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Abstract7

In this paper we prove that in forcing extensions by a poset with8

finally property K over a model of GCH+�, every compact sequen-9

tially compact space is weakly pseudoradial. This improves Theorem10

4 in [6]. We also prove the following assuming s ≤ ℵ2: (i) if X is com-11

pact weakly pseudoradial, then X is pseudoradial if and only if X12

cannot be mapped onto [0, 1]s; (ii) if X and Y are compact pseudo-13

radial spaces such that X ×Y is weakly pseudoradial, then X ×Y is14

pseudoradial. This results add to the wide variety of partial answers15

to the question by Gerlits and Nagy of whether the product of two16

compact pseudoradial spaces is pseudoradial.17

1 Introduction18

A space is sequentially compact if every countable sequence has a converging19

subsequence. Following [6], say that a space is CSC if it is compact and20

sequentially compact. A subset A of a space X is radially closed if there is21
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no sequence {xα : α < κ} ⊆ A that converges to a point in X \ A (here1

“converges” means that each neighborhood of the limit point leaves out2

< κ-many members of the sequence, hence we can assume κ is regular).3

The radial closure of A is the minimal radially closed set A(r) that contains4

A. A space is pseudoradial if the radial closure of every subset is closed.5

The splitting number s, which is equal to min{κ : 2κ is not sequentially6

compact}, plays an important role regarding pseudoradial spaces. It is well7

known that 2ω1 is pseudoradial if and only if s > ω1. Analogously we can8

define the pseudoradial number, pse = min{κ : 2κ is not pseudoradial}. Then9

s > ω1 implies pse > ω1 (hence pse = ω1 implies s = ω1). Moreover, since10

every compact pseudoradial space is sequentially compact we have pse ≤ s.11

It is unclear to the authors whether pse is regular or can have countable12

cofinality.13

In [9] Juhász and Szentmiklóssy proved that (i) assuming c ≤ ℵ2, every14

CSC space is pseudoradial (this improves the result in [14] by Šapirovskǐı15

who assumed CH). It was also shown there that (ii) a compact non-pseu-16

doradial space contains a subset of size less than c whose closure is not17

pseudoradial. Further, they proved that (iii) there is a model of c = ℵ318

in which there is a CSC non-pseudoradial space, and asked whether c =19

ℵ3 implies the existence of such spaces. In [6] Dow, Juhász, Soukup and20

Szentmiklóssy improved (ii) by replacing c for s, and they used this fact to21

show that (iv) in the extension by adding any number of Cohen reals to a22

model of CH, every CSC space is pseudoradial. This solves in the negative23

to the question from (iii). Later, in [2] Bella, Dow and Tironi focused mainly24

on whether a compact non-pseudoradial space necessarily contains a closed25

separable non-pseudoradial subspace. They showed that this is consistently26

true: if 2ω2 is not pseudoradial, then a compact space is pseudoradial if every27

closed separable subspace is pseudoradial. The following question remains28

open.29

Question 1.1 (Šapirovskǐı). Is it true in ZFC that 2ω2 is not pseudoradial?30

A weaker property than “all closed separable subspaces are pseudoradial”31

is the following. A space is weakly pseudoradial if the radial closure of every32

countable subset is closed. The work in this paper is motivated by the facts33

stated above and the target is to study weak pseudoradiality. It turns out34

that under the presence of pse = ℵ2, weak pseudoradiality provides a nice35

equivalence of pseudoradiality. In Section 4 we prove the following36
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Theorem 1.1. Suppose pse ≤ ℵ2. Let X be a compact weakly pseudoradial1

space. Then, X is pseudoradial if and only if X cannot be mapped onto2

[0, 1]pse.3

A poset Q is linked provided its members are pairwise compatible. A4

subposet Q ⊆ P is complete in P is every maximal antichain of Q is maximal5

in P. We say that a poset P has finally property K if for every complete6

subposet Q ⊆ P, the factor poset P/Q (see [10]) is forced by Q to have7

property K (every uncountable subset has an uncountable linked subset)8

as in [5]. As pointed out in Section 2, posets with finally property K are9

ccc, the Cohen forcing has finally property K, and finite support iterations10

(products) of posets with finally property K have finally property K. Now11

we state the central result of this document whose proof is in Section 3.12

Main Theorem 1.2. Assume V |=GCH+�. Suppose that P is a poset13

with finally property K and G ⊆ P is a P-generic filter. Then, in V [G],14

every CSC space is weakly pseudoradial.15

Let us observe that if we further assume V [G] |= s ≤ ℵ2, then in the16

extension every CSC is pseudoradial: if X is CSC then it is weakly pseudo-17

radial by Main Theorem 1.2, and in particular it is sequentially compact.18

Now observe that s ≤ ℵ2 implies pse = s. Thus, X cannot be mapped onto19

the non-sequentially compact space [0, 1]pse. Theorem 1.1 applies, so X is20

pseudoradial. Recall that in forcing extensions by adding Cohen reals we21

have s = ℵ1. Subsequently Main Theorem 1.2 generalizes result (iv) stated22

above (Theorem 4 in [6]).23

In a different direction, one of the main problems in the theory of pseudo-24

radial spaces is due to Gerlits and Nagy ( [7]) who asked whether the product25

of two compact Hausdorff pseudoradial spaces is pseudoradial. Many partial26

results have been given, though the question remains open in ZFC. In [13]27

Frolik and Tironi proved that the product of two compact Hausorff pseudo-28

radial spaces is pseudoradial if one of them is radial. This was improved by29

Bella and Gerlits in [2] by only requiring one of the factors to be semi-radial.30

In [1] Bella proved that the the product of countably many compact Haus-31

dorff R-monolitic spaces is R-monolitic. As a consequence of Juhász and32

Szentmiklóssy result, if c ≤ ℵ2 then the product of countably many pseudo-33

radial spaces is pseudoradial. In [11] Obersnel and Tironi showed assuming34

h ≤ ℵ3 that for any κ < h, if {Xα : α < κ} is a family of compact Hausdorff35

pseudoradial spaces with |Xα| < 2ω2 , then
∏

α<κXα is pseudoradial.36



4 H.A. Barriga-Acosta and A. Dow

We use Theorem 1.1 and Lemma 4.4 to prove the next result and we1

leave a natural question from it.2

Theorem 1.3. Suppose pse ≤ ℵ2. Let X and Y be compact pseudoradial3

spaces such that X×Y is weakly pseudoradial. Then X×Y is pseudoradial.4

Question 1.2. Is it true in ZFC that the product of two compact pseudo-5

radial spaces is weakly pseudoradial?6

2 Preliminaries7

2.1 Topology8

We follow notation from [9]. Let X be a space and A ⊆ X be a non-closed

subset. Define

λ(A,X) = min{λ : ∃K ⊆ A a non-empty closed Gλ-set (K ∩ A = ∅)}.

