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TIGHTNESS IN σ-COMPACT SPACES

ALAN DOW AND JUSTIN MOORE

Abstract. In 1993 Arhangelskii and Stavrova de�ned the notion
of the k-tightness number of a space and its hereditary version.
They proved that the hereditary k-tightness of a compact space is
equal to the standard notion of tightness. Out of this grew the
notion of what one might call σ-compact tightness: the closure
of a set is the union of the closures of all its σ-compact subsets.
We contribute to the question of whether σ-compact tightness is
equivalent to countable tightness.

1. Introduction

From the paper [1], the cardinal invariant tk(X) is de�ned for a space
X and is called the k-tightness of the space. The subscript k is a common
method of referring to the notion of compactness. A subset B of a space
X is called τ -compact, for a cardinal τ , if B can be written as a union of a
family of cardinality at most τ consisting of compact subsets of X (or B).
The k-tightness, tk(X), does not exceed τ if for every setM ⊂ X which is
not closed in X, there is a τ -compact set B ⊂ X such that M ∩B is also
not closed in X. This is a natural generalization of a k-space, since in a
k-space X a set M ⊂ X is closed if M ∩B is closed for every compact set
B ⊂ X. Now, still following [1], let htk(X) denote the hereditary version
of tk(X). Thus, htk(X) ≤ τ if for each A ⊂ X, we have that tk(A) ≤ τ .
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It is shown in [1] that htk(X) is equal to t(X) for compact spaces.
Recall that the tightness, t(X), of a space X is the least in�nite cardinal
τ such that whenever a point x is in the closure of A ⊂ X, then there is
a set B ⊂ A of cardinality at most τ , such that x is in the closure of B.
Of course it follows that every subspace of X has tightness no larger than
the tightness of X.

Proposition 1.1. [1] If X is a compact space, then htk(X) = t(X).

A similar, perhaps more natural, generalization of t(X) is also formu-
lated in [1].

De�nition 1.2. De�ne t∗k(X) ≤ τ i� for every A ⊂ X and x ∈ A, there
is a τ -compact B ⊂ A such that x ∈ B.

Furthermore, it is established that

Proposition 1.3 ([1]). For every X we have that htk(X) ≤ t∗k(X) ≤
t(X).

In answer to one of the questions from [1, Problem 19], we show that
there are examples of a hereditarily Lindelöf and ccc σ-compact spaces
for which ω = htk(X) < t(X). These examples also (partially) answer [1,
Problem 25].

The very interesting question of whether t∗k(X) = ω implies, in general,
that t(X) = ω, remains open, but we are able to establish that the answer
is a�rmative for spaces with weight at most ω1. We present examples
which we feel illustrate the complexity of the problem, and we establish
the following result about locally compact spaces of countable tightness.

Theorem 1.4. Each locally compact space of countable tightness has a
dense subset with the property that every σ-compact subset of it is con-
tained in the closure of a countable subset of X.

2. Hereditary k-tightness

In [1, Problem 19], it is asked if each σ-compact (or Lindelöf) space X
with htk(X) ≤ ω will have countable tightness.

Theorem 2.1. There is a hereditarily Lindelöf space X with htk(X) = ω
and uncountable tightness.

Proof. It is well-known that the second author proved that there is a
hereditary Lindelöf space L which has countable tightness, weight ω1,
and is nowhere separable [9]. Such a space is ccc, and it is shown in [5],
that ω × L has a remote point p. That is, p is a point in the Stone-Cech
remainder of ω × L which is not in the closure of any nowhere dense
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subset of ω × L. Our example is X = (ω × L) ∪ {p}. Since X is nowhere
separable and p is a remote point, it follows that p is not a limit point of
any countable subset of X. Therefore X has uncountable tightness. Since
ω×L has countable tightness, it follows immediately that htk(ω×L) ≤ ω.
To show that X itself satis�es that htk(X) ≤ ω we assume that Y ⊂ X
and that A ⊂ Y is not closed in Y . We must �nd a σ-compact set B ⊂ Y
such that B ∩A is not closed in Y . If p is not a limit of A, then the fact
that t(L) = ω, implies there is a countable subset of A which accumulates
to a point of Y \ A; and so B can be taken to be such a countable set.
Otherwise, we may assume that p is a limit point of A. Since p is a
remote point of ω × L, and L has no isolated points, there is an n such
that A ∩ ({n} × L) is not discrete. Choose B to be any countable subset
of A ∩ ({n} × L) which is not closed in Y . Again, such a B is a witness
to tk(Y ) = ω. �

Now we turn our attention to this question for σ-compact spaces. Let
us also mention Problem 25 from [1] which asks if htk(X) ≤ ω implies
t(X) = ω for spaces X that are equal to a countable union of compact
subspaces of countable tightness. More generally they ask what additional
conditions are su�cient to ensure countable tightness. We consider spaces
of the form {p}∪

⋃
nXn where X =

⋃
nXn is σ-compact and of countable

tightness. Surprisingly, it turns out that the answer is generally no, even
with additional properties imposed on the subspace X. We �rst obtain a
condition that ensures that htk(X ∪ {p}) ≤ ω holds for such spaces.

Lemma 2.2. If X is σ-compact and has countable tightness, then for
any extension X ∪ {p} of X, htk(X ∪ {p}) ≤ ω providing p has countable
tightness with respect to discrete subsets of X.

Proof. Suppose that Y ⊂ X ∪{p} and that A ⊂ Y is not closed in Y . We
must produce a σ-compact B ⊂ Y such that A ∩ B is not closed in Y .
Since X has countable tightness, it follows that we may do so long as A
has any limit points in X ∩ Y . Otherwise we have that A ∩X is discrete
and p ∈ Y is the only limit point in Y . �

Rather than simply getting examples with htk(X ∪ {p}) = ω < t(X ∪
{p}), we seek examples where p is not in the closure of any countable
subset of X. In view of Lemma 2.2 and [3], such a space X ∪ {p} may be
called a discrete-remote weak-P-extension of X, that is, the point p is a
non-isolated weak P-point in the space X ∪ {p} which is also not in the
closure of any discrete subset of X.

For spaces which are not ccc one has the following result of van Mill for
�nding weak P-points, but little is known, in ZFC, for �nding discrete-
remote points.
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Proposition 2.3 ([8]). If X = ΣXn is nowhere ccc, and if D is a nowhere
dense subset of X, then there is a free �lter F of closed sets with the
property that for each ccc E ⊂ X, there is an F ∈ F such that F ∩E ∪D
is empty. In particular, X has a weak P-point extension.

In fact, for locally compact spaces of countable tightness, weak P -
points exist so long as the space is nowhere separable.

