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Abstract. We continue the study, started by P. Koszmider, of a class of

Boolean algebras, the so called T -algebras. We prove the following.

(1) All superatomic Boolean algebras belong to this class.
(2) This class is contained properly in Koppelberg’s class of minimally gen-

erated Boolean algebras.

(3) The existence of an Efimov T -algebra (i.e., a T -algebra whose Stone
space is infinite and contains no converging sequence and no copy of βω)

implies a negative answer to Scarborough-Stone’s problem.
(4) There is an Efimov T -algebra of countable tightness in the generic ex-

tension obtained by a finite support iteration of length ω2 of Hechler’s

poset over a model of CH.

1. Introduction

This paper focuses on the study of T -algebras (a class of Boolean algebras which
was introduced by P. Koszmider in [22]) and specially on their conection with
Efimov’s problem: is there an infinite compact Hausdorff space which contains no
infinite converging sequence and no copy of βω, the Stone-Čech compactification
of the integers? Such a space will be called an Efimov space. An Efimov space
is clearly not sequential and so one which has countable tightness is an example
of a Moore-Mrówka space, i.e., a countably tight compact space which fails to be
sequential.
T -algebras were introduced and developed in [22] as a special method of building

minimally generated Boolean algebras [21] with a generating family indexed by a
tree. Koszmider notes that T -algebras have the very special feature of presenting a
natural correspondence between the maximal branches of the underlying tree and
the ultrafilters of the Boolean algebra generated. Minimally generated Boolean al-
gebras have their origins in Fedorchuk’s method of resolutions [12] and have been
utilized many times to solve fundamental problems exploring the connections be-
tween countable tightness, hereditary density, the character, and the abundance or
absence of converging sequences in compact spaces (see [13, 5, 24, 18] for excellent
examples).

All superatomic Boolean algebras are minimal ([21]) and are also T -algebras
(see Proposition 4.1). However we produce the first example of a minimal Boolean
algebra which is not a T -algebra in Theorem 4.2. Minimally generated Boolean
algebras have a special connection to Efimov’s problem since Koppelberg ([21])
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showed that their Stone spaces can not contain βω. In fact, the algebra has no
uncountable independent family, which is to say the free algebra on ω1 generators
cannot be embedded as a subalgebra of a minimally generated Boolean algebra.
We establish another omitting subalgebra result by showing that the Stone space
of an Efimov T -algebra will not map onto the product space (ω1 + 1) × (ω + 1)
(see Theorem 5.4). This is intended as an illustration of an obstruction in possible
inductive constructions of Efimov T -algebras.

Let us recall that the cardinal s is the least cardinality of a splitting family of
subsets of ω and that d (resp., b) is the least cardinality of a dominating (resp.,
unbounded) family of functions from ω to ω (see [10]).

One of the original motivations for the introduction of T -algebras is that Fe-
dorchuk’s classical example of a compact S-space from ♦ (see [13]) is a T -algebra.
This space is also an Efimov space of countable tightness. It was, along with
Ostaszewski’s space, the earliest example of the consistency of the existence of a
Moore-Mrówka space. The main result of the paper (in section 6) is to establish
that in the standard Hechler model for b = c = ω2, which is obtained by a finite
support iteration of a ccc poset adding a dominating real, there is an Efimov T -
algebra. There are two additional special properties of this example. In the first
place, its Stone space has countable tightness, and so is also a Moore-Mrówka space.
The proper forcing axiom, PFA, implies that b = c = ω2 and that Moore-Mrówka
spaces do not exist (see [2]). While it is not known if there is a ZFC example of an
Efimov space, it is evident that PFA implies they do not have countable tightness.

Our space is the first example of an Efimov T -algebra in a model of b > ω1. It is
constructed in the same manner as the example in [22, Theorem 4.7] which is done
in the usual Cohen model. The second special property of our example is that the
height of the tree is only ω1 (as it is in the Cohen model).

The character of an ultrafilter on a T -algebra is bounded by the cardinality of the
associated branch (Corollary 3.7). In a topological space, any point with character
less than p which is a limit point of a countable set will have sequences converging
to it (see Proof that p ≤ pχ on page 130 of [10]). Therefore in models of Martin’s
Axiom, for example, the minimum height of an Efimov T -algebra will be c. In fact,
if we denote by h the distributivity degree of the Boolean algebra P(ω)/ fin (see
[1]), it can be shown (but this will be material for a subsequent paper) that the
minimum height of an Efimov T -algebra is at least h and so can be greater than
p. Analysis of the minimum height led to the paper [9] where it is shown that the
assumption b = c implies the existence of an Efimov T -algebra (of height c and
uncountable tightness). We expect to explore restrictions on the possible heights
of Efimov T -algebras in a subsequent paper, for example, we have established that
in some models of h = b < s, such as [3], there is no Efimov T -algebra of height h.

In Section 4 we show that the existence of an Efimov T -algebra implies a nega-
tive answer to the celebrated Scarborough-Stone problem. The Scarborough-Stone
problem asks if the product of sequentially compact spaces is necessarily countably
compact. It is interesting that this problem, like the Efimov space problem, is
also open in ZFC. The Scarborough-Stone problem has been resolved under b = c
by van Douwen [10] and in special models of b < d by Nyikos and Vaughan [25].
Efimov spaces are known to exist in a variety of models. The hypothesis b = c
mentioned above and the hypotheses cf([s]ω) = s plus 2s < 2c (see [14, 15, 8, 6])
may cover all known cases. However, the existence of Efimov T -algebras is not
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known in all such models. An interesting plausible conjecture, which would be new
for both problems, is that d = ω1 (even for specific models) may imply that there
is an Efimov T -algebra of height ω1.

The structure of this article is as follows, section 3 presents material on T -
algebras that will be used in later sections. Section 4 is dedicated to three examples.
The fifth section deals with two consequences of the existence of an Efimov T -
algebra (i.e., a T -algebra whose Stone space is an Efimov space): (1) Scarborough-
Stone’s problem would have a negative answer and (2) the Stone space of such an
algebra does not map continuously onto the product (ω1 + 1) × (ω + 1). Finally,
section 6 establishes that it is consistent with ¬CH that Efimov T -algebras (of
countable tightness) do exist.

2. Notation and Definitions

For a function f and a set S, the symbol f � S will denote the restriction of f
to S.

If t is a function whose domain, dom(t), is an ordinal, then we define, for any i,
t_i := t ∪ {(dom(t), i)}. Equivalently, if α is the domain of t, then t_i is the only
function satisfying dom(t_i) = α+ 1, (t_i) � α = t and (t_i)(α) = i.