Note that if K is a Gλ-set witness of λ = λ(A,X), then by the minimality of9

λ there is a sequence {xα : α < λ} ⊆ A converging to K, that is, every open10

set containing K also contains a final segment of {xα : α < λ}. Moreover,11

if X is sequentially compact and A is radially closed then λ(A,X) has12

uncountable cofinality.13

Observation 2.1. Let X be compact. Then,14

1. “X is pseudoradial” implies15

2. “all closed separable subspaces of X are pseudoradial” implies16

3. “X is weakly pseudoradial” implies17

4. “X is sequentially compact”.18

Under c ≤ ℵ2, every CSC space is pseudoradial, hence the preceding19

properties are equivalent. We find it interesting to expand the discussion on20

Observation 2.1.21

A key lemma in [9] is: if X is CSC then for every non-closed set A ⊆ X,22

ω < λ(A,X) < c−, where c− is equal to c in case it is limit; otherwise, it23

is the predecessor of c. Note that p = c suffices to prove (4) implies (3): if24

A is countable non-closed, then there is K ⊆ A \ A a closed Gλ-set, where25

λ = λ(A,X). This produces a centered family on the countable set A of size26

λ < p, hence it has a pseudointersection. Because X is sequentially compact,27
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the pseudointersection has a subsequence converging to some point in K.1

This contradicts A is non-closed.2

It was also proven in [9] that if the c.u.b. filter on ω1 has character κ,3

then 2κ is not pseudoradial. Note that 2ω = ω3 is consistent with MA plus4

‘the cub filter on ω1 has character ω2’. In this model we have on one hand,5

p = s = c = ω3 which implies 2ω2 is separable, sequentially compact and6

weakly pseudoradial. On the other hand, 2ω2 is not pseudoradial. That is,7

in this model (3) does not imply (2). We leave the questions regarding the8

rest of the implications.9

Question 2.1. Is it consistent with ZFC that there exists a CSC non-weakly10

pseudoradial space?11

Question 2.2. Is it consistent with ZFC that there exists a compact non-12

pseudoradial space in which all closed separable subspaces are pseudoradial?13

For the last question, necessarily 2ω2 must be pseudoradial due to Bella-14

Dow-Tironi [2]. (Hence, the statement “2ω2 is pseudoradial” would be inde-15

pendent from ZFC, answering to Question 1.1.)16

If x ∈ X, a π-base of x is a family U of non-empty open sets of X such17

that every neighborhood of x contains a member of U . The π-character of18

x in X is πχ(x,X) = min{|U| : U is a π-base of x}, and the π-character19

of X is πχ(X) = sup{πχ(x,X) : x ∈ X}. In Section 4 we will use these20

notions as well as the following result in [8].21

Theorem 2.2 (Šapirovskǐı). The following are equivalent for a compact22

space X:23

i) X can be continuously mapped onto Iκ;24

ii) there is a closed set F ⊆ X which can be continuously mapped onto25

2κ;26

iii) there is a closed set F ⊆ X with πχ(x, F ) ≥ κ for each x ∈ F .27

2.2 Elementary Submodels28

For the proof of the Main Theorem 1.2 we will make heavy use of elementary29

submodels M of H(θ), where θ is a large enough cardinal. We will also use30

the following properties about finally property K posets and extensions by31

generic filters over structures.32
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It is well known (see [5], [10]) that a finally property K poset P is ccc (Q =1

{1} is a complete subposet of P and P/Q ' P). Moreover, if M ≺ H(θ),2

P ∈M and Mω ⊆M , then PM = P ∩M is a complete subposet of P. This3

implies that maximal antichains of PM are maximal antichains of P, and it4

also implies that, if G is a P-generic filter, then V [G] is obtained by forcing5

with P/PM = P/(G ∩M) over the model V [GM ], where GM = G ∩ PM .6

Recall the facts (see [4]) that M [GM ] ∩ P(ω) = M [G] ∩ P(ω), M [GM ] is7

an elementary submodel of H(θ)[GM ] (this is simply H(θ) in the sense of8

V [GM ]), and that M [G] (hence M [GM ]) is also closed under ω-sequences in9

the universe V [GM ].10

2.3 Trees11

Here we introduce an important tool (a tree) that will be used in Lemmas12

3.3 and 3.4. In [12] Dániel Soukup and Lajos Soukup defined and contructed13

from the Jensen’s principle � the high and sage Davies-trees. We opt to only14

state what we need from these trees.15

Suppose GCH and � hold. Let κ be a cardinal such that κω = κ and let16

x be any set. Then it is possible to recursively construct a tree Tκ together17

with models Mt, for t ∈ T , with the following requirements. The elements t18

of Tκ are finite functions with domain an integer into successor ordinals. The19

model M∅ will be the increasing union of its immediate successors and will20

have size κ. Let κt denote the cardinality of Mt. Here we list the required21

properties about the tree Tκ:22

1. if κ = ℵ1 then every Mα is countable;23

2. a node t of Tκ is maximal if and only if Mt is countable;24

3. for every t ∈ Tκ, x ∈Mt;25

4. given t ∈ Tκ, the sequence {Mt_(α+1) : α < cf(|Mt|)} is a ⊆-chain that26

unions up to Mt, and κt_(α+1) < κt;27

5. if κt = λ+ with cf(λ) = ω, then for every α < cf(κt), Mt_(α+1_n) is28

closed under ω-sequences and κt_(α+1_n) is regular, for each n ∈ ω;29

6. if κt is any other cardinal, then Mt_(α+1) is closed under ω-sequences30

for all α < cf(κt), and κt_(α+1) = κt_(β+1).31

In [12], clause (II) in the definition of high Davies-tree implies that M∅32

has size κ and is closed under ω-sequences. In the proof of Theorem 14.1 [12],33
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their models Kα+1 for Case I are the models Mt_(α+1) for our item (5), and1

