Submitted to Topology Proceedings

EFIMOV SPACES, CH, AND SIMPLE EXTENSIONS

ALAN DOW AND ROBERTO PICHARDO-MENDOZA

ABSTRACT. We give a construction under CH of an inverse system of simple extensions so that its limit is an Efimov space. This example shows that CH alone implies that a conjecture of Mercourakis about measures [8] is false.

1. INTRODUCTION

An Efimov space is an infinite compact Hausdorff space with no non-trivial converging sequences and no copies of $\beta\omega$, the Stone-Čech compactification of the integers.

One of the well-known examples of this kind of space was constructed by Fedorčuk [5] with the aid of \diamondsuit . His space is the limit of a special class of inverse system: continuous and based on simple extensions. The construction we present here is an improvement in the sense that we are just assuming CH.

Džamonja and Plebanek [3] show that any Efimov space constructed from the the Cantor space in an inverse limit of length ω_1 using simple extensions refutes a conjecture of Mercourakis concerning measures on compact spaces. Thus Fedorčuk's example does the job under \diamond . It is asked in [3] if CH sufficies to refute Mercourakis' conjecture, and our construction answers this affirmatively.

¹⁹⁹¹ Mathematics Subject Classification. 54A25 (5AD30 04A15).

Key words and phrases. Efimov space, CH..

The first author acknowledges support provided by NSF grant DMS-20060114.

The second author was supported by the CONACYT grant no. 159538/215933.

Efimov spaces have been constructed from CH before (see, for example, [3] and [6]) but ours is the first example which is an inverse limit of simple extensions.

2. The Construction

Recall that $\langle f_{\alpha\beta}, X_{\alpha} : \alpha < \beta < \varepsilon \rangle$ is an inverse system if $f_{\alpha\beta}$ is a map from X_{β} to X_{α} whenever $\alpha < \beta < \varepsilon$ and the equation $f_{\alpha\gamma} = f_{\alpha\beta} \circ f_{\beta\gamma}$ holds for all $\alpha < \beta < \gamma < \varepsilon$. The inverse limit of the system is the appropriate subspace of the topological product of the family $\{X_{\alpha} : \alpha < \varepsilon\}$ as described in [4].

Definition 2.1. An inverse system $\langle f_{\alpha\beta}, X_{\alpha} : \alpha < \beta < \varepsilon \rangle$ is

- (1) continuous if X_{α} is the inverse limit of the system $\langle f_{\beta\gamma}, X_{\beta} : \beta < \gamma < \alpha \rangle$, for any limit ordinal $\alpha < \varepsilon$.
- (2) based on simple extensions if $X_{\alpha+1}$ is always a simple extension of X_{α} , i.e. there exists a single point $x_{\alpha} \in X_{\alpha}$ so that $f_{\alpha,\alpha+1}^{-1}[x_{\alpha}]$ contains exactly two points and $f_{\alpha,\alpha+1}^{-1}[x]$ is a singleton for all $x \in X_{\alpha} \setminus \{x_{\alpha}\}$

These kinds of inverse systems are known as *minimal* in the Boolean algebra setting.

The following result, in Boolean algebraic form, is due to Koppelberg [7]; a topological proof can be found in [1].

Proposition 2.2. If X is the limit of the inverse system of simple extensions $\langle f_{\alpha\beta}, X_{\alpha} : \alpha < \beta < \varepsilon \rangle$, then X does not map onto $[0,1]^{\omega_1}$, unless X_0 does.

Observe that in this case, X does not map onto $[0, 1]^{\mathfrak{c}}$ either and therefore $\beta \omega$ cannot be embedded in X.

Theorem 2.3. Under CH, there exists an Efimov space that can be obtained as the limit of an inverse system of simple extensions of length ω_1 .

Proof. The plan is to use induction over β to get the desired inverse system $\langle f_{\alpha\beta}, X_{\alpha} : \alpha < \beta < \omega_1 \rangle$.

From now on, sequence means infinite sequence. Recall that a countable set E converges to a point a if $E \setminus U$ is finite whenever U is a neighborhood of a.