Theorem 2.4. If X is a locally compact, nowhere separable, σ-compact,
non-compact space of countable tightness, then X has a weak P -point
extension.

For the sake of continuity, we defer the proof of Theorem 2.4 until the
end of this section. In a positive direction, in terms of getting htk(X ∪
{p}) = ω to imply countable tightness, we have the following two Fréchet
non-ccc examples. The main idea to these results is that in these examples
we can show that a discrete-remote point must be a remote point, and
the fact from [4] that such products of cellularity larger than ω1 do not
have remote points.

Proposition 2.5. If A(ω2) is the one-point compacti�cation of the dis-
crete space ω2, then X = ω × (A(ω2))ω has no discrete-remote weak-P-
extension.

Proof. It is shown in [4] that this spaceX has no remote points. The result
will follow once we show that each nowhere dense subset of (A(ω2))ω is
contained in the closure of a discrete set. Let K ⊂ (A(ω2))ω be non-
empty and nowhere dense. For t ∈ ω<ω2 , let [t] denote the basic clopen
set {x ∈ (A(ω2))ω : t ⊂ x}. Let T denote the set of t ∈ ω<ω2 which are
minimal with respect to having [t] disjoint from K. Since K is nowhere
dense and the family {[t] : t ∈ ω<ω2 } is a π-base for (A(ω2))ω, we have
that

⋃
{[t] : t ∈ T} is dense. Let T1 denote the set of one-point extensions

in ω<ω2 of members of T . For each t ∈ T1 we will choose a single point
xt ∈ [t]; it is evident that D = {xt : t ∈ T1} will be a discrete subset of
(A(ω2))ω. The selection can be inductively de�ned so as to ensure that
for each basic clopen subset of (A(ω2))ω which meets K will also meet
D. Since (A(ω2))ω has weight ω2, this selection can be made so long as
we can show that for each clopen set W meeting K, the set of t ∈ T1
satisfying that W ∩ [t] is non-empty has cardinality ω2.

A basic clopen set W will have the form Πi<nWi where for each i < n,
either Wi is a singleton set from ω2, or Wi = A(ω2) \ Fi for some �nite
Fi ⊂ ω2. Assume that W meets K. If each Wi is a singleton, then
W = [s] for s = 〈βi : i < n〉 and [s] ∩ K 6= ∅. Therefore there is an
extension ts ∈ T of s and we have that W contains [t] for each t ∈ T1
which extends ts. Otherwise, let i be the minimal element of n such that
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Wi is not a singleton. Then, for each β ∈ ω2 \ Fi, there is some tβ ∈ T1
satisfying that [tβ ]∩W 6= ∅ and tβ(i) = β. This completes the proof. �

By similar reasoning we have the following result for a �rst-countable
non-ccc space.

Proposition 2.6. If K is the lexicographically ordered square, then X =
ω×Kω has a discrete-remote weak-P-extension if and only if the contin-
uum hypothesis holds.

Proof. The same argument as used in the proof of Lemma 2.5 shows that
a discrete-remote point of X is also a remote point. Also, if c > ω1,
then it follows from [4] that X has no remote points. On the other hand,
it is shown in [7, 1.3] that X does have remote points if the continuum
hypothesis holds. �

Now we turn to considering ccc examples and the existence of discrete-
remote weak P -point extensions; hence the failure of σ-compact tightness
implying countable tightness. We �rst use a space constructed by Bell
[2] to provide a ccc �rst-countable example. We will also show that it is
independent of the usual axioms as to whether there is a locally compact
ccc example.

We begin by recalling the ingenious example from [2].

De�nition 2.7. The Pixley-Roy space F [2ω] over the Cantor set 2ω is a
topology on the family of non-empty �nite subsets of 2ω in which a base
for the topology is given by the collection of sets [H,O] = {G ∈ F [2ω] :
H ⊆ G ⊂ O} where O is a clopen subset of 2ω.

Proposition 2.8 ([2], 7.1 [13]). There is a �rst-countable σ-compact ex-
tension B of the Pixley-Roy space F [2ω]. That is, the Pixley-Roy space is
a dense subspace of B; hence B is ccc and nowhere-separable.

De�nition 2.9. A point p of βX \X is a remote point if p is not in the
closure of any nowhere dense subset of X. A collection L of subsets of a
space X is a remote collection if for each nowhere dense set D ⊂ X, there
is an L ∈ L so that L and D have disjoint closures.

Proposition 2.10 ([3]). If a space X has, for each n ∈ ω, a remote
n-linked collection, then the free sum ΣnX has remote points.

The ideas for this next proof are taken from [6].

Lemma 2.11. If F [2ω] is dense in a space K then K has remote n-linked
collections for each n ∈ ω.

Proof. Let {Oj : j ∈ ω} be an enumeration of the clopen subsets of 2ω.
For each m ∈ ω, let Pm denote the collection {[H,Oj ] : j < m, |H| ≤
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m,H ⊂ Oj}. Let P be the union of the increasing chain {Pj : j ∈ ω}.
Choose any increasing sequence {mk : k ∈ ω} ⊂ ω with the property
that (mk)2 < mk+1 and each non-empty �nite intersection of members of
{Oj : j < mk} is a member of {Oj : j < mk+1}. It follows then that each
non-empty intersection of at most mk members of Pmk

is an element of
Pmk+1

.

For a �nite subset L of P, let us say that L is in P+
j if

⋃
L meets every

member of Pj .

Claim 1. If {Ai : i ∈ ω} ⊂ P has dense union, then, for each j ∈ ω, there
is an nj ∈ ω such that {Ai : i < nj} ∈ P+

j .

We prove the Claim by contradiction. For each n ∈ ω, assume there
is an [Hn, O`n ] ∈ Pj which is disjoint from

⋃
i<nAi. By passing to a

subcollection, we may assume that there is a pair m, ` ≤ j such that
each Hn has cardinality m and each `n is equal to `. Identifying each
Hn with a member of the compact product space Om` , we may assume
that the sequence {Hn : n ∈ ω} converges to some H ∈ Om` . Choose
any k ∈ ω so that Ak meets [H,O`]. Let Ak = [H ′, O′] and notice that
H ∪H ′ ⊂ O′ ∩O`. Since {Hn : n ∈ ω} converges to H, there is an n > k
so that Hn ⊂ O′. It follows that Ak ∩ [Hn, O`n ] is not empty, which is a
contradiction.

We de�ne the desired n-linked remote collections by induction. Let L0

be equal to the entire collection P (i.e. of singleton elements of P).
For each n ∈ ω, we have that for a �nite L ⊂ P,

⋃
L is a member of

Ln+1, if there is k such that
⋃

(L ∩ Pmk
) is a member of Ln and L is a

member of P+
mk+1

. We prove that each Ln is n-linked.