their models Kα+1,j for Case II are the models Mt_(α+1_j) for our item (4).2

Observe that we are only considering models that have successor index; if3

the index value for a model is limit we could not guarantee that the model4

is closed under ω-sequences.5

Clearly Tκ has no infinite branches and this is equivalent (see [10]) to6

saying that Tκ, with the reverse ordering, is well-founded. There is a rank7

function, rkTκ , on Tκ where rkTκ(t) = 0 if t is maximal. For non-maximal8

t, the definition of rkTκ(t) is minimal so that rkTκ(t_α) < rkTκ(t) for all9

t_α ∈ Tκ.10

3 The Main Result11

We want to prove that if we force with a finally property K poset P over12

a model of GCH + �, then in the extension every CSC space is weakly13

pseudoradial. We will present the proofs and results for 0-dimensional spaces14

and leave the routine changes needed to handle the general case to the15

interested reader. So, we focus on separable 0-dimensional CSC spaces and16

for practical purposes we identify any countable dense set with ω. If X is a17

0-dimensional CSC space with dense set ω then there is a Boolean algebra18

BX on ω whose Stone space S(BX) is X (BX is the Boolean algebra of the19

clopen sets of X intersected with ω).20

Throughout this section suppose V is a model of GCH + �, P has21

finally property K, G is a P-generic filter and, in V [G], let X be a separable22

0-dimensional CSC space with dense set ω. Let ḂX be a family of nice23

P-names of subsets of ω that is forced, by 1, to be the Boolean algebra24

on ω whose Stone space is X; 1 forces that S(ḂX) = Ẋ is CSC. We may25

assume that the fixed ultrafilters of ḂX are the elements of ω and that for26

all n 6= m ∈ ω, there is a ḃ ∈ ḂX satisfying that 1 
 |ḃ∩ {n,m}| = 1 (i.e. ω27

is dense but not necessarily discrete or open).28

As suggested, we aim to prove that in the forcing extension the radial29

closure of ω (the countable dense set in X) is closed. That is, if u̇ is a P-30

name for an ultrafilter on ω (1 
 u̇ ∈ ω∗), prove that the u̇-limit of ω is in31

ω(r). To this end here is the key idea: we will get the desired u̇-limit as being32

the limit of a well-ordered sequence of points in the radial closure of ω, and33

these points are produced by using larger and larger elementary submodels.34

More concretely, we will use induction over rkTκ , for large enough κ, to get35
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points in ω(r) as in Definition 3.2 until we obtain a converging sequence to1

the u̇-limit.2

Notation 3.1. Suppose u̇ is a P-name for an ultrafilter on ω and Ḃ is a3

list of P-names such that 1 forces Ḃ is a Boolean algebra on ω. For any4

countable family W of u̇, let A(u̇,W) denote the family of all nice P-names5

ȧ (of subsets of ω) where 1 forces that ȧ ⊆∗ Ẇ for all Ẇ ∈ W , and ȧ is6

a converging sequence in S(Ḃ). Of course A(u̇, ∅) contains A(u̇,W) for all7

countable W ⊆ u̇. For any ȧ ∈ A(u̇, ∅), let xȧ denote the limit point of ȧ in8

S(Ḃ).9

We may think ofA(u̇,W) as the collection of all sequences that converges10

to the Gδ-set,
⋂
W , which contains the u̇-limit. By sequential compactness,11

these sets are non-empty.12

Lemma 3.1. Suppose M ≺ H(θ) has size ℵ1, is closed under ω-sequences13

and is the increasing union of a sequence of countable elementary sub-14

models 〈Mα : α ∈ ω1〉. For each α ∈ ω1, choose ȧα an element of M ∩15

A(u̇, (Mα ∩ u̇)). Then there is a point ẋ(u̇,M) in the radial closure of ω16

satisfying that the sequence 〈xȧα : α ∈ ω1〉 converges to ẋ(u̇,M). Moreover,17

ẋ(u̇,M) does not depend on the choice of the ȧα’s.18

Proof. We have the sequence {valG(ȧα) : α ∈ ω1} in the model V [GM ].19

(This sequence is not necessarily in the elementary submodel M [G] as it is20

not required to be closed under ω1-sequences, see Subsection 2.2.)21

Fact 1. u̇M = {valG(U̇) : U̇ ∈ u̇ ∩M} is a PM -name of an ultrafilter on ω22

(i.e. valGM (u̇M) = valG(u̇) ∩ V [GM ] is an ultrafilter on ω).23

First let us observe that P(ω)∩V [GM ] ⊆M [GM ]. In fact, if Ċ is PM -nice24

name for a subset of ω in V [GM ] then Ċ is a countable subset of ω × PM25

because PM is ccc. This implies that Ċ ⊆ M and since M is closed under26

ω-sequences, Ċ ∈M . Thus, valGM (Ċ) ∈M [GM ].27

It remains to prove that valGM (u̇M) is ultra over M [GM ]. Note that u̇ is28

forced to be an ultrafilter on ω, that is, 1 
 ∀C ∈ [ω]ω (C ∈ u̇ or ω\C ∈ u̇).29

As u̇ ∈ M and 
 is definable within M , the formula “for every PM -name30

Ċ for a subset of ω, 1 
PM Ċ ∈ u ∨ ˙ω \ C ∈ u̇” holds in M . Thus, M [GM ]31

satisfies that valGM (u̇M) is an ultrafilter on ω, and so does V [GM ] since32

P(ω) ∩ V [GM ] ⊆M [GM ]. This finishes Fact 1.33

In the following we will see that the sequence 〈valGM (xȧα) : α ∈ ω1〉34

converges to a unique point in the radial closure of ω. Work in V [GM ].35
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Fact 2. If Λ is any uncountable subset of ω1, then there is a δ < ω1 such1