 $\mathbf{2}$

Assume that we have constructed X_{α} and X_{β} for some $\alpha < \beta$ and let $x \in X_{\alpha}$ be arbitrary. To simplify our notation we will write $[x]_{\beta}$ to denote $f_{\alpha\beta}^{-1}[\{x\}]$.

Fix a partition $\langle P_{\alpha} : \alpha < \omega_1 \rangle$ of ω_1 so that P_{α} is an uncountable subset of $\omega_1 \setminus \alpha$ for each $\alpha < \omega_1$.

We need some terminology. Let $\gamma < \omega_1$ and $\beta \in P_{\gamma}$ be arbitrary. If X_{γ} and X_{β} have been constructed, then use CH to fix an enumeration $\langle D_{\xi} : \xi \in P_{\gamma} \rangle$ of all converging sequences D in X_{γ} so that $f_{\xi\gamma}[D]$ is finite for each $\xi < \gamma$. Observe that D_{β} is a convergent sequence in X_{γ} . A *selector* from D_{β} is a set $E \subseteq X_{\beta}$ so that $E \cap [d]_{\beta}$ is a singleton for each $d \in D_{\beta}$. Use CH again to get $\langle E_{\xi} : \xi \in P_{\beta} \rangle$, an enumeration of all converging selectors from D_{β} .

Let $\beta < \alpha < \varepsilon$ and $x \in X_{\alpha}$ be arbitrary. Fix $\gamma < \omega_1$ so that $\beta \in P_{\gamma}$. We define

$$D_{\beta}(x) := \{ d \in D_{\beta} : x \notin [d]_{\alpha} \}.$$

In other words, $d \in D_{\beta}(x)$ if and only if $d \in D_{\beta}$ and $f_{\gamma\alpha}(x) \neq d$.

Assume that for some $\varepsilon < \omega_1$ we have defined a continuous inverse system of simple extensions $\langle f_{\gamma\beta}, X_{\gamma} : \gamma < \beta < \varepsilon \rangle$ so that the following holds for each $\beta < \varepsilon$.

- (1) $X_0 = 2^{\omega}$, the Cantor set.
- (2) If $\beta + 1 < \varepsilon$ and i < 2, then there exist A^i_{β} , a closed subset of X_{β} , and H^i_{β} , an infinite subset of E_{β} , so that
 - (a) $A^0_{\beta} \cap A^1_{\beta} = \{x_{\beta}\},\$
 - (b) $X_{\beta} = A^0_{\beta} \cup A^1_{\beta}$,
 - (c) $X_{\beta+1} = A^0_{\beta} \oplus A^1_{\beta}$ (the topological sum), and
 - (d) $f_{\beta,\beta+1}$ is the projection map.
 - (e) $[e]_{\beta} \subseteq A^i_{\beta}$ for all $e \in H^i_{\beta}$.
- (3) If $x \in U \in \mathcal{T}_{\beta}$, where \mathcal{T}_{β} is the topology of X_{β} , then for each finite set $F \subseteq \beta$ there exists W, a clopen subset of X_{β} , such that $x \in W \subseteq U$ and W takes care of (x, F), i.e.

$$[d]_{\gamma} \cap f_{\gamma\beta}[W] \cap f_{\gamma\beta}[X_{\beta} \setminus W] = \emptyset,$$

for all $\gamma \in F$ and $d \in D_{\gamma}(x)$.

Condition (3) is equivalent to saying that $W \cap [d]_{\beta}$ is a preimage of a clopen subset of $[d]_{\gamma}$.

Observe that (1) guarantees, according to Proposition 2.2, that the limit will not contain a copy of $\beta\omega$. Hence our main concern is to get rid of all converging sequences.