Given an ordinal ε, we will denote by 2<ε the collection of all functions whose
domain is an ordinal < ε and whose image is a subset of {0, 1}. For all s, t ∈ 2<ε we
define s ≤ t iff t extends s, i.e., s ⊆ t. This relation turns out to be a tree ordering
(as defined in [23, Section III.5]) for 2<ε. Note that any subset of 2<ε with the tree
ordering described above is itself a tree. A similar discussion applies to 2≤ε.

Definition 2.1. If t ∈ 2<ε and dom(t) = α+ 1, we let t∗ := (t � α)_(1− t(α)).

Note that if t and α are as in the previous definition, then t � α = t∗ � α, but
t(α) 6= t∗(α).

A branch in a tree T is a maximal chain in T . The height of a node t ∈ T will
be represented by ht(t, T ) or by ht(t) when the tree is clear from the context.

To simplify notation, all Boolean algebras discussed in this paper are assumed to
be subalgebras of the power set of some set Z. For similar reasons, −a will denote
the complement of a ⊆ Z with respect to Z.

We follow closely the notation and terminology used in [20], except for some
minor details. For example, we use St(A) to denote the Stone space of a Boolean
algebra A. Also, the collection of all clopen subsets of a topological space X will
be denoted by CO(X).

A Boolean space is a compact T2 zero-dimensional topological space; equiva-
lently, any space homeomorphic to the Stone space of a Boolean algebra.

All topological notions should be understood as in [11].

3. T -Algebras

Let A be a Boolean subalgebra of B. We say that B is minimal over A (in
symbols, A ≤m B) if no proper subalgebra of B contains A as a proper subset.
This notion was introduced in [21] by S. Koppelberg, where she also proves that
A ≤m B iff (i) B is the Boolean algebra generated by A ∪ {x}, for some x ∈ B,
and (ii) at most one ultrafilter of A is contained in two different ultrafilters of B
(see [21, Lemma 1.2]). When x /∈ A, there is exactly one ultrafilter u with this
characteristic and, in this case, we will say that x is minimal for (A, u).
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A Boolean algebra A is minimally generated if there exist an ordinal ε and a
family {Aα : α < ε} of subalgebras of A such that (1) A0 is the two-element
algebra; (2) if α + 1 < ε, then Aα ≤m Aα+1; (3) if α < ε is a limit ordinal, then
Aα =

⋃
ξ<αAξ; and (4)

⋃
α<εAα = A. Informally speaking, a Boolean algebra is

minimally generated if one can construct it by small, indivisible steps.
In order to establish a topological translation of minimality some concepts are

needed. First, given two Boolean spaces, X and Y , we will say that Y is a simple
extension of X if there is a continuous map f : X → Y in such a way that, for some
point y ∈ Y , the fiber f−1[y] contains exactly two points while all sets of the form
f−1[x], x ∈ Y \ {y}, are singletons. Then A ≤m B iff St(B) is a simple extension
of St(A) and, moreover, X is a simple extension of Y iff CO(Y ) is minimal over a
subalgebra which is isomorphic to CO(X).

Now the second concept: a simplistic system is an inverse system, 〈Xα, fαβ :
α < β < ε〉, of Boolean spaces where (1) X0 is a singleton, (2) Xα+1 is a simple
extension of Xα, whenever α + 1 < ε, and (3) if γ < ε is a limit ordinal, then Xγ

is homeomorphic to the inverse limit of 〈Xα, fαβ : α < β < γ〉. A topological space
will be called simplistic if it is homeomorphic to the inverse limit of a simplistic sys-
tem. Straightforward arguments show that X is simplistic iff CO(X) is minimally
generated and vice versa, a Boolean algebra A is minimally generated iff St(A) is
simplistic.

It is proved in [21, Example 2.4]) and [21, Corollary 1.7], respectively, that (1)
the free Boolean algebra on ω1 generators is not minimally generated and (2) every
subalgebra of a minimally generated Boolean algebra is itself minimally generated.
Hence no simplistic space maps onto the topological product 2ω1 and so we obtain:

Remark 3.1. No simplistic space contains a copy of βω.

The following notions appeared first in [22] (recall Definition 2.1).

Definition 3.2. Let ε be an ordinal. A set T ⊆ 2<ε will be called an acceptable
tree if the following holds

(1) The domain of each member of T is a succesor ordinal.
(2) For all t ∈ 2<ε, t ∈ T iff t∗ ∈ T .

Definition 3.3. Let T be an acceptable tree and let A be a Boolean algebra. A is
a T -algebra if

(1) There is a function a : T → A whose range, {a(t) : t ∈ T}, generates A (it
will be a common practice to write at instead of a(t)).

(2) For each t ∈ T , at is minimal for (At, ut), where At denotes the Boolean
algebra generated by {as : s < t} in A and ut is the filter generated by
{as : s < t} in At.

(3) For any t ∈ T we have a(t∗) = −at. Equivalently, s_0 ∈ T implies as_0 =
−as_1.

Naturally, a collection {at : t ∈ T} as the one described in the definition witnesses
that A is a T -algebra.

There are two comments we need to make. First, we are commiting an abuse of
notation: {as : s < t} really means {as : s ∈ T ∧ s < t}. Secondly, it is implicit
in condition (2) that {as : s < t} has the finite intersection property and that ut
turns out to be an ultrafilter in At because it contains all its generators.
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To simplify things we will adopt the following convention: the phrase “B is a
T -algebra” means that there is an acceptable tree T such that B is a T -algebra.

When we refer to the height of a T -algebra A, we mean the minimum height of
a tree T witnessing that A is a T -algebra.

Any T -algebra is minimally generated as proved in [22, Fact 2.10 on p. 3081].

Lemma 3.4. Let T be an acceptable tree and let {at : t ∈ T} be a set of generators
for the Boolean algebra A. Then condition (2) in Definition 3.3 holds iff for each
t ∈ T we have that

(2′) {as : s < t} has the finite intersection property and
(2′′) at − as ∈ At for all s < t.

Proof. Assume that condition (2) holds. Only (2′′) needs an argument, so let us
start by fixing s < t. Given that at is minimal for (At, ut), we apply [22, Proposition
2.2] to obtain ut = {x ∈ At : x ∩ at /∈ At}. Since ut is an ultrafilter in At and
as ∈ ut, we get −as /∈ ut, i.e., (−as) ∩ at ∈ At.

Suppose now that (2′) and (2′′) hold and let At and ut be as defined in condition
(2). Then ut is an ultrafilter in At. The set I := {x ∈ At : x∩at ∈ At} is, according
to [21, Lemma 1.1], an ideal in At. Since the dual filter of I is F := {x ∈ At :
(−x) ∩ at ∈ At} and ut ⊆ F (as a consequence of (2′′)), we have that ut = F . In
particular, F is an ultrafilter and therefore, for each x ∈ At, x ∈ F iff −x /∈ F ,
i.e., x ∈ ut iff x∩ at /∈ At. So we invoke [22, Proposition 2.2] to conclude that at is
minimal for (At, ut). �

The following was proved in [22, Lemma 2.8].