that
⋃
{valGM (ȧα) : α ∈ Λ ∩ δ} is an element of valGM (u̇M).2

The set
⋃
{valGM (ȧα) : α ∈ Λ} is countable, of course there is a δ so that3

U =
⋃
{valGM (ȧα) : α ∈ Λ ∩ δ} =

⋃
{valGM (ȧα) : α ∈ Λ}, and then there4

is an α ∈ Λ, large enough so that U and ω \ U are the evaluations of some5

PM -names in Mα. If U is not in valGM (u̇M) then ω \ U ∈ valGM (u̇M). Since6

ȧα ∈M ∩A(u̇, u̇∩Mα), this implies that valGM (ȧα) is mod finite contained7

in ω \ U , contradicting valGM (ȧα) ⊆∗ U . This concludes Fact 2.8

It follows that for each clopen set captured by M (ḃ ∈ ḂX ∩M) there is9

β < ω1 so that for every α ∈ Λ\β, valGM (ẋȧα) ∈ ḃ. That is, 〈valGM (ẋȧα) : α ∈10

Λ〉 converges with respect to all ḃ ∈ ḂX ∩M , (i.e. we may simply consider11

those ḃ ∈ ḂX ∩ u̇. Fact 2 shows that all but countably many valGM (ȧα) are12

mod finite contained in valGM (ḃ)).13

Now we must prove that this convergence property is preserved by the14

tail forcing P/PM . Let ḃ be any member of ḂX . Note that ḃ is forced by 1 not15

to split any ȧα (these are converging sequences). Towards a contradiction, let16

us assume that there is some condition p ∈ P/PM that forces “ḃ mod finite17

contains uncountably many ȧα, and is mod finite disjoint from uncountably18

many ȧβ”. For each γ < ω1, choose any extension pγ ∈ P/PM of p together19

with γ ≤ αγ, βγ so that there is an mγ satisfying pγ 
 ȧαγ\ḃ ⊆ m̌γ and ȧβγ∩20

ḃ ⊂ m̌γ . Choose an uncountable Λ ⊆ ω1 so that for all γ, η ∈ Λ, m :=21

mγ = mη and pγ 6⊥ pη (here we have used the fact that P/PM is forced22

by 1 to have property K). Choose δ < ω1 as in Fact 2 for the sequence23

{valG(ȧαγ ) : γ ∈ Λ}, and let U =
⋃
{valG(ȧαγ ) : γ ∈ Λ ∩ δ} (note that24

since ȧα are countable sets, valGM (ȧα) = valG(ȧα)). We know that U is25

in valGM (u̇M) so we can choose γ ∈ Λ \ δ large enough and k > m with26

k ∈ valGM (ȧβγ ) ∩ U . Choose η ∈ Λ ∩ δ such that k ∈ valG(ȧαη). Then on27

one hand, we have that pη 
 ǩ ∈ ḃ, and on the other hand pγ 
 ǩ /∈ ḃ.28

That is, pη ⊥ pγ, this is the desired contradiction. It follows then that there29

is a P-name ẋ(u̇,M) so that V [G] |= 〈valG(ẋȧα) : α < ω1〉 converges to30

valG(ẋ(u̇,M)).31

As for the uniqueness, simply check that if S1 = {ȧα : α ∈ ω1} and S2 =32

{ċα : α ∈ ω1} are two such sequences, there is a third S3 = {ḋα : α ∈ ω1}33

(for example, alternate the sequences ȧα and ċα) satisfying that S1∩S3 and34

S2 ∩ S3 are both uncountable and have the same limits.35

Remark 3.1. For larger models M (that is, for rkTκ(M) > 1) we want to36

define analogues of ẋ(u̇,M). This definition will depend on the cofinality of37
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|M |. When the cofinality is ω, we will rather define an entire family X (u̇,M)1

consisting of limits of converging ω-sequences of the form 〈ẋ(u̇,Mn) : n ∈ L̇〉2

where the sequence 〈Mn : n ∈ ω〉 is an increasing chain that unions up3

to M and L̇ is any P-name of an infinite subset of ω. In the case when4

λ = |M | is the successor of a cardinal with cofinality ω, then X (u̇,M) will be5

{ẋ(u̇,M)} but its definition will be as a λ-limit of a choice of members ofM∩6

X (u̇,Mα+1) where {Mα+1 : α < cf(λ)} is an increasing chain for M . Finally,7

when λ = |M | is any other cardinal, then X (u̇,M) = {ẋ(u̇,M)} should be8

the limit of the sequence 〈ẋ(u̇,Mα+1) : α < cf(λ)〉 for an increasing chain9

{Mα : α < cf(λ)} for M . Proving that these sequences radially converge10

within V [GM ] is not difficult, but we must again prove that P/PM will11

preserve this convergence.12

Definition 3.2. Suppose κ is a cardinal and that we have constructed a13

tree Tκ as in Subsection 2.3. For s ∈ Tκ we define the following statement:14

(?)s if cf(κs) > ω, then 1 
 ẋ(u̇,Ms) is in the closure of the limit points15

of members of A(u̇,W) ∩Ms, where W ⊆ u̇ ∩Ms is countable.16

Lemma 3.3. Fix t ∈ Tκ and suppose (?)s holds for every s ) t. Assume17

that κt > ℵ1 has uncountable cofinality and that ḃ ∈ Ḃ. Then the set of18

γ ∈ κt for which there are a pγ and pairs αγ, ẋγ,0 and βγ, ẋγ,1 satisfying19

1. γ ≤ αγ ≤ βγ < κt,20

2. ẋγ,0 is in X (µ̇,Mt_(αγ+1)),21

3. ẋγ,1 is in X (µ̇,Mt_(βγ+1)),22

4. pγ 
 ḃ ∈ ẋγ,0,23

5. pγ 
 ḃ /∈ ẋγ,1,24

is bounded in κt.25

Proof. Assume that the sequence S = 〈{pγ, αγ, βγ, ẋγ,0, ẋγ,1} : γ ∈ Γ〉 is26

a collection satisfying items (1)-(5) of the statement of the Lemma. We27

can further assume that for consecutive γ < γ′ in Γ, γ < αγ < βγ < γ′.28

Towards a contradiction, assume that Γ is cofinal in cf(κt). Fix any model29

M̄ ≺ H(θ) of cardinality ℵ1, closed under ω-sequences, and satisfying that30

{u̇,P, ḃ,S,Γ, Tκ, {Mt_ξ+1 : ξ < cf(κt)}} ⊆ M̄ .31

Let λ = sup(M̄ ∩ κt); M̄ ∩ Γ is cofinal in λ. Let {U̇δ : δ < ω1} be an32

enumeration for u̇ ∩ (M̄ ∩Mt). By induction on δ ∈ ω1, choose a strictly33
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increasing sequence {γδ : δ < ω1} ⊆ Γ∩ M̄ so that Wδ = {U̇β : β < δ} is an1