If ε is a limit ordinal, then X_{ε} is the limit of this inverse system. To verify (3) let $x \in U_0 \in \mathcal{T}_{\varepsilon}$ be arbitrary. Fix a finite set $F \subseteq \varepsilon$. Since $\{f_{\xi\varepsilon}^{-1}[V] : \xi < \varepsilon, V \in \mathcal{T}_{\xi}\}$ is a base for $\mathcal{T}_{\varepsilon}$, there exists $\alpha < \varepsilon$ and $U \in \mathcal{T}_{\alpha}$ so that $F \subseteq \alpha$ and $x \in f_{\alpha\varepsilon}^{-1}[U] \subseteq U_0$. Apply the inductive hypothesis to $\alpha, f_{\alpha\varepsilon}(x), U$, and F to get a clopen set Win X_{α} which takes care of $(f_{\alpha\varepsilon}(x), F)$ and satisfies $f_{\alpha\varepsilon}(x) \in W \subseteq U$. For each $\gamma \in F$ we have $D_{\gamma}(x) = D_{\gamma}(f_{\alpha\varepsilon}(x))$, so $f_{\alpha\varepsilon}^{-1}[W]$ is a clopen subset of X_{ε} which takes care of (x, F).

Now assume that $\varepsilon = \alpha + 1$. Let $\beta < \omega_1$ be such that $\alpha \in P_\beta$. Hence $\beta \leq \alpha$ and therefore E_α and D_β have been defined. Since X_0 is compact metrizable and $\alpha < \omega_1$, X_α is compact metrizable too. In particular the family $\{[e]_\alpha : e \in E_\alpha\}$ must have an accumulation point, i.e. there exists a point x_α in X_α so that the set $\{e \in E_\alpha : [e]_\alpha \cap V \neq \emptyset\}$ is infinite for each neighborhood V of x_α .

The next step is to find an infinite set $H_{\alpha} \subseteq E_{\alpha}$ so that $\langle [e]_{\alpha} : e \in H_{\alpha} \rangle$ converges to x_{α} , i.e. for each neighborhood U of x_{α} all but finitely many $e \in H_{\alpha}$ satisfy $[e]_{\alpha} \subseteq U$. Let's start by fixing a local decreasing base $\{B_n : n \in \omega\}$ for x_{α} .

We face two cases. When $\beta < \alpha$ apply (3) to construct a sequence $\langle W_n : n \in \omega \rangle$ of clopen subsets of X_α which satisfies

(i) $x_{\alpha} \in W_0 \subseteq B_0$,

(ii) $x_{\alpha} \in W_{n+1} \subseteq W_n \cap B_{n+1}$, and

(iii) W_n takes care of $(x_\alpha, \{\beta\})$,

for each $n \in \omega$.

Define $E_{\alpha}^{n} := \{e \in E_{\alpha} : [e]_{\alpha} \cap W_{n} \neq \emptyset\}$. We claim that for all but possibly one $e \in E_{\alpha}^{n}$ we get $[e]_{\alpha} \subseteq W_{n}$. To prove this assertion let $e \in E_{\alpha}^{n}$ and $d \in D_{\beta}(x_{\alpha})$ be so that $e \in [d]_{\beta}$. Now note that if $[e]_{\alpha} \setminus W_{n} \neq \emptyset$, then $e \in f_{\beta\alpha}[W_{n}] \cap f_{\beta\alpha}[X_{\alpha} \setminus W_{n}] \cap [d]_{\beta}$, a clear contradiction to (iii). Find an infinite set $H_{\alpha} \subseteq E_{\alpha}$ so that $H_{\alpha} \setminus E_{\alpha}^{n}$ is finite for all $n \in \omega$ and observe that this H_{α} works.

For the case $\alpha = \beta$ we have $E_{\alpha} \subseteq X_{\alpha}$ and $[e]_{\alpha} = \{e\}$, for each $e \in E_{\alpha}$. Clearly any subsequence of E_{α} which converges to x_{α} will work as H_{α} .

