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EFIMOV SPACES, CH, AND SIMPLE EXTENSIONS

ALAN DOW AND ROBERTO PICHARDO-MENDOZA

Abstract. We give a construction under CH of an inverse
system of simple extensions so that its limit is an Efimov
space. This example shows that CH alone implies that a
conjecture of Mercourakis about measures [8] is false.

1. Introduction

An Efimov space is an infinite compact Hausdorff space with no
non-trivial converging sequences and no copies of βω, the Stone-
Čech compactification of the integers.

One of the well-known examples of this kind of space was con-
structed by Fedorčuk [5] with the aid of ♦. His space is the limit of
a special class of inverse system: continuous and based on simple
extensions. The construction we present here is an improvement in
the sense that we are just assuming CH.

Džamonja and Plebanek [3] show that any Efimov space con-
structed from the the Cantor space in an inverse limit of length
ω1 using simple extensions refutes a conjecture of Mercourakis con-
cerning measures on compact spaces. Thus Fedorčuk’s example
does the job under ♦. It is asked in [3] if CH sufficies to refute
Mercourakis’ conjecture, and our construction answers this affir-
matively.
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Efimov spaces have been constructed from CH before (see, for
example, [3] and [6]) but ours is the first example which is an inverse
limit of simple extensions.

2. The Construction

Recall that 〈fαβ, Xα : α < β < ε〉 is an inverse system if fαβ
is a map from Xβ to Xα whenever α < β < ε and the equation
fαγ = fαβ ◦ fβγ holds for all α < β < γ < ε. The inverse limit of
the system is the appropriate subspace of the topological product
of the family {Xα : α < ε} as described in [4].

Definition 2.1. An inverse system 〈fαβ, Xα : α < β < ε〉 is

(1) continuous if Xα is the inverse limit of the system 〈fβγ , Xβ :
β < γ < α〉, for any limit ordinal α < ε.

(2) based on simple extensions if Xα+1 is always a simple ex-
tension of Xα, i.e. there exists a single point xα ∈ Xα so
that f−1

α,α+1[xα] contains exactly two points and f−1
α,α+1[x] is

a singleton for all x ∈ Xα \ {xα}

These kinds of inverse systems are known as minimal in the
Boolean algebra setting.

The following result, in Boolean algebraic form, is due to Kop-
pelberg [7]; a topological proof can be found in [1].

Proposition 2.2. If X is the limit of the inverse system of simple
extensions 〈fαβ, Xα : α < β < ε〉, then X does not map onto
[0, 1]ω1, unless X0 does.

Observe that in this case, X does not map onto [0, 1]c either and
therefore βω cannot be embedded in X.

Theorem 2.3. Under CH, there exists an Efimov space that can
be obtained as the limit of an inverse system of simple extensions
of length ω1.

Proof. The plan is to use induction over β to get the desired inverse
system 〈fαβ, Xα : α < β < ω1〉.

From now on, sequence means infinite sequence. Recall that a
countable set E converges to a point a if E \ U is finite whenever
U is a neighborhood of a.
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Assume that we have constructed Xα and Xβ for some α < β
and let x ∈ Xα be arbitrary. To simplify our notation we will write
[x]β to denote f−1

αβ [{x}].
Fix a partition 〈Pα : α < ω1〉 of ω1 so that Pα is an uncountable

subset of ω1 \ α for each α < ω1.
We need some terminology. Let γ < ω1 and β ∈ Pγ be arbitrary.

If Xγ and Xβ have been constructed, then use CH to fix an enu-
meration 〈Dξ : ξ ∈ Pγ〉 of all converging sequences D in Xγ so that
fξγ [D] is finite for each ξ < γ. Observe that Dβ is a convergent
sequence in Xγ . A selector from Dβ is a set E ⊆ Xβ so that E∩[d]β
is a singleton for each d ∈ Dβ. Use CH again to get 〈Eξ : ξ ∈ Pβ〉,
an enumeration of all converging selectors from Dβ.

Let β < α < ε and x ∈ Xα be arbitrary. Fix γ < ω1 so that
β ∈ Pγ . We define

Dβ(x) := {d ∈ Dβ : x /∈ [d]α}.