element of Mt_(γδ+1). Since M̄ω ⊆ M̄ , Wδ ∈ M̄ ∩Mt_(γδ+1). Observe that2

γδ, αγδ , βγδ ∈ M̄ and therefore Mt_(γδ+1),Mt_(αγδ+1) and Mt_(βγδ+1) are also3

in M̄ , for δ < ω1.4

Fix any δ ∈ ω1. We want to pick fromA(u̇,Wδ)∩(M̄∩Mt) sequences that5

are almost contained in ḃ and sequences that are almost disjoint from ḃ, this6

will lead to a contradiction. To do so, we have two cases for cf(κt_(αγδ+1)).7

Case One. cf(κt_(αγδ+1)) > ω.8

By the definition of X (u̇,Mt_(αγδ+1)), in this case we know that this9

set consists of a unique point, thus 1 forces that ẋ(u̇,Mt_(αγδ+1)) coincides10

with ẋγδ,0. Using (2), (4) and (?)t_(αγδ+1) we have that H(θ) satisfies that11

pγδ 
 ẋ(u̇,Mt_(αγδ+1)) is in the closure of the limit points of members of12

A(u̇,Wδ)∩Mt_(αγδ+1), and pγδ 
 ḃ ∈ ẋ(u̇,Mt_(αγδ+1)). Hence, H(θ) satisfies13

that there is a convergent sequence and an extension of pγδ that forces the14

sequence to be almost contained in ḃ. Since all required parameters for15

reflection (pγδ , u̇,Wδ,Mt_(αγδ+1)) are in M̄ , M̄ also satisfies there is ȧαγδ ∈16

A(u̇,Wδ) ∩Mt_(αγδ+1) and a q′γδ < pγδ so that q′γδ 
 ȧαγδ ⊆
∗ ḃ.17

By the property 2.3.(6) of Tκ we have κt_(αγδ+1) = κt_(βγδ+1) and this18

implies cf(κt_(βγδ+1)) > ω. So, similarly using (3), (5) and (?)t_(βγδ+1), M̄19

satisfies that there is ȧβγδ ∈ A(u̇,Wδ) ∩Mt_(βγδ+1) and qγδ < q′γδ such that20

qγδ 
 ȧαγδ ⊆
∗ ḃ and ȧβγδ ∩ ḃ =∗ ∅.21

Case Two. cf(κt_(αγδ+1)) = ω.22

Denote by 〈Mn : n ∈ ω〉 the sequence 〈Mt_(αγδ+1_n) : n ∈ ω〉 for23

Mt_(αγδ+1) (recall each Mn has regular cardinality, 2.3.(5)). Since Mt_(αγδ+1)24

is the ⊆-increasing union of the Mn’s (2.3.(4)) and Wδ ∈ Mt_(γδ+1) ⊆25

Mt_(αγδ+1), there is k ∈ ω such that for all n ≥ k, Wδ ∈ Mn and hence26

Wδ ⊆ Mn. Also, as ẋγδ,0 is an element of X (u̇,Mt_(αγδ+1)) ∩ M̄ there is a27

P-name, L̇ ∈ M̄ , of an infinite subset of ω such that pγδ forces that the28

sequence 〈ẋ(u̇,Mn) : n ∈ L̇〉 (which is an element of M̄) converges to ẋγδ,0.29

So we can choose large enough n ∈ ω and q′γδ < pγδ such that Wδ ∈ Mn30

and q′γδ 
 ḃ ∈ ẋ(u̇,Mn). Again, all required parameters are in M̄ and since31

|Mn| has uncountable cofinality, repeating the arguments as in Case One32

we can obtain, within M̄ , elements ȧαγδ , ȧβγδ and qγδ as above. Case Two is33

finished.34

We have obtained the collections 〈qγδ ∈ M̄ ∩ P : δ < ω1〉, 〈aαγδ ∈35

A(u̇,Wδ) ∩ (M̄ ∩ Mt_(αγδ+1)) : δ < ω1〉 and 〈aβγδ ∈ A(u̇,Wδ) ∩ (M̄ ∩36
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Mt_(βγδ+1)) : δ < ω1〉 such that for every δ < ω1, qγδ < pγδ and qγδ 
 aαγδ ⊆
∗