Claim 2. For each n ∈ ω and {Li : i < n} ⊂ Ln, there is a selection
Pi ∈ Li (i < n) such that

⋂
Pi is non-empty.

We prove this claim by induction. Suppose that it holds for n and let
{Li : i < n + 1} be a family of �nite subsets of P so that

⋃
Li ∈ Ln+1

for each i < n + 1. Choose the indexing so that there is mk witnessing
that Ln ∈ Ln+1, as in Ln is a member of P+

mk+1
and, so that for all

i < n+ 1,
⋃

(Li ∩Pmk
) is a member of Ln. By the inductive assumption,

there is a selection {Pi : i < n} with non-empty intersection such that
Pi ∈ Li∩Pmk

for each i < n. Recall that
⋂
i<n Pi ∈ Pmk+1

, and therefore
there is a Pn ∈ Ln meeting this intersection.

We �nish the proof by showing each Ln is a remote collection. Let
D be any closed nowhere dense subset of K. Let A ⊂ P be all those
members of P whose closure in K is disjoint from D. Since F [2ω] is
dense in K,

⋃
A is dense in K. Since F [2ω] is ccc, there is a countable

subcollection {Ai : i ∈ ω} ⊂ A which also has dense union. By induction
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on n, assume there is a value in such that
⋃
{Ai : i < in} ∈ Ln. Fix k so

that {Ai : i < in} ⊂ Pmk
, and then, by Claim 1, choose in+1 > in so that

{Ai : i < in+1} ∈ P+
mk+1

. �

Corollary 2.12. There is a σ-compact ccc �rst-countable space X with
a discrete-remote weak P-extension.

Proof. Let X = ΣnB with B as in Proposition 2.8. Since ΣnF [2ω] is a
dense subset of X it follows from Lemma 2.11 and Proposition 2.10 that
X has a remote point p. Since X is nowhere separable we have that p is
not in the closure of any countable subset of X. �

We now turn our attention to locally compact spaces of countable tight-
ness. This next result is o�ered to highlight the fact that Bell's space can
not be made to be locally compact.

Proposition 2.13. The space B (and F [2ω]) does not have a compacti-
�cation with countable tightness.

We obtain the proof of the following based on Sapirovskii's more general
result given below in 2.18.

Proof. Suppose that K is a compacti�cation of F [2ω]. Let {xα : α ∈
ω1} ⊂ 2ω be distinct points. For each α ∈ ω1, there is a clopen set
Cα 3 xα such that [{xα}, Cα] and F [2ω]\ [{xα}, 2ω] have disjoint closures
in K. By shrinking the family, we may assume that there is a single
clopen set C such that Cα = C for all α ∈ ω1.

For each α, the family

Fα = {[{xβ}, C] : β < α} ∪ {F [2ω] \ [{xγ}, 2ω] : α ≤ γ}
has the �nite intersection property. If H ∈ [ω1]<ω and H0 = H ∩ α, then
choose any clopen O ⊂ C so that O ∩H = H0. Then it is easily checked
that [H0, O] is contained in⋂

β∈H0

[{xβ}, C] \
⋃

γ∈H\H0

[{xγ}, 2ω]

We may choose kα ∈ K so that kα is in the closure of each F from the
�lter generated by Fα. Since {kβ : β < α} is contained in the closure of
[{xα}, C] and {kγ : γ ≥ α} is contained in the closure of F [2ω]\[{xα}, 2ω],
it follows that {kα : α ∈ ω1} is a free sequence in K. �

In our construction of weak P -points and of discrete-remote points, we
will need this next result.

Proposition 2.14 ([5]). If X = ΣXn is ccc and has π-weight at most
ω1, then X has remote points.



8 ALAN DOW AND JUSTIN MOORE

We are now able to utilize some powerful results of Todorcevic and
Sapirovskii to establish this next independence result.

Theorem 2.15. The existence of a locally compact ccc countably tight
[�rst-countable] space with a discrete-remote weak P-point extension is
equivalent to the failure of MA(ω1)

Before giving the proof, let us recall the needed results of Todorcevic
and Sapirovskii.

Proposition 2.16 ([13, 3.4]). If MA(ω1) fails, there is a compact ccc
�rst-countable space of weight ω1 which is nowhere separable.

Proposition 2.17 ([11]). If MA(ω1) holds, then each locally compact ccc
space of countable tightness is separable.

Proof of Theorem 2.15. If MA(ω1) fails, then letK be the space provided
by Proposition 2.16. By Proposition 2.14, X = ω×K has a remote point
p ∈ βX \X. Since K is nowhere separable, p is also a weak P -point of X.
On the other hand, suppose that MA(ω1) holds and that X is a locally
compact ccc countably tight space. By Proposition 2.17, X is separable.
Therefore X does not have a weak P-point extension. �

In preparation for the proof of Theorem 2.4, we will also need the
following easy consequence of [13, 3.1].

Proposition 2.18 (Sapirovskii, Todorcevic). If X is compact, nowhere
separable, and has countable tightness, then there is a continuous map f
onto a space Y which has weight ω1 and is also nowhere separable.

Proof. The actual statement from Todorcevic [13, 3.1] is that compact
countably tight spaces have a point-countable π-base. Let κ be the π-
weight of X and �x any standard embedding e of X into Iw(X). Let
B = {bα : α ∈ κ} be a point-countable π-base of e[X] so that each bα is the
intersection with X of a cozero subset of Iw(X). Let M be an elementary
submodel of H(θ) for suitably large θ with e,X,B ∈M . Assume also that
ω1 ⊂ M and that M has cardinality ω1. Simple elementary submodel
properties implies that {bα � M : α ∈ κ ∩M} is a π-base for e[X] � M
(under suitable identi�cations). We check that Y = e[X] �M is nowhere
separable. Assume that α0 ∈ κ ∩M is such that bα0 � M is separable.
Let J = {α ∈ κ : bα ∩ bα0 6= ∅}. Since J is uncountable, it follows
that J ∩ M is uncountable, and that there is some y ∈ Y such that
Jy = {α ∈ M ∩ J : y ∈ e[bα] � M} is uncountable. Choose any x ∈ X
such that e(x) � M = y. It follows that x ∈ bα for all α ∈ Jy, which is
clearly a contradiction. �
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Theorem 2.19. If X is a locally compact σ-compact non-compact nowhere
separable space of countable tightness, then X has a weak P-point exten-
sion.

Proof. Choose any unbounded positive real-valued function f on X. As-
sume that {rn : n ∈ ω} is contained in the range of f and that rn+1 >
rn + 2 for each n. For each n, choose a cozero set Un of X so that the
closure, Xn, is compact, f [Xn] is a subset of (rn − 1, rn + 1) and so that
Un is either ccc or nowhere ccc. It is well-known that the closure in
βX of the subspace ΣnXn =

⋃
nXn is homeomorphic to β (ΣnXn). Let

D =
⋃
nXn \ Un and note that D is a nowhere dense subset of ΣnXn.