In other words, d ∈ Dβ(x) if and only if d ∈ Dβ and fγα(x) 6= d.
Assume that for some ε < ω1 we have defined a continuous in-

verse system of simple extensions 〈fγβ, Xγ : γ < β < ε〉 so that the
following holds for each β < ε.

(1) X0 = 2ω, the Cantor set.
(2) If β + 1 < ε and i < 2, then there exist Aiβ, a closed subset

of Xβ, and H i
β, an infinite subset of Eβ, so that

(a) A0
β ∩A1

β = {xβ},
(b) Xβ = A0

β ∪A1
β,

(c) Xβ+1 = A0
β ⊕A1

β (the topological sum), and
(d) fβ,β+1 is the projection map.
(e) [e]β ⊆ Aiβ for all e ∈ H i

β.
(3) If x ∈ U ∈ Tβ, where Tβ is the topology of Xβ, then for

each finite set F ⊆ β there exists W , a clopen subset of Xβ,
such that x ∈W ⊆ U and W takes care of (x, F ), i.e.

[d]γ ∩ fγβ[W ] ∩ fγβ[Xβ \W ] = ∅,

for all γ ∈ F and d ∈ Dγ(x).

Condition (3) is equivalent to saying that W ∩ [d]β is a preimage
of a clopen subset of [d]γ .
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Observe that (1) guarantees, according to Proposition 2.2, that
the limit will not contain a copy of βω. Hence our main concern is
to get rid of all converging sequences.

If ε is a limit ordinal, then Xε is the limit of this inverse system.
To verify (3) let x ∈ U0 ∈ Tε be arbitrary. Fix a finite set F ⊆ ε.
Since {f−1

ξε [V ] : ξ < ε, V ∈ Tξ} is a base for Tε, there exists α < ε

and U ∈ Tα so that F ⊆ α and x ∈ f−1
αε [U ] ⊆ U0. Apply the

inductive hypothesis to α, fαε(x), U , and F to get a clopen set W
in Xα which takes care of (fαε(x), F ) and satisfies fαε(x) ∈W ⊆ U .
For each γ ∈ F we have Dγ(x) = Dγ(fαε(x)), so f−1

αε [W ] is a clopen
subset of Xε which takes care of (x, F ).

Now assume that ε = α + 1. Let β < ω1 be such that α ∈ Pβ.
Hence β ≤ α and therefore Eα and Dβ have been defined. Since X0

is compact metrizable and α < ω1, Xα is compact metrizable too.
In particular the family {[e]α : e ∈ Eα} must have an accumulation
point, i.e. there exists a point xα in Xα so that the set {e ∈ Eα :
[e]α ∩ V 6= ∅} is infinite for each neighborhood V of xα.

The next step is to find an infinite set Hα ⊆ Eα so that 〈[e]α :
e ∈ Hα〉 converges to xα, i.e. for each neighborhood U of xα all but
finitely many e ∈ Hα satisfy [e]α ⊆ U . Let’s start by fixing a local
decreasing base {Bn : n ∈ ω} for xα.

We face two cases. When β < α apply (3) to construct a sequence
〈Wn : n ∈ ω〉 of clopen subsets of Xα which satisfies

(i) xα ∈W0 ⊆ B0,
(ii) xα ∈Wn+1 ⊆Wn ∩Bn+1, and

(iii) Wn takes care of (xα, {β}),

for each n ∈ ω.
Define Enα := {e ∈ Eα : [e]α ∩Wn 6= ∅}. We claim that for all

but possibly one e ∈ Enα we get [e]α ⊆Wn. To prove this assertion
let e ∈ Enα and d ∈ Dβ(xα) be so that e ∈ [d]β. Now note that
if [e]α \Wn 6= ∅, then e ∈ fβα[Wn] ∩ fβα[Xα \Wn] ∩ [d]β, a clear
contradiction to (iii). Find an infinite set Hα ⊆ Eα so that Hα \Enα
is finite for all n ∈ ω and observe that this Hα works.