1

ḃ and aβγδ ∩ ḃ =∗ ∅. Note that M̄ ∩Mt has cardinality ℵ1 and is closed under2

ω-sequences (this follows by our assumption on M̄ and 2.3.(6)). Fix any ⊆-3

chain 〈M̄ξ : ξ < ω1〉 of countable elementary submodels that unions up to4

the model M̄ ∩Mt such that for every ξ ∈ ω1, {qγξ , ȧαγξ , ȧβγξ ,Wξ} ⊆ M̄ξ+1.5

Now observe that
⋃
δ∈ω1
Wδ = u̇ ∩ (M̄ ∩Mt) =

⋃
δ∈ω1

u̇ ∩ M̄δ. Hence there6

is a c.u.b. C ⊆ ω1 such that for every δ ∈ C, u̇ ∩ M̄δ = Wδ. Consider7

a P-name Ṡ for the set {δ ∈ C : qγδ ∈ G} (recall that G is a P-generic8

filter). Using the fact that P is finally property K (in fact, only by ccc),9

Ṡ is forced by some condition in G to be uncountable. So, in V [G] we10

have ω1-many sequences valG(ȧαγδ ) that are almost contained in valG(ḃ) and11

ω1-many sequences valG(aβγδ ) that are almost disjoint from valG(ḃ) which12

contradicts Lemma 3.1 for the model M̄ ∩Mt.13

Let us note that Lemma 3.1 and Lemma 3.3 imply the following: if14

cf(κt) > ω, then for any choice of an element ẋγ in X (u̇,Mt_(γ+1)), γ <15

cf(κt), we have that the sequence 〈ẋγ : γ < cf(κt)〉 converges to a unique16

point (that is, X (u̇,Mt) = {ẋ(u̇,Mt)}).17

We can think of Lemma 3.3 as a generalization of Lemma 3.1 and we18

use it in the next to lift (?) up to higher levels.19

Lemma 3.4. If (?)s holds for every s ∈ T with t ( s, then (?)t holds.20

Proof. The case when κt has countable cofinality is straightforward by se-21

quential compactness. Thus let us assume κt has uncountable cofinality. Now22

fix a countable family W ⊆ u̇ ∩Mt. We want to prove that 1 forces “every23

neighborhood around ẋ(u̇,Mt) contains an element of A(u̇,W) ∩Mt”. So,24

pick any ḃ ∈ Ḃ such that 1 
 ḃ ∈ ẋ(u̇,Mt).25

The increasing family 〈Mt_(γ+1) : γ < cf(κt)〉 unions up to Mt, so by26

the argument preceding this lemma for any choice for ẋγ in X (u̇,Mt_(γ+1)),27

γ < cf(κt), the sequence 〈ẋγ : γ < cf(κt)〉 converges to ẋ(u̇,Mt). By ccc and28

because cf(κt) > ω, 1 
 “ḃ ∈ ẋγ for all but fewer than cf(κt)-many γ’s”.29

Take any large enough γ so that W ∈Mt_(γ+1) and 1 
 ḃ ∈ ẋ(u̇,Mt_(γ+1)).30

Case One. cf(κt_(γ+1)) > ω.31

Lemma 3.3 implies that ẋγ = ẋ(u̇,Mt_(γ+1)). Next, (?)t_(γ+1) implies32

that there is ȧγ ∈ A(u̇,W)∩Mt_(γ+1) ⊆ A(u̇,W)∩Mt such that 1 
 ȧγ ⊆∗ ḃ,33

as desired.34

Case Two. cf(κt_(γ+1)) = ω.35
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Fix any condition q ∈ P. Let L̇ be a P-name for a subset of ω such1

that 1 
 “〈ẋ(u̇,Mt_(γ+1_n)) : n ∈ L̇〉 converges to ẋγ”. Choose a large2

enough n ∈ ω and a condition p < q such that W ∈ Mt_(γ+1_n) (hence3

W ⊆ Mt_(γ+1_n)) and p 
 ḃ ∈ ẋ(u̇,Mt_(γ+1_n)). Because κt_(γ+1_n) has4

uncountable cofinality (2.3.(6)) we can apply (?)t_(γ+1_n) and repeat the5

arguments of Case One to get ȧγ ∈ A(u̇,W) ∩Mt_(γ+1_n) such that p 
6

ȧγ ⊆∗ ḃ. Since this applies for every q, we have proved that there is ȧγ ∈7

A(u̇,W)∩Mt_(γ+1_n) ⊆ A(u̇,W)∩Mt such that 1 
 ȧγ ⊆∗ ḃ. This concludes8

Case Two as well as the proof of the lemma.9

Now we prove our main result.10

Proof of Main Theorem 1.2. Fix a large enough cardinal κ such that max11

{|P|, |u̇|} ≤ κ and κω = κ. All elementary submodels are substructures of12

H(θ) where θ = 2κ. From � and GCH we can get a tree Tκ as in Subsection13

2.3 so that for every maximal node t ∈ Tκ, {u̇, Ḃ,P} ⊆Mt.14

Now we begin with the induction over rkTκ . For the base case rkTκ(t) = 1,15

we have that Mt has cardinality ω1 and by Lemma 3.1 we have our definition16

of ẋ(u̇,Mt) which is in the radial closure of ω and satisfies (?)t. Now, Lemma17

3.4 implies that the induction holds all the way up to t = ∅. We claim18

that ẋ(u̇,M∅) is the u̇-limit and is in the radial closure of ω. In fact, this19

follows from (?)∅ and the fact that u̇ ⊆ M∅. That is, if ḃ ∈ u̇ ∩ ḂX is20

any neighborhood of ẋ(u̇,M∅) (a member of ẋ(u̇,M∅)) then 1 forces that ḃ21

almost contains an element of A(u̇, {ḃ}) ∩M∅. To see that ẋ(u̇,M∅) ∈ ω(r)
22

note that it is the limit point of the sequence 〈ẋα : α < cf(|M∅|)〉 for any23

choice of ẋα in X (u̇,Mα+1) (see Remark 3.1).24

4 Products and the Pseudoradial Number25

pse26

In this section we analyze how weak pseudoradiality interacts with the car-27

dinal pse. We prove Theorems 1.1 and 1.3 towards the end of this section.28

We may assume spaces are 0-dimensional because of Theorem 2.2, so we29

work on 2κ instead of [0, 1]κ.30

In the following we slightly modify an important result by Bella, Dow31

and Tironi. We include the proof for the sake of completeness.32
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Lemma 4.1. Suppose that a compact space X cannot be mapped onto 2pse
1

and that pse is regular. Then there is λ < pse and a sequence {Hn : n ∈ ω}2

of non-empty closed Gλ-sets in X that forms a π-net for some point x ∈ X.3

Proof. Suppose that the statement fails. We follow the induction as in [2].4

Start with a countable family {H(n, 0) : n ∈ ω} of pairwise disjoint closed5

subsets of X. Inductively we will choose an independent family {Bµ : µ <6

pse} of clopen sets of X (i.e. a family of clopen sets B such that for any finite7