Since X is normal, it follows that if F ⊂
⋃
n Un is a closed subset of X,

then F and X \ ΣnXn have disjoint closures in βX.
We proceed by cases.

Case 1. There are in�nitely many n such that Un is nowhere ccc.

Let I be the set of n such that Un is nowhere ccc. Apply Proposition
2.3, to Σn∈IXn and D ∩ Σn∈IXn to obtain the described �lter F . If
p ∈ β(ΣnXn) is any point which is the closure of each member of F ,
then clearly p is not a limit point of any countable subset of Σn∈IXn. In
addition, p is not in the closure of X \

⋃
n∈I Un because X is normal, and

there are members F of F which are disjoint from D.

Case 2. There is an in�nite I ⊂ ω such that Un is ccc for each n ∈ I.

For each n ∈ I, �x a space Yn as in Proposition 2.18 with a mapping fn
from Xn onto Yn. In the proof of Proposition 2.18, choose each member of
the π-base B to be a subset of Un. In this way we obtain that f [Xn\Un] is
nowhere dense in Yn. By Proposition 2.14, there is a point q in β (Σn∈IYn)
which is a remote point. The mapping Σn∈Ifn maps Σn∈IXn onto Σn∈IYn
and extends to a mapping f between the Stone-Cech compacti�cations.
Choose p ∈ β (Σn∈IXn) so that f(p) = q. Since each countable subset A
of Σn∈IXn maps to a nowhere dense subset of Σn∈IYn, it follows that p is
not in the closure of such a set A. In addition, let us note that p is not in
the closure of

⋃
n∈I Xn \ Un since q is remote. Again, it follows from the

normality of X and basic properties of the Stone-Cech compacti�cation,
that p is not in the closure of X \

⋃
n∈I Xn. It should now be clear that

p is not in the closure of any countable subset of X. �

3. On σ-compact tightness

We interpret the property t∗k(X) ≤ ω as that the space X has σ-
compact tightness. As mentioned above, it is shown in [1] that each com-
pact space having σ-compact tightness actually has countable tightness.
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In fact, this statement follows easily from Arhangelskii's earlier result that
a compact space with uncountable tightness must contain an uncountable
free sequence. It is immediate that no complete accumulation point of the
uncountable free sequence is in the closure of a σ-compact subset of the
same free sequence.

Our main new idea in the investigation of σ-compact tightness is the
following observation about left-separated families of Gδ's. Say that a
family {Zα : α ∈ µ} is left-separated if, for each α < µ, Zα is disjoint
from the closure of

⋃
β<α Zβ .

Theorem 3.1. If {Zα : α ∈ µ} is a left-separated family of Gδ subsets of
a space X, then each compact subset of the union is covered by a countable
subcollection.

Proof. Let B ⊂
⋃
{Zα : α ∈ µ} be compact. Assume that I0 = {α ∈ µ :

B ∩ Zα 6= ∅} is uncountable. For each α ∈ I0, choose any bα ∈ B ∩ Zα.
Since B is compact, we may choose β0 ∈ I0 minimal such that the family
{bα : α ∈ I0} has a complete accumulation point z0 in Zβ0

. Since Zβ0

is a Gδ, it has an open neighborhood U0 such that I1 = {α ∈ I0 : bα /∈
U0} is uncountable. Let β1 be minimal such that {bα : α ∈ I1} has
a complete accumulation z1 point in Zβ1

. Notice that β0 < β1. We
may continue this process and thereby choose an increasing sequence βi
(i ∈ ω) with points zi ∈ B ∩ Zβi

, together with a decreasing sequence
{Ii : i ∈ ω} of uncountable subsets of µ, so that for each i, zi is a
complete accumulation point of {bα : α ∈ Ii}, and no point of

⋃
γ<βi

Zγ
is a complete accumulation point of {bα : α ∈ Ii}.

It follows from these assumptions that the set {zi : i ∈ ω} has no
accumulation point in the compact set B � which is the contradiction we
seek. To see this, notice that any accumulation point z of {zi : i ∈ ω} is
a complete accumulation point of {bα : α ∈ Ii} for each i ∈ ω. By the
minimality of βi, z /∈ Zγ for any γ < βi. On the other hand, since the
family is left-separated, it is also the case that z /∈ Zγ for all γ ≥ sup{βi :
i ∈ ω}. �

A set Z ⊂ X is called a Gκ-set, for a cardinal κ, if Z is equal to the
intersection of a family of at most κ-many open sets. The following result
is extracted from Arhangelskii's investigation of free sequences.

Lemma 3.2. If t(X) ≤ τ for a compact space X, then for each non-
empty closed Z ⊂ X which is a Gτ set, there is a set S ⊂ X of cardinality
at most τ such that S contains a non-empty Gτ subset of Z.

Proof. Let Z be any non-empty closed set which is a Gτ -set in X. Assume
we recursively choose points {zβ : β < α < τ+} from Z together with a
descending sequence {Zβ : β < α < τ+} of non-empty closed Gτ subsets
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of Z so that zβ ∈ Zβ and Zβ is disjoint from {zξ : ξ < β}. This recursion
must stop at some α < τ+, since otherwise, we will have constructed a
free sequence of length τ+, which would contradict t(X) ≤ τ . Evidently,
the failure implies that for some α, the non-empty Gτ -set,

⋂
{Zβ : β < α}

is contained in the closure of the set {zβ : β < α}. �

Corollary 3.3. If t∗k(X) ≤ ω and a point p ∈ X is in the closure of
⋃
nBn

where {Bn : n ∈ ω} is a pairwise disjoint family of compact subsets of X,
then p is in the closure of a countable subset of

⋃
nBn.

Proof. Since t∗k(X) ≤ ω, each Bn has countable tightness. For each n,
let Zn be the collection of closed relative Gδ subsets of Bn which are
contained in the closure of a countable subset of Bn. Fix any maximal
left-separated subfamily {Z(n, α) : α < µn} of Zn. By Lemma 3.2, the
union of this collection is a dense subset of Bn. By the assumption that
t∗k(X) ≤ ω and Theorem 3.1, there is a countable subcollection Zp of the
collection {Z(n, α) : n ∈ ω, α ∈ µn} whose union has p in its closure.
Since each Z ∈ Zp is contained in the closure of a countable subset of⋃
nBn, we have that p also is contained in the closure of a countable

subset of
⋃
nBn. �

IfX is a space with t∗k(X) ≤ ω which does not have countable tightness,
then it is evident that there is a point p ∈ X and a countable increasing
sequence S = {Xn : n ∈ ω} of compact subsets of X, such that p is in
the closure of

⋃
nXn, but is not in the closure of any countable subset of⋃

nXn. By passing to a subspace, we can assume that X = {p}∪
⋃
nXn.