For the case α = β we have Eα ⊆ Xα and [e]α = {e}, for each
e ∈ Eα. Clearly any subsequence of Eα which converges to xα will
work as Hα.
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Let α = {βk : k < ω} be an enumeration of α. Use (3) to
construct {en : n ∈ ω} ⊆ Hα, g : ω → ω, and {Un : n ∈ ω} so that
for each n ∈ ω

(I) U0 = Xα,
(II) Un is clopen in Xα and takes care of (xα, {βk : k ≤ n}),

(III) g is an increasing function,
(IV) xα ∈ Un+1 ⊆ Bg(n) ⊆ Un \ [en]α, and
(V) [en]α ⊆ Un.
We are going to partition Xα \ {xα}. Let n be an arbitrary

integer. Observe that the set Vn := Un \ Un+1 is clopen and takes
care of (xα, {βk : k ≤ n}). Now, given i < 2, define

bin := {xα} ∪
∞⋃
k=n

V2k+i.

The following holds for each i < 2.
(a) bin is closed for all n < ω.
(b) If U a neighborhood of xα, then bim ⊆ U , for some m < ω.

We claim that bin takes care of (xα, {βk : k ≤ n}). Let k ≤ n
and d ∈ Dβk

(xα) be arbitrary. If y ∈ fβkα[bin] ∩ fβkα[Xα \ bin], then
we have two possibilities: y ∈ fβkα[V2`+i], for some ` ≥ n, or y =
fβkα(xα). In the first case we get y ∈ fβkα[V2`+i]∩ fβkα[Xα \ V2`+i]
and k ≤ n ≤ ` ≤ 2`+ i, so y /∈ [d]βk

.
Now assume that y = fβkα(xα). Since d ∈ Dβk

(xα), we get
xα 6∈ [d]α and therefore y 6∈ [d]βk

.
For each i < 2, set Aiα := bi0 and H i

α := {e2n+i : n ∈ ω}. Let
Xα+1 := (A0

α × {0}) ∪ (A1
α × {1}) and declare open all the sets of

the form (U0×{0})∪ (U1×{1}), where U i is open in the subspace
topology of Aiα ⊆ Xα. The map fα,α+1 : Xα+1 → Xα is defined by
fα,α+1(x, i) = x.

To complete the induction we check that property (3) holds.
Assume that (x, i) ∈ U ∈ Tα+1 are arbitrary and fix a finite set
F ⊆ α + 1. If x 6= xα, find U0 ∈ Tα so that (x, i) ∈ U0 × {i} ⊆ U
and xα /∈ U0. Let W0 be a clopen subset of Xα which takes care
of (x, F \ {α}) and satisfies x ∈ W0 ⊆ U0. Set W := W0 × {i}
and note that for all β ∈ F we have fβ,α+1[W ] = fβα[W0] and
fβ,α+1[Xα+1 \W ] = fβα[Xα \W0] (recall that fαα is the identity
map). Since Dβ((x, i)) = Dβ(x) we conclude that W takes care of
((x, i), F ).
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Assume now that x = xα. Find n ∈ ω, so that bin ×{i} ⊆ U and
F \ {α} ⊆ {βk : k ≤ n}. Define W := bin×{i}. For each β ∈ F and
d ∈ Dβ((xα, i)) we have that fβα(xα) /∈ [d]β and

fβ,α+1[W ]∩fβ,α+1[Xα+1\W ] = {fβα(xα)}∪
(
fβα[bin] ∩ fβα[Xα \ bin]

)
.

Therefore W takes care of ((xα, i), F ).
Let X be the limit of our inverse system and let πα : X → Xα

be the bonding map for each α < ω1. In order to check that X
is an Efimov space, assume that S is a converging sequence in X.
Let γ < ω1 be the least ordinal so that πγ [S] is infinite. Since
πγ [S] is a convergent sequence in Xγ , there exists β ∈ Pγ so that
πγ [S] = Dβ. Since fγβ ◦πβ = πγ , we can find an infinite set S0 ⊆ S
so that πβ is one-to-one on S0 and πβ[S0] is a selector from Dβ, i.e.
there exists α ∈ Pβ so that πβ[S0] = Eα. Property (2) provides two
infinite subsets of S0, namely S0

0 and S1
0 , so that πα[Si0] ⊆ Aiα for

each i < 2. Therefore πα+1[S0
0 ] and πα+1[S1

0 ] cannot converge to
the same point. This contradiction ends the proof. �
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