by Claim 4. O

We must end with a question.

Question 1. Is there a bound on the tightness of regular spaces with
o-compact tightness?
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