De�nition 3.4. Say that a space X is an S-example if t∗k(X) ≤ ω, S is a
countable increasing sequence of compact subsets, X is equal to {p}∪

⋃
S,

and a set F ⊂
⋃
S is closed in X \{p} if, for each S ∈ S, F ∩S is compact.

We next show that if there is such an example, we can assume that
the subspace

⋃
nXn is equipped with the �nest topology in which each

Xn is compact. The sequence S = {Xn : n ∈ ω} will be a parameter
in discussing the example. Notice that if a countable increasing union of
compact Hausdor� spaces are endowed with the �ne topology, then this
topology is completely regular. We should also remark that a di�erent
selection of the sequence S can result in a di�erent topology. Observe also
that if X is an S-example then the subspace

⋃
S has countable tightness.

Lemma 3.5. If there is a space X which has σ-compact tightness and
uncountable tightness, then there is a nowhere locally compact S-example
with uncountable tightness.

Proof. Assume that p ∈ X is in the closure of A ⊂ X but is not in the
closure of any countable subset of A. Since t∗k(X) ≤ ω, there is a family
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{Xn : n ∈ ω} of compact subsets of A such that p is in the closure of⋃
nXn. Consider the space {p} ∪

⋃
nXn with the possibly �ner topology

in which the neighborhood base for p is from the usual subspace topology,
but each F ⊂

⋃
nXn is declared closed if F ∩ Xn is closed for each n.

This is a �ner topology, hence it still has uncountable tightness at p with
respect to

⋃
nXn. In addition, since we are not changing the topology at

p, it is easy to check that if p is in the closure of some Y ⊂
⋃
nXn, then

Y will contain a σ-compact set (in the old topology) which has p in the
closure. It is easily checked that such a σ-compact set is also σ-compact
in the �ner topology. Also,

⋃
nXn with the �ne topology has countable

tightness since each Xn has countable tightness.
Let U be the open set of points of X that have a compact neighbor-

hood, and let U be any maximal pairwise disjoint family of regular-closed
compact subsets of U . The point p can not be in the closure of U since by
Corollary 3.3, p would not be a limit point of any countable subfamily of
U , which contradicts that t∗k(X) ≤ ω. By passing to the subspace X \ U ,
we may thereby assume that X is nowhere locally compact and each Xn

is a nowhere dense subset. �

If there were a Tychono� example (in fact regular) example of such a
space with uncountable tightness, then this raises the obvious question of
whether there is a bound on the value of t(p,X) for p ∈ βX with X being
a σ-compact space of countable tightness. We discuss this in example
3.10 below.

We de�ne a special notion which is an S version of a nowhere dense
zero-set. A set is a zero-set if it is the preimage of 0 under a real-valued
continuous function.

De�nition 3.6. For a zero-set Z ⊂ X and an increasing sequence S
of compact subsets of X, the S-acccessible points of Z, S- acc(Z), will
be de�ned as all those points of Z which are in the closure of S \ Z for

some S ∈ S. In other words, Z ∩
⋃
S∈S S \ Z is the set of S-accessible

points. Analogously, the S-interior of Z, denoted S- int(Z), will be the
points of Z which are not in the closure of the S-accessible points, namely

S- int(Z) = Z \ Z ∩
⋃
S∈S S \ Z.

Using our method of constructing left-separated families of Gδ's, we are
able to exclude a large family of S-spaces as potential counterexamples.

Theorem 3.7. If X is an S-example with uncountable tightness, then
p is not in the closure of the union of all zero-sets which have empty
S-interior.
Proof. Let Z be the family of all zero-sets of

⋃
S which have empty S-

interior. Notice that any zero-set which is contained in a member of Z is
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itself a member of Z. Let Y =
⋃
Z and assume that p ∈ Y . Recursively

choose a maximal left-separated family {Zα : α < µ} ⊂ Z. That is,

having chosen {Zβ : β < α} ⊂ Z, if Y \
⋃
{Zβ : β < α} is non-empty, we

may choose Zα ∈ Z to be disjoint from
⋃
{Zβ : β < α}. Clearly, there

will be some µ so that
⋃
{Zα : α ∈ µ} is dense in Y . This of course means

that p is in the closure of the union of this left-separated collection of
Gδ's.

We apply the hypothesis thatX is a t∗k-space and �nd that, by Theorem
3.1, there is a countable subfamily of {Zβ : β < µ} which has p in the
closure of its union. By re-indexing, we may assume that p is in the
closure of

⋃
{Zj : j ∈ ω}.

Fix an enumeration, {Xn : n ∈ ω} of S. Let K denote the closure of⋃
j Zj and let SK = {Xn ∩ K : n ∈ ω}. We may view {p} ∪ K as an
SK-example. With this change the SK-interior of some of the Zj 's may
be non-empty, and SK- acc(Zj) may be strictly smaller than S- acc(Zj)
for some j.

We break into two cases.

Case 1. p is in the closure of
⋃
j SK- acc(Zj).

Select any increasing sequence {Lk : k ∈ ω} of compact sets such that
Lk ⊂

⋃
j SK- acc(Zj) and p is in the closure of

⋃
k Lk. For each j, n, k,

let Lj,k,n = Lk ∩ Zj ∩ Xn ∩K \ Zj . It follows that Lk ⊂
⋃
j,n Lj,k,n. It

is evident that Lj,k,n is contained in the closure of
⋃
{Z` ∩Xn : ` > n},

and so we have that p is in the closure of the union of the collection
{Z` ∩X` : ` ∈ ω}. By Corollary 3.3, we have that t(p,X) = ω.

Case 2. p is in the closure of
⋃
j S- acc(Zj) but not in the closure of⋃

j SK- acc(Zj).

For each j, let {U(j, `) : ` ∈ ω} be a sequence of open neighborhoods of

Zj so that U(j, `+ 1) ⊂ U(j, `) and
⋂
` U(j, `) = Zj . We may also assume

that for each i < j ≤ `, U(j, `) and U(i, `) have disjoint closures.
Again choose a sequence {Lj,k,n : j, k ∈ ω} of compact sets so that,

for each j, k, n, Lj,k,n ⊂ (Xn \ Zj) ∩ Zj \ SK- acc(Zj) and so that p is in
the closure of the union of the sequence {Lj,k,n : j, k, n ∈ ω}. We may
assume that for each j, k, n, Lj,k,n ⊂ Lj,k,n+1 ⊂ Lj,k+1,n+1.