Proposition 3.5. Let A be a T -algebra as witnessed by {at : t ∈ T}. Then

(1) For each u ∈ St(A) there is a branch b ⊆ T such that u is the ultrafilter
generated by {at : t ∈ b} in A.

(2) If b is a branch in T , the set {at : t ∈ b} generates an ultrafilter in A.

To prove the first part of this proposition one constructs, by transfinite induction,
a branch as follows: we start by selecting the only node on level 0 of T , let us say,
t0 which satisfies a(t0) ∈ u and at stage α we select, if possible, an upper bound for
{tξ : ξ < α} on level α, let us say, tα in such a way that a(tα) ∈ u. This argument
and Stone’s representation theorem ([20, Theorem 7.8]) prove the following:

Remark 3.6. Let X be a Boolean space whose clopen algebra is a T -algebra as
witnessed by {at : t ∈ T} and let b be a branch in T . If t ∈ T satisfies⋂

{as : s ∈ b} ∩
⋂
{as : s ≤ t} 6= ∅,

then {s ∈ T : s ≤ t} ⊆ b.

Our next result will be used several times.

Corollary 3.7. Let X be a Boolean space for which CO(X) is a T -algebra as
witnessed by {at : t ∈ T}. Then:

(1) For each x ∈ X there is a branch b ⊆ T such that the following three
equivalent conditions hold.
(a) The ultrafilter {c ∈ CO(X) : x ∈ c} is generated by {at : t ∈ b}.
(b) {

⋂
{at : t ∈ F} : F ∈ [b]<ω \ {∅}} is a local base for X at x.

(c)
⋂
{at : t ∈ b} = {x}.
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(2) If b is a branch in T ,
⋂
{at : t ∈ b} is a singleton.

Proof. Since X is a Boolean space, the map f : X → St(CO(X)) given by

f(z) := {c ∈ CO(X) : z ∈ c}
is a homeomorphism.

By Proposition 3.5, T has a branch b such that f(x) is the ultrafilter generated
by {at : t ∈ b}. Thus we get condition 1-(c) because

⋂
f(x) = {x}.

To prove that all conditions listed in (1) are equivalent notice that (b) is a
consequence of (a) because X is zero-dimensional and that (b) implies (c) because
X is Hausdorff. To finish the argument let us assume (c) and let x ∈ c ∈ CO(X).
Then

⋂
{at : t ∈ b} ⊆ c and since X is compact, there is a finite set F ⊆ b so that

{at : t ∈ F} ⊆ c. Therefore we obtain (a).
To prove (2), observe that if we let u be the ultrafilter generated by {at : t ∈ b},

then there is z ∈ X with f(z) = u and so z is the only element of
⋂
{at : t ∈ b}. �

Lemma 3.8. Let X be a Boolean space for which CO(X) is a T -algebra as wit-
nessed by {at : t ∈ T}.

(1) If s, t ∈ T are comparable and W :=
⋂
{ar : r ≤ s∗}, then either at and W

are disjoint or W ⊆ at.
(2) Assume that 〈tn : n ∈ ω〉 is an increasing sequence in T and that for each

n ∈ ω we have {xn, yn} ⊆
⋂
{ar : r ≤ t∗n}. Then

{xk : k ∈ ω} ∩ {yk : k ∈ ω} 6= ∅.
Proof. To prove (1) let us assume that W ∩ at 6= ∅. Fix a branch b in T satisfying
s, t ∈ b. Note that T ′ := b ∪ {r∗ : r ∈ b} is an acceptable tree and B, the
Boolean algebra generated by {ar : r ∈ b} in CO(X), is a T ′-algebra. Moreover,
d := {r ∈ T : r ≤ s∗} is a branch in T ′ and therefore {ar : r ∈ d} generates an
ultrafilter in B (Proposition 3.5) which will be denoted by u.

Our assumption implies that {at} ∪ {ar : r ∈ d} has the finite intersection
property, so at ∈ u and, in particular, there is a finite set F ⊆ d such that

W ⊆
⋂
{ar : r ∈ F} ⊆ at.

Now let us prove the second part of our Lemma. Set S := {xk : k ∈ ω} and
an :=

⋂
{as : s ≤ tn} for each integer n. Note that our hypotheses imply that if

m ∈ ω, then S \ {xk : k ≤ m} ⊆ am and therefore {an ∩ S : n ∈ ω} is a decreasing
sequence of nonempty closed subsets of X. Let z ∈ S ∩

⋂
{an : n < ω} and let b be

a branch in T such that
⋂
{as : s ∈ b} = {z} (Proposition 3.5).

We will show that z ∈ {yn : n ∈ ω} with the aid of Proposition 3.7, so let F be
a finite subset of b. Then there is an integer m such that xm ∈

⋂
{as : s ∈ F} and,

on the other hand, an straightforward application of Remark 3.6 produces tm ∈ b.
Hence

⋂
{as : s ≤ t∗m} ⊆ at, for all t ∈ F (part (1) of the Lemma). Which gives

ym ∈
⋂
{as : s ∈ F}. �

4. Examples

It is proved in [21, Example 2.3] that all superatomic Boolean algebras are min-
imally generated. Our next proposition strengthens this result by showing that all
superatomic Boolean algebras are, in fact, T -algebras (see [20, Remark 17.2]).

Recall that a topological space is scattered if every subspace of it has an isolated
point.
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Proposition 4.1. If X is a compact Hausdorff scattered space, then there is an
acceptable tree T for which CO(X) is a T -algebra.

Proof. For each ordinal α let Xα be the set of isolated points of X \
⋃
{Xξ : ξ < α}.

Since X is compact scattered, there exists δ in such a way that X =
⋃
{Xα : α ≤ δ}

and Xδ 6= ∅.
Fix a well-ordering ≺ on X for which α < β ≤ δ, x ∈ Xα, and y ∈ Xβ imply

x ≺ y. Since X is compact, Xδ is finite so let z be the ≺-last element of Xδ (note
that z is actually the ≺-maximum of X). Denote by ε the order type of (X \{z},≺)
and let h : ε→ X \ {z} be an order isomorphism.

Given α ≤ δ and x ∈ Xα \ {z} let us fix Wx, a clopen subset of X, such that
Wx \

⋃
{Xξ : ξ < α} = {x}. Observe that Wz := X \

⋃
{Wx : x ∈ Xδ \ {z}} is

clopen in X and Wz ∩Xδ = {z}.
Let f : ε → 2 be the constant zero function, i.e., f(α) = 0 for all α < ε. Then

T := {(f � α)_i : α < ε and i < 2} is an acceptable tree and T ⊆ 2<ε. For each
α < ε define

a((f � α)_0) := X \Wh(α) and a((f � α)_1) := Wh(α).