4

Let $\alpha = \{\beta_k : k < \omega\}$ be an enumeration of α . Use (3) to construct $\{e_n : n \in \omega\} \subseteq H_{\alpha}, g : \omega \to \omega$, and $\{U_n : n \in \omega\}$ so that for each $n \in \omega$

- (I) $U_0 = X_\alpha$,
- (II) U_n is clopen in X_α and takes care of $(x_\alpha, \{\beta_k : k \le n\})$,
- (III) g is an increasing function,
- (IV) $x_{\alpha} \in U_{n+1} \subseteq B_{q(n)} \subseteq U_n \setminus [e_n]_{\alpha}$, and
- (V) $[e_n]_{\alpha} \subseteq U_n$.

We are going to partition $X_{\alpha} \setminus \{x_{\alpha}\}$. Let *n* be an arbitrary integer. Observe that the set $V_n := U_n \setminus U_{n+1}$ is clopen and takes care of $(x_{\alpha}, \{\beta_k : k \leq n\})$. Now, given i < 2, define

$$b_n^i := \{x_\alpha\} \cup \bigcup_{k=n}^\infty V_{2k+i}.$$

The following holds for each i < 2.

(a) b_n^i is closed for all $n < \omega$.

(b) If U a neighborhood of x_{α} , then $b_m^i \subseteq U$, for some $m < \omega$.

We claim that b_n^i takes care of $(x_\alpha, \{\beta_k : k \leq n\})$. Let $k \leq n$ and $d \in D_{\beta_k}(x_\alpha)$ be arbitrary. If $y \in f_{\beta_k\alpha}[b_n^i] \cap f_{\beta_k\alpha}[X_\alpha \setminus b_n^i]$, then we have two possibilities: $y \in f_{\beta_k\alpha}[V_{2\ell+i}]$, for some $\ell \geq n$, or $y = f_{\beta_k\alpha}(x_\alpha)$. In the first case we get $y \in f_{\beta_k\alpha}[V_{2\ell+i}] \cap f_{\beta_k\alpha}[X_\alpha \setminus V_{2\ell+i}]$ and $k \leq n \leq \ell \leq 2\ell + i$, so $y \notin [d]_{\beta_k}$.

Now assume that $y = f_{\beta_k \alpha}(x_\alpha)$. Since $d \in D_{\beta_k}(x_\alpha)$, we get $x_\alpha \notin [d]_\alpha$ and therefore $y \notin [d]_{\beta_k}$.

For each i < 2, set $A^i_{\alpha} := b^i_0$ and $H^i_{\alpha} := \{e_{2n+i} : n \in \omega\}$. Let $X_{\alpha+1} := (A^0_{\alpha} \times \{0\}) \cup (A^1_{\alpha} \times \{1\})$ and declare open all the sets of the form $(U^0 \times \{0\}) \cup (U^1 \times \{1\})$, where U^i is open in the subspace topology of $A^i_{\alpha} \subseteq X_{\alpha}$. The map $f_{\alpha,\alpha+1} : X_{\alpha+1} \to X_{\alpha}$ is defined by $f_{\alpha,\alpha+1}(x,i) = x$.

To complete the induction we check that property (3) holds. Assume that $(x,i) \in U \in \mathcal{T}_{\alpha+1}$ are arbitrary and fix a finite set $F \subseteq \alpha + 1$. If $x \neq x_{\alpha}$, find $U_0 \in \mathcal{T}_{\alpha}$ so that $(x,i) \in U_0 \times \{i\} \subseteq U$ and $x_{\alpha} \notin U_0$. Let W_0 be a clopen subset of X_{α} which takes care of $(x, F \setminus \{\alpha\})$ and satisfies $x \in W_0 \subseteq U_0$. Set $W := W_0 \times \{i\}$ and note that for all $\beta \in F$ we have $f_{\beta,\alpha+1}[W] = f_{\beta\alpha}[W_0]$ and $f_{\beta,\alpha+1}[X_{\alpha+1} \setminus W] = f_{\beta\alpha}[X_{\alpha} \setminus W_0]$ (recall that $f_{\alpha\alpha}$ is the identity map). Since $D_{\beta}((x,i)) = D_{\beta}(x)$ we conclude that W takes care of ((x,i), F).