Now we use the fact that each Lj,k,n is contained in the SK-interior
of Zj . For each n, choose a sequence {Wj,n : j < n} of open sets with

disjoint closures so that, for each j < n,
⋃
k<n Lj,k,n ⊂ Wj,n and W j,n ∩(

Xn ∩
⋃
` 6=j Z`

)
is empty. By induction on n, we may then also ensure

that W j,n is disjoint from W i,m for all j 6= i ≤ m ≤ n.
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For each j ≤ n ∈ ω, now set B(j, n) to be the closure of

Xn ∩
⋃
m≤n

Wj,m ∩ (U(j, n) \ U(j, n+ 1))

Note thatWj,m∩Xm∩U(j,m) ⊂
⋃
nB(j, n) and that Lj,m,m is contained

in the closure of Wj,m ∩Xm \Zj . Therefore it follows that
⋃
k,m Lj,k,m is

contained in the closure of the union of the family {B(j, n) : n ∈ ω}.
Let us again note that for i 6= j, the set

⋃
nW j,n is disjoint from⋃

nW i,n, and therefore
⋃
nB(j, n) is disjoint from

⋃
nB(i, n). Further-

more, for n−m > 1, we have that B(j, n) and B(j,m) are disjoint since
B(j,m) ∩ U(j,m + 1) is empty and B(j, n) ⊂ U(j,m + 1). Since p is in
the closure of the union of one of the two collections {B(j, 2n) : n ∈ ω},
{B(j, 2n+ 1) : n ∈ ω}, we are again done by invoking Corollary 3.3. �

A well-known class of spaces are the almost P-spaces. These are the
spaces in which every non-empty Gδ has non-empty interior. The natural
generalization (weakening) to S-spaces is relevant.

De�nition 3.8. An S-example X is an almost S-P-space if every non-
empty zero-set has non-empty S-interior.

It follows immediately from Theorem 3.7 that if there is a space with σ-
compact tightness and uncountable tightness, then there is an increasing
countable sequence S of compact subsets whose closure is of uncountable
tightness and which is an almost S-P-space.

Lemma 3.9. If an S-example X is an almost S-P-space then for each
x ∈

⋃
S, there is an S ∈ S such that for each zero-set Z of X with x ∈ Z,

x in the closure of the set of points of S which are in the S-interior of Z.

Proof. If the lemma fails for some x ∈ S, then, for each S ∈ S there is
a zero-set ZS such that x ∈ ZS and there is a zero-set neighborhood WS

of x such that S ∩WS is disjoint from S- int(ZS). Since S is countable,
the set Z =

⋂
{ZS ∩WS : S ∈ S} is also a zero-set with x ∈ Z. For each

S ∈ S, the set S∩(S- int(Z)) is a subset ofWS ∩S- int(ZS). Clearly then
Z has empty S-interior, contradicting that X is an almost S-P-space. �

We next present an instructive example of an almost P-space which
also shows that there is no bound on the tightness for Tychono� one-
point extensions of σ-compact spaces. The veri�cation that no one-point
extension of this space will have σ-compact tightness seems to require new
ideas. These ideas allow us to at least rule out examples of weight ω1.
However we �rst present a similar example (�rst discovered by Okunev
[10]) to illustrate the tightness behavior for points in the Stone-Cech ex-
tension.
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Example 3.10. For each uncountable cardinal κ there is a σ-compact
Fréchet-Urysohn space X =

⋃
nXn for which there are points z ∈ βX

such that t(z,X) ≥ κ.
Proof. Fix any uncountable cardinal κ. For each n, let Xn = [κ]≤n be
the subsets of κ with cardinality at most n. The set X0 has the single
element ∅. As usual, [κ]<ω denotes the family of all �nite subsets of κ
and X = [κ]<ω.

For each disjoint pair t, F ∈ [κ]<ω, let

[t;F ] = {s ∈ [κ]<ω : t ⊂ s ⊂ κ \ F}
and topologizeX by using this family as an open base. Since [x; t\x]∩[t;F ]
is empty for x ∈ [κ]<ω \ [t;F ], it follows that these sets are clopen.

For each n, Xn with the subspace topology is easily seen to be compact.
It is also Fréchet-Urysohn, since a point t is a limit of a set A ⊂ [t; ∅] if
and only if {α : A ∩ [t ∪ {α}; ∅] 6= ∅} is in�nite. The space X is not
an almost P-space since, for each in�nite set S ⊂ κ and t ∈ X, the set⋂
{[t; {α}] : α ∈ S \ t} is nowhere dense.
Now consider the �lter base F = {[t; ∅] : t ∈ [κ]<ω}. Choose any

point z ∈ βX such that z ∈ clβX [t; ∅] for all t ∈ [κ]<ω. If Y ⊂ X has
cardinality less than κ, then

⋃
Y (the union of this family of �nite sets)

has cardinality less than κ. Then for any α ∈ κ \
⋃
Y , we have that

clβX [{α}; ∅] is a clopen neighborhood of z which misses Y . �

The space in Example 3.10 is not an almost P-space, but the following
slight modi�cation is. We do not know if there is an almost P-space as in
Example 3.10.

Example 3.11. For each uncountable cardinal κ, the set κ<ω (of ordered
�nite sequences) has the natural σ-compact Fréchet-Urysohn topology in
which each set [t] = {s ∈ κ<ω : t ⊆ s} is clopen. This space is an
almost P-space. Each one-point extension κ<ω∪{p} which has σ-compact
tightness, also has countable tightness. Each z ∈ β(κ<ω) is in the closure
of some subset of κ<ω of size at most c.

Proof. We content ourselves with proving that if κ<ω∪{p} has σ-compact
tightness, then p is in the closure of some countable subset of κ<ω because
this is the feature that is important in our investigation. The proof is
easily adapted to show that κ<ω ∪ {p} has countable tightness.

Of course we assume that p is not isolated. We �rst prove that p is
in the closure of a nowhere dense set. We next show that each nowhere
dense set is contained in the closure of a discrete set, which of course
completes the veri�cation.

The set E =
⋃
{κ2n : n ∈ ω} is dense and so p is in the closure. By the

assumption of σ-compact tightness, we choose a sequence {Lk : k ∈ ω} of
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compact subsets of E so that p is in the closure of
⋃
k Lk. We check that⋃

k Lk is nowhere dense.
To do so, we observe that for each t ∈ κ<ω \ E, there is an α such

that [t ∪ {α}] is disjoint from
⋃
k Lk. If there were no such α, then there

would be a k such that {α : [t ∪ {α}] ∩ Lk 6= ∅} is uncountable. This is
impossible since this would imply that t was in the closure of Lk.