Note that if α < ε, then {Wh(α) \
⋃
{Wh(ξ) : ξ ∈ H} : H ∈ [α]<ω} is a local base

for X at h(α); therefore CO(X) is generated by {at : t ∈ T}.
Let α < ε be arbitrary and set t := (f � α)_0. To finish the proof we will show

that conditions (2′) and (2′′) in Lemma 3.4 hold for t. This will suffice because a
simple modification of our argument proves that the same is true for t∗.

Notice that if s ∈ T satisfies s < t, then s = (f � β)_0 for some β < α. Hence
h(α) ∈ as and therefore {ar : r < t} has the finite intersection property. On the
other hand, at− as is compact open and at− as = Wh(β) \Wh(α) so there are finite
sets F ⊆ β+1 and Hξ ⊆ ξ, for each ξ ∈ F , satisfying at−as =

⋃
{Wh(ξ)\

⋃
{Wh(η) :

η ∈ Hξ} : ξ ∈ F}; thus at − as ∈ At. �

Theorem 4.2. There is a minimally generated Boolean algebra which is not a
T -algebra.

Proof. Our strategy is to construct a simplistic system so that the clopen algebra
of its limit is as required in the statement of the theorem.

Enumerate all rational numbers in the Cantor set, 2ω ∩ Q = {qn : n ∈ ω},
and define, by induction, a sequence 〈Zm, gm : m ∈ ω〉 of topological spaces and
mappings so that

(1) Z0 := 2ω,
(2) Zm+1 = Zm ⊕ {(q0,m)}, and
(3) gm : Zm+1 → Zm is continuous, gm � Zm is the identity map, and

gm(q0,m) = q0.

In other words, Zm+1 is obtained from Zm by splitting q0 into two points and
making one of them isolated.

Notice that the sequence we just defined is an inverse system based on simple
extensions. Let Y1 be its limit and let h0 : Y1 → 2ω be the corresponding projection
map (i.e., h0(x) is the 0th coordinate of x).
Y1 is homeomorphic to the subspace (2ω × {ω}) ∪ ({q0} × ω) of the topological

product 2ω × (ω + 1), i.e., Y1 results of adding a converging sequence with limit q0
to the space Y0 := 2ω.
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The process described in the second and third paragraph of this argument applied
to Y1 and q1 (instead of 2ω and q0) produces Y2 and, in general, we obtain an
inverse system 〈Ym, hm : m ∈ ω〉, where each Ym is homeomorphic to the subspace
(2ω×{ω})∪ ({qi : i ≤ m}×ω) ⊆ 2ω× (ω+ 1) and hm collapses the new converging
sequence to a point: hm(qm, i) = (qm, ω) for all i < ω. Let X0 be the limit of this
inverse system.
X0 is homeomorphic to the space obtained by endowing the set 2ω∪((Q∩2ω)×ω)

with the following topology: each (q,m) is isolated and a local base for r ∈ 2ω is
given by all sets of the form

W ∪ ((W ∩Q)× ω) \ F ),

where W is an arbitrary clopen subset of 2ω which contains r and F is a finite set
(moreover, when r /∈ Q one can take F = ∅). For this reason we will assume, for
the rest of the proof, that X0 is actually the space we just described.

Let {(rα,mα) : α < c} be an enumeration of all pairs (r,m) so that

(a) r : 2<ω → Q ∩ 2ω and m : 2<ω → ω.
(b) For all g ∈ 2ω the sequence 〈r(g � n) : n ∈ ω〉 converges.
(c) If f, g ∈ 2ω satisfy f 6= g then

lim
n→∞

r(f � n) 6= lim
n→∞

r(g � n).

For each α < c we will obtain, by transfinite induction, a function gα ∈ 2ω so
that

(*) xα := lim
n→∞

rα(gα � n) /∈ {xξ : ξ < α} ∪Q

and a topology τα for Xα := X0 ∪ {(xξ, 0) : ξ < α} together with mappings fβα,
β < α, in such a way that S := 〈Xβ , fβγ : β < γ < c〉 ends up being a continuous
inverse system which satisfies

(1α) If β < α, then fβα � Xβ is the identity map and fβα(xξ, 0) = xξ whenever
β ≤ ξ < α.

(2α) The sequence eα := {(rα(gα � n),mα(n)) : n ∈ ω} converges to xα in τα.
(3α) τα ∪ {eα ∪ {(xα, 0)}, Xα \ eα} is a subbase for τα+1.

Observe that, according to this prescription, the inverse system is based on
simple extensions. More precisely, at stage α + 1 the point xα is doubled and eα
becomes a converging sequence to the ‘twin’ of xα, namely, (xα, 0).

We only have to explain how to get τα+1 from τα. Condition (c) above implies

that |{xξ : ξ < α}| < c =
∣∣∣{ lim
n→∞

rα(g � n) : g ∈ 2ω
}∣∣∣ and therefore we can find

gα ∈ 2ω satisfying (*). As one can verify, a local base at any given point z ∈ Xα in
τα is given by all sets of the form

(W \
⋃
{eξ : ξ ∈ F}) ∪ ((W ∩ {xξ : ξ ∈ α \ F})× {0}),

where W is a clopen set in X0 containing z and F is an arbitrary finite subset of
α. Therefore, our choice of xα is in complete agreement with (2α). This completes
the induction.

LetX be the limit of S. To prove thatX is simplistic we only need to concatenate
all inverse systems involved in the construction of this space. Hence A := CO(X)
is minimally generated.
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X will be identified with X0 ∪ {(xα, 0) : α < c} in such a way that X0 is a
subspace of X and if α < c, then {{(xα, 0)} ∪ (eα \ F ) : F ∈ [eα]<ω} is a local base
of clopen sets at (xα, 0).

Seeking a contradiction let us assume that {at : t ∈ T} witnesses that A is a
T -algebra for some acceptable tree T . For each t ∈ 2<ω \ {∅} we will inductively
define f(t) ∈ T , q(t) ∈ Q, `(t) ∈ ω, and W (t) ∈ CO(2ω) in such a way that the
following is true for all t and all i < 2.

(1t) f is increasing: f(s) < f(t) whenever s < t.
(2t) f(t∗) = f(t)∗.
(3t) W (t) has diameter < 1/2|t|.
(4t) q(t) ∈W (t) ⊆ a(f(t∗)).
(5t) If s ∈ T and s < f(t_i), then W (t_i) ⊆W (t) ⊆ as.
(5t) a(f(t_i)) ∩W (t) 6= ∅.
(6t) (q(t), `(t)) ∈ a(f(t∗)).