ALAN DOW AND ROBERTO PICHARDO-MENDOZA

Assume now that $x = x_{\alpha}$. Find $n \in \omega$, so that $b_n^i \times \{i\} \subseteq U$ and $F \setminus \{\alpha\} \subseteq \{\beta_k : k \leq n\}$. Define $W := b_n^i \times \{i\}$. For each $\beta \in F$ and $d \in D_{\beta}((x_{\alpha}, i))$ we have that $f_{\beta\alpha}(x_{\alpha}) \notin [d]_{\beta}$ and

$$f_{\beta,\alpha+1}[W] \cap f_{\beta,\alpha+1}[X_{\alpha+1} \setminus W] = \{f_{\beta\alpha}(x_{\alpha})\} \cup \left(f_{\beta\alpha}[b_n^i] \cap f_{\beta\alpha}[X_{\alpha} \setminus b_n^i]\right).$$

Therefore W takes care of $((x_{\alpha}, i), F)$.

Let X be the limit of our inverse system and let $\pi_{\alpha} : X \to X_{\alpha}$ be the bonding map for each $\alpha < \omega_1$. In order to check that X is an Efimov space, assume that S is a converging sequence in X. Let $\gamma < \omega_1$ be the least ordinal so that $\pi_{\gamma}[S]$ is infinite. Since $\pi_{\gamma}[S]$ is a convergent sequence in X_{γ} , there exists $\beta \in P_{\gamma}$ so that $\pi_{\gamma}[S] = D_{\beta}$. Since $f_{\gamma\beta} \circ \pi_{\beta} = \pi_{\gamma}$, we can find an infinite set $S_0 \subseteq S$ so that π_{β} is one-to-one on S_0 and $\pi_{\beta}[S_0]$ is a selector from D_{β} , i.e. there exists $\alpha \in P_{\beta}$ so that $\pi_{\beta}[S_0] = E_{\alpha}$. Property (2) provides two infinite subsets of S_0 , namely S_0^0 and S_0^1 , so that $\pi_{\alpha}[S_0^i] \subseteq A_{\alpha}^i$ for each i < 2. Therefore $\pi_{\alpha+1}[S_0^0]$ and $\pi_{\alpha+1}[S_0^1]$ cannot converge to the same point. This contradiction ends the proof.

References

- A. Dow, Efimov spaces and the splitting number. Spring Topology and Dynamical Systems Conference. Topology Proc. 29 (2005), no. 1, 105–113.
- [2] A. Dow, D.H. Fremlin, Compact sets without converging sequences in the random real model, Acta Math. Univ. Comenian. (N.S.) 76 (2007), no. 2, 161–171. 54A25
- [3] M. Džamonja, G. Plebanek, On Efimov spaces and Radon measures, Topology Appl. 154 (2007), no. 10, 2063-2072.
- [4] R. Engelking, *General topology*, second ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author. MR 91c:54001
- [5] V. V. Fedorčuk, Completely closed mappings, and the consistency of certain general topology theorems with the axioms of set theory, Matematicheskiĭ Sbornik. Novaya Seriya 99 (141) (1976), 1-26 (Russian); English transl. Mathematics of the USSR. Sbornik 28 (1976), 3-33, 135. MR 53 #14379, Zbl. 0371.54045
- [6] K.P. Hart, *Efimov's problem*, Open Problems in Topology II, (E. Pearl, ed.), Elsevier Science, 2007, pp. 171-177.
- S. Koppelberg, Minimally generated Boolean algebras, Order 5 (1989), no. 4, 393-406. MR 90g:06022
- [8] S. Mercourakis, Some remarks on countably determined measures and uniform distribution of sequences, Monats. Math. 121 (1996), 79–101.

$\mathbf{6}$

DEPARTMENT OF MATHEMATICS, UNC-CHARLOTTE, 9201 UNIVERSITY CITY BLVD., CHARLOTTE, NC 28223-0001 *E-mail address*: adow@uncc.edu

DEPARTMENT OF MATHEMATICS, UNC-CHARLOTTE, 9201 UNIVERSITY CITY BLVD., CHARLOTTE, NC 28223-0001 *E-mail address*: rpichard@uncc.edu