Now that we know that
⋃
k Lk is nowhere dense, we may simply work

with any closed nowhere dense set L which has p in its closure. We set
T to be the collection of all minimal t ∈ κ<ω with the property that
[t] ∩

⋃
k Lk is empty. A special property of this space ensures that L is

contained in the closure of the set T . To see this assume that s ∈ L �
hence no initial segment of s is in T . For each α ∈ κ, there is a tα ∈ T
which extends s and satis�es that t(|s|) = α. Now note that s is in the
closure of each in�nite subset of {tα : α ∈ κ}.

It is immediate that the set T is a discrete subset of κ<ω, and so the
only σ-compact subsets of T are countable. �

Now we use the ideas developed the analysis of Example 3.11 to estab-
lish our �nal result.

Theorem 3.12. If a space with σ-compact tightness has the property that
each compact subset has weight at most ω1, then the space has countable
tightness.

Proof. Let X be a space with σ-compact tightness and assume that each
compact subset of X has weight at most ω1. Suppose that a point p is in
the closure of the union of an increasing sequence S = {Xn : n ∈ ω} of
compact subsets ofX. We must show that p is in the closure of a countable
subset of

⋃
nXn. As we showed in the proof of Lemma 3.5, we may assume

thatX is an S-example and thatX is nowhere locally compact. Therefore,
by De�nition 3.4, we have that for eachm,n, Xn∩

⋃
k>mXk \Xm is dense

in Xn. Also, by Theorem 3.7, we may assume that
⋃
nXn is an almost

S-P-space.
We will build a tree {Zt : t ∈ ω<ω1 } of zero-sets of

⋃
nXn in an e�ort

to mimick the approach in Example 3.11. We let Z∅ =
⋃
nXn, and one

of our inductive assumptions is that for s ⊂ t, Zt is contained in the
S-interior of Zs. We will also arrange that Zt is disjoint from X|t|. The
family {Zt_α : α ∈ ω1} will be S-left-separated and the union will be
dense in Zt. By S-left-separated we mean that, for each α < ω1 and each
n ∈ ω, Zt_α will be disjoint from the closure of Xn∩

⋃
β<α Zt_β . In other

words, for each n, the family {Zt_α ∩Xn : α ∈ ω1} will be left-separated.
Here is an informal description of the construction. We will be devel-

oping a listing {x(t, γ) : γ ∈ ω1} of points which will be a dense subset of
Zt\

⋃
{Zt_α : α ∈ ω1}. This is easily done, modulo standard enumeration



TIGHTNESS IN σ-COMPACT SPACES 17

methods, by using the fact that the weight of each Xn is at most ω1, and,
so choosing, for each α ∈ ω1, a dense subset of the set of limit points of
the family {Zt_β : β < α}.

For each n ∈ ω, let {W (n, γ) : γ ∈ ω1} ⊂ P(Xn) enumerate an open
base for Xn. For convenience, we may assume that each element is listed
co�nally many times.

Fix a one-to-one function g from ω × ω1 onto ω1 so that g(n, α) ≥ α
for all (n, α) ∈ ω × ω1. Also let ≺ be any well-ordering of X. We may
suppose that g(m, 0) = m for each m ∈ ω. For each α, we will choose
a point x(t, α) ∈ Zt. To start, if W (m, 0) meets Zt, choose x(t,m) to
be the ≺-minimum point in Zt ∩W (m, 0), otherwise let x(t,m) be the
≺-minimum point of Zt. Whenever we specify a choice of an x(t, γ) we
will assume without further mention that we make the ≺-least possible
choice. Notice that for all ζ such that W (m, ζ) = W (m, ξ), our choice
convention ensures that x(t, g(m, ζ)) is also chosen to be the same point.
In this way, we have a natural method of ensuring that each point is listed
uncountably many times.

For each m, let Ξ(m, t, 0) denote the set of ξ ∈ ω1 such that W (m, ξ)
contains an S-accessible point of Zt. We begin by choosing x(t, g(m, ξ))
for all (m, ξ) such that either m ≤ |t| or ξ ∈ Ξ(m, t, 0). If m ≤ |t| then we
note that W (m, ξ) ⊂ X|t| is disjoint from Zt and we de�ne, for all ξ ∈ ω1,
x(t, g(m, ξ)) be the ≺-minimum point of Zt. If m > |t| and ξ ∈ Ξ(m, t, 0),
then W (m, ξ) contains an S-accessible point of Zt and we set x(t, γ) to
be the ≺-least such point.

Observe that each Zt_α is required to avoid all the points that have
been so selected. We continue by induction on α ∈ ω1. We choose each
Zt_α as well as ensuring that x(t, α) has been chosen, along with possibly
many more choices for points x(t, γ). Assume that {Zt_β : β < α} have
been chosen.

At stage α, we �rst add to the list of selected points. For each ` ∈ ω,
let L(`, t, α) denote the set of limit points of the collection {X` ∩ Zt_β :
β < α}, more precisely

L(`, t, α) =
⋃
β<α

X` ∩ Zt_β \
⋃
β<α

X` ∩ Zt_β .

If α < ω or m ≤ |t|, then L(`, t, α) is empty. For each m and 0 < α,
let Ξ(t,m, α) = {ξ : W (m, ξ) ∩

⋃
` L(`, t, α) 6= ∅} . Of course Ξ(t,m, j) is

empty for all 0 < j ∈ ω. We note that for ξ ∈ Ξ(m, t, 0), x(t, g(m, ξ)) has
been de�ned above. We inductively assume that, at stage α, x(t, γ) has
been de�ned for precisely all γ in the set

α ∪ {g(m, ξ) : m ≤ |t| or ξ ∈
⋃
{Ξ(m, t, β) : ω ≤ β < α}} .
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Now we choose, if necessary x(t, α), and points x(t, g(m, ξ)) for each
m ≥ |t| and each ξ ∈ Ξ(m, t, α) \

⋃
β<α Ξ(m, t, β). If |t| ≤ m and

ξ ∈ Ξ(m, t, α) \
⋃
β<α Ξ(m, t, β), then W (m, ξ) meets

⋃
` L(`, t, α); choose

x(t, g(m, ξ)) to be any point in the intersection. If x(t, α) has not yet
been chosen, then set x(t, α) = x(t, 0).