For the base of the induction: let u ∈ T be so that a(u)∩ 2ω 6= ∅ 6= 2ω \a(u) but
2ω ⊆ as for all s < u. Define f(∅_0) = u and f(∅_1) = u∗. Given t ∈ {∅_0, ∅_1},
let q(t) ∈ a(f(t∗)) ∩ Q and `(t) ∈ ω be such that (q(t), `(t)) ∈ a(f(t∗)). Finally,
let W (t) be a clopen subset of the Cantor set whose diameter is less than 1/2 and
such that q(t) ∈W (t) ⊆ a(f(t∗)).

Assume that for some n ∈ ω and for all t ∈ 2≤n we have defined f(t), q(t),
`(t), and W (t) as required. Fix t ∈ 2n and let u0 ∈ T be so that f(t) < u0,
W (t) ∩ a(u0) 6= ∅ 6= W (t) \ a(u0), and W (t) ⊆ as for all s < u0. Set f(t_0) = u0
and f(t_1) = u∗0. As before, for each i < 2 we can find q(t_i), `(t_i), and W (t_i)
satisfying all the requirements and this completes the induction.

Consider the functions q : 2<ω → 2ω ∩Q and ` : 2<ω → ω given by t 7→ q(t) and
t 7→ `(t), respectively. Properties (1t), (2t), and (4t) imply that, for some α < c, we
obtain (q, `) = (rα,mα). Let tn := gα � n for all n ∈ ω. Thus H := {q(tn) : n ∈ ω}
and eα have disjoint closures in X. Also note that conditions (4t) and (6t) give

{q(tn), (q(tn), `(tn))} ⊆
⋂
{as : s < f(tn)} − a(f(tn))

and since {f(tn) : n ∈ ω} is an increasing sequence in T , Lemma 3.8 guarantees
that H ∩ eα 6= ∅. A contradiction. �

Recall that Alexandroff’s double arrow space is the subspace [0, 1] × {0, 1} of
the square [0, 1]× [0, 1] endowed with the topology given by the lexicographic order
(alternatively, split each point x of [0, 1] into two points, x+ and x−, and define a
total order by declaring x− < x+ and using the induced order of [0, 1] otherwise).
By identifying 2ω with the Cantor Middle Third Set, we can consider 2ω × {0, 1}
as a subspace of Alexandroff’s double arrow; this space will be called Alexandroff’s
double arrow on 2ω.

In [19, Example 1], Koppelberg proves that the topological product of 2ω with
Alexandroff’s double arrow on 2ω is not simplistic (she actually uses Alexandroff’s
double arrow, but the same argument works). Since both spaces are simplistic (see
[21, Example 2.1]), this shows that the class of simplistic spaces is not closed under
products. Equivalently, the class of minimally generated Boolean algebras is not
closed under free products.
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Proposition 4.3. There are two acceptable trees, T and T ′, together with two
Boolean algebras, B and B′, such that B is a T -algebra, B′ is a T ′-algebra, and the
free product B ⊕B′ fails to be a T -algebra.

Proof. Let B′ := CO(2ω) and T ′ := 2<ω \ {∅}. For each t ∈ T ′ define

a(t_0) := {f ∈ 2ω : t ⊆ f} and a(t_1) := 2ω \ a(t_0).

According to [22, Example 2.9], {at : t ∈ T ′} witnesses that B′ is a T ′-algebra.
Claim. If X denotes Alexandroff’s double arrow on 2ω and T := T ′ ∪ 2ω+1,

then CO(X) is a T -algebra.
In order to prove the Claim let us define, for each t ∈ T ′, ct := at×{0, 1}. Thus

B′ is isomorphic to the Boolean algebra generated by {ct : t ∈ T ′} in P(2ω×{0, 1}).
Observe that if one identifies 2ω with Cantor’s Middle Third Set in the canonical

way, then each x ∈ 2ω represents a real number in [0, 1] so one can consider the
closed interval [0, x] and, moreover, the intersection 2ω ∩ [0, x]. Keeping this in
mind, define

c(x_0) := ((2ω ∩ [0, x])× {0}) ∪ ((2ω ∩ [0, x))× {1})
and c(x_1) := (2ω × {0, 1}) \ c(x_0).

It is straightforward to verify the following.

(1) {ct : t ∈ T} generates CO(X).
(2) For each x ∈ 2ω: if S := {c(x � n) : 0 < n < ω}, then c(x_0) is minimal

for (Bx, ux), where Bx is the Boolean algebra generated by S and ux is the
filter generated by S in Bx.

Therefore CO(X) is a T -algebra and the Claim is proved.
As we mentioned in the paragraph preceding Proposition 4.3, B ⊕ B′ is not

minimally generated. On the other hand, [22, Fact 2.10 on p. 3081] guarantees
that if S is an acceptable tree, then all S-algebras are minimally generated and so
the proof of the proposition is complete. �

5. Efimov T -Algebras

Let T be an acceptable tree. A T -algebra whose Stone space is an Efimov space
will be called an Efimov T -algebra.

The following is a consequence of Stone’s representation theorem.

Remark 5.1. The existence of an Efimov T -algebra is equivalent to the existence
of a zero-dimensional Efimov space X for which CO(X) is a T -algebra.

As we did before, the phrase “B is an Efimov T -algebra” means that B is an
Efimov T -algebra for some acceptable tree T .

Note that, according to Remark 3.1, a T -algebra is Efimov iff its Stone space
contains no copy of ω + 1.

One of the long-standing problems in Set-Theoretic Topology (it was posed by
C.T. Scarborough and A.H. Stone in 1966) is Scarborough-Stone’s question: Must
every product of sequentially compact spaces be countably compact? As one may
expect, the literature related to this question is vast so we refer the reader interested
in the topic to [27].

The first part of this section will be dedicated to this problem.
First of all we establish some definitions. As usual, ω∗ will denote the collection

of all nonprincipal ultrafilters in ω.
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Now assume that s : ω → X is a sequence in a topological space X and r ∈ ω∗.
A point x ∈ X is an r-limit of s if for each neighborhood U of x we obtain that
{n ∈ ω : s(n) ∈ U} ∈ r. X will be called r-compact if every sequence in X has

an r-limit. Notice that {{s(n) : n ∈ a} : a ∈ r} has the finite intersection property
and therefore when X is compact, all sequences in X have an r-limit. Moreover, if
X is T2, this r-limit is unique.