subcollection A0, . . . , An, B0, . . . , Bm ∈ B, the set (
⋂
i≤nAi)∩ (

⋂
i≤mX \Bi)8

is clopen) and closed sets {H(n, µ) : µ < pse}, n ∈ ω, such that for each9

µ < pse, H(n, µ+ 1) is set equal to either H(n, µ) ∩ Bµ or H(n, µ) \ Bµ. If10

µ is limit, set H(n, µ) =
⋂
β<µH(n, β). Also choose σµ ∈ Fn(µ, 2), a finite11

partial function from µ to 2, such that the following formula (�µ) holds12

(�µ) for all τ ∈ Fn(µ, 2) such that σβ = σµ for each β ∈ dom(τ)13

(|{n ∈ ω : H(n, µ+ 1) ⊆ Bσµ ∩ (Bτ ∩Bµ)}| = ℵ0 and14

|{n ∈ ω : H(n, µ+ 1) ⊆ Bσµ ∩ (Bτ \Bµ)}| = ℵ0).15

Here, if τ ∈ Fn(µ, 2) set Bτ =
⋂
α∈dom(τ)B

τ(α)
α , where B

τ(α)
α = Bα if16

τ(α) = 1 and B
τ(α)
α = X \Bα if τ(α) = 0.17

Suppose we have constructed the sets {H(n, µ) : n ∈ ω} and {Bα : α <18

µ}. We have to find Bµ and H(n, µ+ 1) for each n ∈ ω. By the assumption19

above for each α < µ, H(n, µ) is either contained in, or disjoint from Bα.20

For α < µ let Yα = {n ∈ ω : H(n, µ) ⊆ Bα}. By (�µ) each Yα is infinite.21

Let Yµ be the Boolean subalgebra of P(ω) generated by {Yα : α < µ}. The22

Stone space of Yµ/fin, S(Yµ/fin), is a compactification of ω, hence it is the23

image of the remainder ω∗ = βω \ ω under the natural map, namely f .24

Apply Zorn’s Lemma to C = {K : K ⊆ ω∗ is closed and f � K is onto} to25

find a closed Kµ that is ⊇-minimal. That is, fµ = f � Kµ is an irreducible26

map from Kµ onto S(Yµ/fin).27

In the following we find Bµ. Let Fµ be the filter of those A ⊆ ω such28

that Kµ is contained in A∗. Define Hµ to be the intersection of the family29

{cl(
⋃
{H(n, µ) : n ∈ A}) : A ∈ Fµ} (in essence, Hµ is the non-empty set of30

the Kµ-limits of the H(n, µ)’s).31

We claim that there is a clopen B in X such that Kµ∩ (ZB)∗ 6= ∅, where32

ZB = {n : B splits H(n, µ)} (S splits A means that both A ∩ S and A \ S33

are non-empty). Once proved our claim we will let Bµ = B. Assume towards34

a contradiction that for each clopen B, (ZB)∗ misses Kµ which is the same35

as saying that ZB is in the dual ideal of Fµ. By the assumption that the36

collection {H(n, µ) : n ∈ ω} is not a π-net for any point x ∈ X, for each x37
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in Hµ choose a clopen neighborhood Bx of x that contains no H(n, µ). By1

compactness, let Bx1 , Bx2 , . . . , Bxm be a finite cover of Hµ consisting of such2

Bx’s. Then there is an A in Fµ such that none of Bx1 , . . . , Bxm splits H(n, µ)3

for any n ∈ A (otherwise if there is i ≤ m such that Bxi splits H(n, µ) for4

all n ∈ A, then A = ZBxi ∈ Fµ, which is not possible). However, one of the5

Bxi ’s must hit at least one of the H(n, µ)’s for n ∈ A but this means that6

one of those H(n, µ) is contained in one of those Bxi . This is the desired7

contradiction.8

Now that we have found Bµ, we find σµ. Observe that Kµ ∩Zµ is clopen9

relative to Kµ hence fµ[Kµ ∩ Zµ] has interior in S(Yµ/fin). This implies10

that there is σµ ∈ Fn(µ, 2) such that the closure of the set Yσµ :=
⋂
{Yα :11

σµ(α) = 1}∩
⋂
{ω\Yα : σµ(α) = 0} in S(Yµ/fin) is contained in fµ[Kµ∩Zµ].12

This implies that Kµ is disjoint from the closure of Yσµ \Zµ in ω∗, and as a13

consequence of this fact, for all Y ∈ Yµ, if Y ∩Yσµ is infinite, Y ∩ (Yσµ ∩Zµ)14

is also infinite.15

Let’s now find H(n, µ + 1), for each n ∈ ω. Set Jµ = {β : σβ = σµ}.16

By inductive assumption, {Yβ ∩ Yσµ : β ∈ Jµ} is an independent family on17

Yσµ . To see this, take any τ ∈ Fn(Jµ, 2) and let µ′ = max dom(τ), µ′ < µ.18

Then the formula |Yτ ∩ Yσµ | = ℵ0 follows from the relevant clause (�µ′)19

(depending upon the value of τ(µ′)). In addition, {Yβ ∩ (Yσµ ∩Zµ) : β ∈ Jµ}20

is a non-maximal independent family (because µ < pse ≤ s ≤ i) on Yσµ∩Zµ,21

so we can choose Y ⊆ Yσµ∩Zµ such that {Yβ : β ∈ Jµ}∪{Y } is independent22

on Yσµ ∩ Zµ. Set H(n, µ + 1) to be H(n, µ) ∩ Bµ if n ∈ Y , H(n, µ) \ Bµ if23

n ∈ Zµ \ Y , or H(n, µ) if n /∈ Zµ. Finally redefine Bµ to be Bµ ∩Bσµ . This24

completes the induction.25

To finish, observe that, by the pressing down lemma, there would be pse-26

many µ with the same value for σµ and this would result on an pse-sized27

independent family of clopen subsets of X. Then X would map onto 2pse,28

contradiction.29

Definition 4.2. We say that a subset A is Gλ-dense in its closure if for30

every Gλ-set H ⊆ A, A ∩H 6= ∅.31

Note that every Gλ-set contains a closed Gλ-set. Also it can be easily32

checked that if A is a radially closed subset of a sequentially compact space,33

then A is Gδ-dense in its closure.34

For a cardinal κ, κ− = κ if κ is limit, otherwise κ− is the predecessor of35

κ.36
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Lemma 4.3. Let X be a compact weakly pseudoradial space which cannot be1