We must choose Zt_α to be contained in Zt \
⋃
`

⋃
β<αX` ∩ Zt_β (i.e.

the S-interior). First identify the unique (m, ξ) so that g(m, ξ) = α. If
m = 2k for some integer k, then the only additional demand on Zt_α is
that if W (k, ξ) meets Zt \

⋃
`

⋃
β<αX` ∩ Zt_β then Zt_α must also meet

W (k, ξ). If m = 2k+1, then we go about getting Zt_α to be contained in
the �rst α many neighborhoods of x(t, ξ). That is, �rst choose a zero-set
Z(t, α) with x(t, ξ) ∈ Z(t, α) and ensure that Xj ∩ Z(t, α) ⊂ W (j, ζ) for
each ζ < α and each j for which x(t, ξ) ∈ W (j, ζ). Since for some j,
x(t, ξ) ∈ Xj is not isolated we may ensure that x(t, ξ) is in the S-interior
of Z(t, α). Additionally, we arrange that Z(t, α) ∩ Zt_β is empty for all
β < α. Then, since X is an almost S-P-space, we may choose Zt_α to be
contained in the S-interior of Z(t, α) (which means that x(t, ξ) /∈ Zt_α).

This completes the construction of the family of zero-sets {Zt : t ∈
ω<ω1 }, and the associated points {x(t, α) : t ∈ ω<ω1 , α ∈ ω1}.

Claim 1. For each t ∈ ω<ω1 , the set {x(t, γ) : γ ∈ ω1} is dense in Zt \⋃
{Zt_α : α ∈ ω1}.

Proof. Suppose that x ∈ Zt \
⋃
{Zt_α : α ∈ ω1} and choose any k > |t| so

that x ∈ Xk, and by Lemma 3.9, so that for every zero set Z containing
x, x is in the closure of the points of Xk which are in the S-interior of
Z. The �rst step of the construction of the collection {x(t, γ) : γ ∈ ω1}
was to choose a dense subset of the collection of the S-accessible points
of Zt, so we may as well assume that x is not an S-accessible point of Zt.
Choose any ξ, ζ ∈ ω1 so that x ∈ W (k, ξ) and W (k, ξ) ⊂ W (k, ζ) and,
towards a contradiction, suppose that W (k, ζ) is disjoint from the closure
of the set {x(t, γ) : γ ∈ ω1}. Let α = g(2k, ξ) and consider the stage α
in the construction. Since Xk is compact, it follows from the selection
of x(t, g(k, ζ)) that W (k, ξ) must meet only �nitely many of the sets in
{Zt_α : α ∈ ω1} (otherwise W (k, ζ) would include a limit point). Since
W (k, ξ) is listed co�nally often, we can assume that ξ is so large that
W (k, ξ) is disjoint from Zt_α. However, this now contradicts our choice
of Zt_α, since W (k, ξ) does, by the assumption from Lemma 3.9, meet

Zt \
⋃
`

⋃
β<αX` ∩ Zt_β . �

Claim 2. For each (t, γ) ∈ ω<ω1 × ω1 and each countable sequence {Wm :
m ∈ ω} of neighborhoods of x(t, γ), there are uncountably many α with
Zt_α ⊂

⋂
mWm.
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Proof. Fix any (k, ξ) so that g(k, ξ) = γ. Let n be minimal such that
x(t, γ) ∈ Xn. For each ` ≥ n and m ∈ ω, choose βm,` so that x(t, γ) ∈
W (`, βm,`) ⊂Wm. Remember that there are uncountably many ζ so that
x(t, g(k, ζ)) = x(t, γ). For each ζ ≥ supn≤` βm,` and α = g(2k + 1, ζ),
Z(t, α) was chosen so that Z(t, α)∩X` is contained inW (`, βm,`) for each
` ∈ ω \ n. Therefore Z(t, α) is contained in W , and so is Zt_α. �

It follows from Claim 1 that the set {x(t, γ) : t ∈ ω<ω1 , γ ∈ ω1} is
dense in X. By symmetry, we will now assume that p is in the closure
of Y = {x(t, γ) : t ∈

⋃
n ω

2n
1 , γ ∈ ω1}. By the σ-compact tightness

assumption, we choose a sequence {Ln : n ∈ ω} of compact sets so that
Ln ⊂ Xn ∩ Y for each n, and so that p is in the closure of

⋃
n Ln.

Let T be the set of minimal elements of {t ∈ ω<ω1 : Zt ∩
⋃
n Ln = ∅}.

Evidently, T is an antichain in ω<ω1 .

Claim 3. For every n, the family {Xn ∩ Zt : t ∈ T} is left-separated.

We use the lexicographic ordering on members of T : speci�cally s <` t
providing there is a k ∈ dom(s)∩dom(t) such that s(k) < t(k). Let t ∈ T
and for each j ∈ dom(t), let L(T, t, j) = {s ∈ T ∩ ωj : s � j ⊂ t , s(j) <
t(j)}. It su�ces to show that, for each j ∈ dom(t), Zt is disjoint from
the closure of the union of the family {Zs : s ∈ L(T, t, j)}. Notice that
for s ∈ L(T, t, j), Zs ⊆ Zs�j+1. Also, Zt ⊂ Zt�j and by construction,
Zt�j is disjoint from the closure of the union of the family {Zs�j+1 : s ∈
L(T, t, j)}. Therefore the union of the family {Zs : s ∈ L(T, t, j)} is
contained in the union of the family {Zs�j+1 : s ∈ L(T, t, j)}, and we have
established the Claim.

Claim 4. p is in the closure of the set {x(t, 0) : t ∈ T}.

To establish this claim, we simply show that
⋃
n Ln is contained in the

closure of the set {x(t, 0) : t ∈ T}. Choose any point y ∈
⋃
n Ln and

�x (s, γ) ∈ ω<ω1 × ω1 so that y = x(s, γ). Since x(s, γ) ∈
⋃
n Ln, no

initial segment of s is a member of T . Let W be any open set containing
x(s, γ), we show there is a t ∈ T such that x(t, 0) ∈ W . Applying Claim
2, there is an extension t of s with dom(t) = dom(s) + 1, such that
Zt ⊂ W . Since dom(t) is an odd integer, x(t, ξ) /∈

⋃
n Ln for all ξ. If

Zt is disjoint from
⋃
n Ln, then t ∈ T and we have found our desired

x(t, 0) ∈W . Otherwise we now check that there is α such that t_α ∈ T .
Since x(t_α, 0) ∈ Zt_α ⊂ Zt ⊂ W this will complete the proof of the
claim. For each m, choose an open Wm containing x(t, 0) wich is disjoint
from Lm. Again we use Claim 2 to choose an α so that Zt_α ⊂

⋂
mWm,

and this completes the proof of the Claim.

Claim 5. The point p is in the closure of a countable subset of X.
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Putting Theorem 3.1 and Claim 3 together, we have that each σ-
compact subset of {x(t, 0) : t ∈ T} is countable. Since we are assuming
that {p} ∪X has σ-compact tightness, we are done by Claim 4. �

We must end with a question.

Question 1. Is there a bound on the tightness of regular spaces with
σ-compact tightness?
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