A straightforward argument shows that r-limits are preserved by continuous
functions, i.e., that if f : X → Y is continuous and s is a sequence in X which has
x as an r-limit, then f(x) is an r-limit of the sequence f ◦ s.
Theorem 5.2. The existence of an Efimov T -algebra implies a negative answer to
Scarborough-Stone’s question.

Proof. We only need to exhibit a family {Xr : r ∈ ω∗} of sequentially compact
spaces such that each Xr is not r-compact because, according to [27, Lemma 2.1],
the topological product of such a family is not countably compact.

Let X be a zero-dimensional Efimov space such that, for some acceptable tree
T , CO(X) is a T -algebra as witnessed by {at : t ∈ T} (Remark 5.1). X possesses
an accumulation point p so we can apply Corollary 3.7 to obtain a branch b ⊆ T
satisfying

⋂
{at : t ∈ b} = {p}. Notice that if b were finite, p would be an isolated

point so b is infinite. Using this fact let us fix an increasing sequence of nodes
{tn : n < ω} ⊆ b.

For each integer n there is a branch bn ⊆ T satisfying {tk : k < n} ∪ {t∗n} ⊆ bn.
According to Corollary 3.7-(2),

⋂
{as : s ∈ bn} contains a single point we will call

wn.
Set W := {wk : k ∈ ω} and note that the equality W ∩

⋂
{as : s < tn}− a(tn) =

{wn} holds for all n < ω. In particular, W is infinite discrete.
For the rest of the proof we will fix r ∈ ω∗.
Let wr be the unique r-limit of the sequence 〈wn : n < ω〉 in X and let br be

a branch in T which satisfies
⋂
{at : t ∈ br} = {wr} (we are using Corollary 3.7).

Denote by Br the Boolean algebra generated by {at : t ∈ br} in CO(X).
The map f : X → St(Br) given by f(x) := {c ∈ Br : x ∈ c} is onto and

continuous. Note that if x ∈ X satisfies f(x) = f(wr), then {at : t ∈ br} ⊆ f(x)
and therefore x ∈

⋂
{at : t ∈ br}, which gives x = wr. On the other hand, the fact

that W is infinite discrete, implies that wr /∈W . These two remarks show that the
sequence 〈f(wn) : n < ω〉 has no r-limit in the subspace Xr := St(Br) \ {f(wr)}.

It remains to show that Xr is sequentially compact. According to [26, Theorem
5.7] we only need to prove that Xr is scattered and countably compact (notice that
Xr is T3).

Let {xn : n ∈ ω} be an infinite subset of Xr. For each n ∈ ω there is yn ∈ X
so that f(yn) = xn. Since X is Efimov, {yn : n ∈ ω} possesses more than one
accumulation point. In particular, {yn : n ∈ ω} accumulates to some y ∈ X \ {wr}
and thus f(y) is an accumulation point of {xn : n ∈ ω} in Xr. Hence Xr is
countably compact. It is worth mentioning that this is the only part of the proof
where being Efimov is used.

One can prove that T ′ := br ∪ {t∗ : t ∈ br} is an acceptable tree and that Br
is a T ′-algebra as witnessed by {at : t ∈ T ′}. Notice that if b′ is a branch in T ′,
then b′ = br or b′ = {s ∈ T ′ : s < t} ∪ {t∗} for some t ∈ br. Therefore (Proposition
3.5), for each y ∈ Xr there exists ty ∈ br so that y is the ultrafilter generated
by {as : s < ty} ∪ {−a(ty)}. We are ready to show that Xr is scattered: let E
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be a nonempty subset of Xr; since br is well-ordered, there exists z ∈ E so that
tz = min{ty : y ∈ E}. By definition, U := {u ∈ St(Br) : −a(tz) ∈ u} is a clopen
subset of St(Br) and our choice of tz guarantees that U ∩ E = {z} so E has an
isolated point. �

Since CO(2ω1) is not minimally generated, it cannot be embedded as a subalge-
bra of any minimally generated Boolean algebra. Our next theorem shows that no
Efimov T -algebra contains a copy of the clopen algebra of (ω1 + 1)× (ω + 1), even
though this Boolean algebra is a T -algebra (Proposition 4.1).

Recall that a continuous mapping between topological spaces is called perfect if
it is closed and all its fibers are compact. Also, a continuous mapping f from X
onto Y is called irreducible if no proper closed subset of X is mapped by f onto Y .

Remark 5.3. Assume that f : X → Y is a continuous closed map.

(1) If f is irreducible and H is a regular closed subset of X, then f [H] is a
regular closed subset of Y .

(2) If f is perfect, S ⊆ Y , and p ∈ clY S, then f−1[p] ∩ clXf
−1[S] 6= ∅.

To prove (1): observe that if U is an open subset of X, then F := X \ (U ∩
f−1[intf [X \U ]]) is closed and f [F ] = Y , which implies that f [U ]∩ intf [X \U ] = ∅.
Therefore

Y \ f [X \ U ] ⊆ f [U ] ⊆ Y \ f [X \ U ].

Hence, since f is a closed mapping, f [U ] is a regular closed subset of Y .
The proof of (2) can be done by contradiction and it is a routine argument so

we omit it.

Theorem 5.4. If X is the Stone space of an Efimov T -algebra, for some acceptable
tree T , then X does not map continuously onto Y := (ω1 + 1)× (ω + 1).

Proof. Stone’s representation theorem guarantees that CO(X) is a T -algebra so let
{at : t ∈ T} be a witness to this fact.

Seeking a contradiction, assume that f : X → Y is continuous and onto.
Let K be a closed subset of X such that f [K] = Y and f � K is irreducible

([11, Exercise 3.1.C-(a)]). Since f � K is a perfect mapping, we apply Remark

5.3 to obtain a point q ∈ K ∩ f−1[{ω1} × ω] such that f(q) = (ω1, ω). Notice
that our choice of q guarantees that if U is a neighborhood of q in X, then the
set {n < ω : (ω1, n) ∈ f [U ∩ K]} is infinite. Fix a branch b ⊆ T for which⋂
{as : s ∈ b} = {q}.
We claim that there are two sequences, {nk : k < ω} ⊆ ω and {tnk : k < ω} ⊆ b,

such that if k < ω, then tnk+1
is the least node in b (recall that b is a well-ordered

subset of T ) for which there is an integer nk+1 > nk satisfying

(ω1, nk+1) ∈ f
[
a(t∗nk+1

) ∩
⋂
{a(tni) : i ≤ k} ∩K

]
and nk+1 is the smallest integer having these properties.