mapped onto 2pse. Suppose that A ⊆ X is radially closed with λ = λ(A,X) ≥2

pse− and assume pse is regular. Then, A is Gγ-dense in A for each γ ≤ λ.3

Proof. Since a Gγ set is also Gη when γ ≤ η, it suffices to prove the result4

for γ = λ = λ(A,X). Let H be a closed Gλ-set in A. We can get a sequence5

{Wα : α < λ} of closed sets such that Wα is the intersection of at most6

|α| · ℵ0-many open sets and the sequence intersects down to H. Let us7

note that H has no isolated points, otherwise there would be a sequence of8

elements in A converging to such points, contradicting radial closedness. In9

particular, H is infinite.10

The set H inherits from X compactness and cannot be mapped onto11

2pse. By Lemma 4.1 applied to H, there is a collection {Hn : n ∈ ω} of12

closed Gγ-sets in H, for some γ < pse, that forms a π-net around a point13

x ∈ H. Since γ ≤ pse− ≤ λ, each set Hn is a closed Gλ-set in H. For14

each n ∈ ω, we can choose a collection of closed sets {Vα(n) : α < λ} in A15

whose intersection with H is Hn and Vα(n) is the intersection of at most16

|α| · ℵ0 open sets. For n ∈ ω and α < λ, define W n
α = Wα ∩ Vα(n). By the17

minimality of λ, W n
α ∩ A 6= ∅, so we choose a point x(α, n) in W n

α ∩ A, for18

each α < λ, n ∈ ω.19

Pick an ultrafilter u on ω such that x is the u-limit of the sequence20

{Hn : n ∈ ω}. Let xuα denote the u-limit of the set {x(α, n) : n ∈ ω}. As X21

is weakly pseudoradial, the radial closure of {x(α, n) : n ∈ ω} is closed and22

we are assuming that A is radially closed, so xuα is in A.23

It is easy to see now that {xuα : α < λ} converges to x, therefore x ∈ A.24

Thus, H ∩ A 6= ∅ as claimed.25

For Theorem 1.3 we need the following lemma. The authors apologize if26

the corresponding reference is missing; a proof is given.27

Lemma 4.4. If X and Y are compact spaces that do not map onto [0, 1]κ,28

then neither does the product X × Y .29

Proof. Towards a contradiction assume that f is a continuous function from30

X × Y onto [0, 1]κ. We can pass to a closed subset F of X × Y so that31

f [F ] = {0, 1}κ and f � F is irreducible. Recall that every relatively open32

subset of F contains the full preimage of some non-empty open subset of33

2κ.34

Denote by πX the canonical projection from X × Y to X. Consider the35

closed subset πX [F ] of X. By Theorem 2.2 we can choose x ∈ πX [F ] so that36
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λx = πχ(x, πX [F ]) < κ. Let {Uα : α < λx} be a family of open subsets1

of X so that {Uα ∩ πX [F ] : α < λx} is a relative local π-base at x. For2

each α, let F [Uα] = F ∩ (Uα × Y ). Choose a basic clopen [σα] ⊆ 2κ so that3

Fσα = F ∩ f−1([σα]) is contained in F [Uα]. Choose any ultrafilter U on λx4

that extends the neighborhood trace of x on the family {Uα : α ∈ λx}. That5

is, for each open x ∈ U ⊆ X, the set {α < λx : Uα ⊆ U} is an element of6

U .7

Now let HU be the set of all U -limits of the family {Fσα : α < λx}. In8

other words, z ∈ HU if and only if for each open z ∈ U ×W ⊆ X × Y , the9

set {α : Fσα ∩ (U ×W ) 6= ∅} is in the filter U , or equivalently, for all I ∈ U ,10

z is in the closure of
⋃
{Fσα : α ∈ I}. Note that HU ⊆ F since F is closed,11

and even more specifically, HU is a subset of Fx = F ∩ ({x} × Y ).12

Let J be the set of indices κ \
⋃
{dom(σα) : α < λx} and let πJ denote13

the projection of 2κ onto 2J . Consider the set (πJ ◦ f)[HU ] ⊆ 2J . This set14

is nowhere dense in 2J since {x} × Y does not map onto 2κ. Then choose15

a non-empty clopen [τ ] ⊆ 2J such that [τ ] ∩ (πJ ◦ f)[HU ] is empty. Now16

consider [τ ] as a subset of 2κ (same as π−1J ([τ ])). For each α < λx, [τ ]∩ [σα]17

is not empty. Also f−1([τ ∪ σα])∩ F is a subset of Fσα . The set of U -limits,18

Hτ,U , of the family {f−1([τ ∪ σα]) ∩ F : α < λx} is a non-empty subset19

of HU . Clearly f [Hτ,U ] ⊆ [τ ] and hence (πJ ◦ f)[Hτ,U ] is non-empty. This20

contradicts that (πJ ◦ f)[HU ] ∩ [τ ] is empty.21

Proof of Theorem 1.1. The forward implication is immediate. Now let us22

assume that X cannot be mapped onto 2pse and towards a contradiction23

suppose that A is a radially closed non-closed subset of X. Consider a24

closed Gλ subset H of A \ A with λ minimal. Let {Wα : α < λ} be the25

descending sequence of closed sets such that Wα is equal to the intersection26

of at most |α| · ℵ0 many open sets and H equals the intersection.27

If pse = ℵ1, by Šapirovskǐı’s Theorem 2.2 there is a point x in H that has28

countable π-character. Let {Hn : n ∈ ω} be a local π-net for x where each29

Hn is a closed Gδ-set in H. Choose any ultrafilter u on ω so that x is the30

u-limit of the sequence {Hn : n ∈ ω}. Then we can simply choose Gδ-sets,31

Zn, so that Zn∩H = Hn. For each α < λ and n ∈ ω, choose a point a(α, n)32

in Zn ∩Wα. Let xα denote the u-limit of the set {a(α, n) : n ∈ ω}. Since X33

is weakly pseudoradial and A is radially closed then xα is in A. It is easy to34

check that {xα : α < λ} converges to x, contradicting A is non-closed.35

If pse = ℵ1, as X is sequentially compact, the cofinality of λ is uncount-36

able. In particular, λ ≥ ω1 = pse−, therefore Lemma 4.3 applies. The set A37

is Gλ-dense in A and must meet H, contradicting that A is non-closed.38
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Proof of Theorem 1.3. By Theorem 1.1 the spaces X and Y cannot be1

mapped onto 2pse. By Lemma 4.4, X×Y cannot be mapped onto 2pse either.2

Since we are assuming that X × Y is weakly pseudoradial, Theorem 1.13

applies again so the product is pseudoradial.4
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