To prove the claim we will use induction. For each x ∈ K ∩ f−1[{ω1}×ω] let bx
be a branch in T with

⋂
{as : s ∈ bx} = {x}. Clearly b 6= bx so, for some sx ∈ b,

we obtain s∗x ∈ bx. Let z ∈ K ∩ f−1[{ω1} × ω] be such that sz is the first element
of {sx : x ∈ K ∩ f−1[{ω1} × ω]}. Thus (ω1,m) ∈ f [a(s∗z) ∩K], for some integer m,
so we let n0 be the least integer satisfying this property and tn0 := sz (notice that
this choice of tn0

works because, according to Corollary 3.7-(1), each t ∈ b is of the
form sx for some x ∈ X \ {q}).
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Now assume that {tni : i ≤ k} and {ni : i ≤ k} have been defined. The fact that
U :=

⋂
{a(tni) : i ≤ k} is an open set in X which contains q implies, as we noticed

before, that there are infinitely many integers ` such that (ω1, `) ∈ f [U ∩K]. An
immediate consequence of this observation is that the set

(?) {sx : x ∈ U ∩K ∩ f−1[{ω1} × (ω \ (nk + 1))]}
is non-empty so there exist w ∈ U ∩K and ` > nk such that sw is the first element
of (?) and f(w) = (ω1, `). Finally, let nk+1 be the least integer such that nk+1 > nk
and (ω1, nk+1) ∈ f [a(s∗w) ∩ U ∩K] and define tnk+1

:= sw.
We are going to establish some notation which will be used throughout the rest

of the proof: denote by I the set {nk : k < ω} and for each n ∈ I define

(i) cn := a(t∗n) ∩
⋂
{a(tk) : k ∈ I ∩ n} (of course, cn0 := a(t∗n0

)),

(ii) W := intY
(⋃

k∈I f [ck ∩K] ∩ (ω1 × {k})
)
,

(iii) Vn := (f � K)−1[W ∩ (ω1 × {n})] = K ∩ f−1[W ∩ (ω1 × {n})], and
(iv) K0 := clK

(⋃
k∈I Vk

)
.

Also, for each t ∈ T set ∆(t) :=
⋂
{as : s ≤ t}.

Let us show that 〈tn : n ∈ I〉 is an increasing sequence. Assume that m,n ∈ I
are such that n < m. Then cm ⊆ a(t∗m) ∩

⋂
{a(tk) : k ∈ I ∩ n} and therefore

(ω1,m) ∈ f [cm ∩K] ⊆ f
[
a(t∗m) ∩

⋂
{a(tk) : k ∈ I ∩ n} ∩K

]
,

which, together with tn’s minimality, gives tn ≤ tm. On the other hand, if tn = tm,
then cm ⊆ a(t∗m) ∩ a(tn) = ∅, a contradiction to (ω1,m) ∈ f [cm ∩K]; so we obtain
tn < tm. Observe that an immediate consequence of this result is that ∆(t∗k) ⊆ ck
for all k ∈ I.

We claim that Vn∩∆(t∗n)∩f−1[(ω1, n)] 6= ∅ for all n ∈ I. It suffices to show that
{Vn ∩ as ∩ f−1[(ω1, n)] : s ≤ t∗n} has the finite intersection property, so let F be a
finite nonempty subset of {s ∈ T : s ≤ t∗n} and define d := K ∩ cn ∩

⋂
{as : s ∈ F}.

Since g := f � K is irreducible and d is a clopen subset of K, g[d] is a regular
closed subset of Y which contains (ω1, n) (because K ∩ ∆(t∗n) ⊆ d). Set U :=
int(g[d] ∩ (ω1 × {n})). Then U ⊆ W ∩ (ω1 × {n}) and (ω1, n) ∈ U ; an application
of Remark 5.3 gives

∅ 6= g−1[(ω1, n)] ∩ clKg
−1[U ] ⊆ f−1[(ω1, n)] ∩ Vn.

On the other hand, g−1[U ] ⊆ g−1[int g[d]] ⊆ d ⊆
⋂
{as : s ∈ F} because H :=

K \ (g−1[int g[d]] \ d) is a closed subset of K such that g[H] = Y . Thus we obtain

f−1[(ω1, n)] ∩ Vn ∩
⋂
{as : s ∈ F} 6= ∅,

as we wanted.
For each n ∈ I, let us fix a point xn ∈ Vn ∩ ∆(t∗n) ⊆ K0 ∩ ∆(t∗n) satisfying

f(xn) = (ω1, n). Since 〈tk : k ∈ I〉 is increasing, we get
Claim 1. If n ∈ I, then {xk : k ∈ I \ (n+ 1)} ⊆

⋂
{as : s < tn}.

Now we will construct two functions, e : 2<ω → T and H : 2<ω → [I]ω, so that
the following conditions hold for each t ∈ 2<ω.

(1) For all n ∈ I, tn < e(∅).
(2) If s < e(∅), then {n ∈ I : xn ∈ a(s∗)} is finite.
(3) H(∅) := {n ∈ I : xn ∈ a(e(∅))}.
(4) I \H(∅) = {n ∈ I : xn ∈ a(e(∅)∗)} is infinite.
(5) e(r) < e(t) whenever r < t.
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(6) e(t∗) = e(t)∗.
(7) H(t_i) = {n ∈ H(t) : xn ∈ a(e(t_i))} for each i < 2.
(8) If i < 2 and e(t) < s < e(t_i), then {n ∈ H(t) : xn ∈ a(s∗)} is finite.

Before we embark on the construction let us prove that if {tn : n ∈ I} is cofinal
with b, then 〈xn : n ∈ I〉 converges to q. We will use Corollary 3.7 to prove it: let
F be a finite nonempty subset of b. There exists n ∈ I satisfying tn > maxF and
hence (Claim 1) xk ∈

⋂
{as : s ∈ F}, for all k > n.

Since X is an Efimov space, {tn : n ∈ I} has an upper bound in b and therefore
it has one with minimum height, let us say tω ∈ b.

Given s ∈ T and E ∈ [I]ω, we will say that s splits E if {n ∈ E : xn ∈ ar} is
infinite for all r ∈ {s, s∗}.
e and H will be built recursively. If tω does not split I, let r0 ∈ {tω, t∗ω} be such

that {n ∈ I : xn ∈ a(r∗0)} is finite. In general, assume that for some ordinal γ we
have {rξ : ξ < γ} ⊆ T so that the following holds for all ξ < γ.

(a) rη < rξ whenever η < ξ.
(b) ht(rξ) = ht(tω) + ξ.
(c) {n ∈ I : xn ∈ a(r∗ξ )} is finite.

If {rξ : ξ < γ} has an upper bound u ∈ T such that ht(u) = ht(tω)+γ and u does not
split I, then we define rγ ∈ {u, u∗} as the only one for which {n ∈ I : xn ∈ a(r∗γ)}
is finite.

Clearly, the process described above has to stop. Let δ be such that {rξ : ξ < δ}
cannot be extended. Seeking a contradiction let us assume that the process stopped
because {rξ : ξ < δ} does not have an upper bound on level ht(tω) + δ. Set
b′ := {s ∈ T : ∃ξ < δ(s ≤ rξ)}. Condition (a) guarantees that b′ is a chain in T .
Moreover, if b′ ∪ {s} is a chain for some s ∈ T \ b′, then it must be the case that
rξ < s, for all ξ < δ. Therefore ht(s) ≥ ht(tω)+ δ, but this gives the existence of an
upper bound for b′ on level ht(tω) + δ. In other words, b′ is a branch in T . We will
prove that 〈xn : n ∈ I〉 converges to the only element of

⋂
{as : s ∈ b′} by showing

that

(†) {n ∈ I : xn ∈ a(s∗)} is finite

for all s ∈ b′ (Corollary 3.7). If s < tω, then s < tm for some m ∈ I and therefore
{n ∈ I : xn ∈ a(s∗)} ⊆ m + 1 (Claim 1). When tω ≤ s, we have that s = rξ for
some ξ < δ and thus condition (c) implies (†).

Hence {rξ : ξ < δ} has an upper bound t ∈ T such that ht(t) = ht(tω) + δ. Since
the process did stop, t splits I so we define e(∅) := t and H(∅) as in condition (3).

Now assume that for some t ∈ 2<ω we have constructed {e(r) : r ≤ t} and
{H(r) : r ≤ t}. Let us start by proving the following.

Claim 2. If s ≤ e(t), then

(††) {n ∈ H(t) : xn ∈ a(s∗)} is finite.

When s < e(∅), condition (2) guarantees that (††) holds. If e(∅) < s and
s /∈ {e(r) : r ≤ t}, we invoke condition (8) to obtain (††). So the case s = e(r),
for some r ≤ t, is the only one which needs an argument: an straightforward
consequence of condition (7) is that H(t) ⊆ H(r), which together with conditions
(3) and (6) implies that H(r) and the set given in (††) are disjoint. Therefore this
set is empty.



EFIMOV’S PROBLEM AND BOOLEAN ALGEBRAS 15

In view of Claim 2, we proceed as we did in the construction of e(∅), replacing I
with H(t), to obtain a node v ∈ T such that the following holds: e(t) < v, v splits
H(t), and condition (8) holds when one sets e(t_0) := v and e(t_1) := v∗. To
complete the recursion we only need to define H(t_i), i < 2, as prescribed in (7).

To simplify notation we will use et and Ht to denote e(t) and H(t), respectively.
For each function r ∈ 2ω define r := {s ∈ T : ∃n < ω(s ≤ er�n)} and [r] :=⋂
{as : s ∈ r}. Equivalently (see condition (5)), [r] =

⋂
n<ω ∆(er�n).

We claim that {as∩clK({xn : n ∈ I}) : s ∈ r} has the finite intersection property
for each r ∈ 2ω. If F is a finite nonempty subset of r, there is an integer m such
that er�m > maxF and therefore {xn : n ∈ Hr�m} \ as is finite for all s ∈ F (Claim

2). Hence {xn : n ∈ Hr�m}∩
⋂
{as : s ∈ F} 6= ∅. An immediate consequence of this

result is
Claim 3. For all r ∈ 2ω: {xn : n ∈ I} ∩ [r] 6= ∅.
We will prove by contradiction that the set

{r ∈ 2ω : ∃α < ω1(K0 ∩ [r] ∩ f−1[(α+ 1)× (ω + 1)] 6= ∅)}

is finite. So assume that it is infinite. In this case, the set contains an infinite
sequence S which converges to some ρ ∈ 2ω (we are using the product topology
here). For each r ∈ S fix a point yr ∈ [r] ∩K0 and an ordinal αr < ω1 such that
f(yr) ∈ (αr + 1) × (ω + 1). Since S is countable, there exists α < ω1 for which
{f(yr) : r ∈ S} ⊆ (α+1)×(ω+1). In particular, {xn : n ∈ I} and {yr : r ∈ S} have
disjoint closures in X. On the other hand, the fact that S is infinite and converges
to ρ implies the existence of two sequences, {rk : k ∈ ω} ⊆ S and {nk : k ∈ ω} ⊆ ω,
such that mk 6= m` whenever k 6= ` and (ρ � (mk + 1))∗ = rk � (mk + 1) for all
k ∈ ω (i.e., mk is the first integer where rk(mk) 6= ρ(mk)). For each k ∈ ω define

sk := e(rk � (mk + 1)) and fix a point zk ∈ {xn : n ∈ I} ∩ [rk] (Claim 3). Note that
condition (6) above gives s∗k = e(rk � (mk + 1)) and therefore

{zk, yrk} ⊆ [rk] ⊆ ∆(e(rk � (mk + 1))) = ∆(s∗k)

so we apply Lemma 3.8-(2) to obtain

∅ 6= {yrk : k ∈ ω} ∩ {zk : k ∈ ω} ⊆ {yr : r ∈ S} ∩ {xn : n ∈ I},

a contradiction.
For the rest of the proof let us fix g ∈ 2ω such that⋂

n<ω

f−1[(α+ 1)× (ω + 1)] ∩∆(eg�n) ∩K0 = ∅,

for all α < ω1. Condition (5) gives ∆(eg�(n+1)) ⊆ ∆(eg�n) and therefore, using K0’s
compactness, we obtain, for each α < ω1, an integer mα such that

f−1[(α+ 1)× (ω + 1)] ∩∆(eg�mα) ∩K0 = ∅.

Let n ∈ ω be so that {ξ < ω1 : mξ = n} is uncountable and set r := g � n. Observe
that f [K0 ∩∆(er)] ⊆ {ω1} × (ω + 1).

Claim 4. There is a countable ordinal γ such that for any integer `, for any
increasing sequence {sk : k ≤ `} ⊆ 2<ω, and for each m ∈ H(s`) the set

f [Vm ∩
⋂
{a(esk) : k ≤ `}] ∩ ((γ + 1)× {m})

is infinite.
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Let {sk : k ≤ `} be as in the Claim. We will show that if d :=
⋂
{a(esk) : k ≤ `}

and m ∈ H(s`), then f [Vm ∩ d] ∩ (ω1 × {m}) is uncountable. This suffices because
there are only countably many sequences as the one described in Claim 4.

For each k ≤ ` condition (7) gives H(s`) ⊆ H(sk) and therefore xm ∈ a(esk).

Hence we get xm ∈ d ∩ Vm ∩K. Since d is a clopen subset of X, d ∩ Vm = d ∩ Vm
and so xm ∈ clK(d ∩ Vm). Then (ω1,m) belongs to the closure of intf [K ∩ Vm ∩
d] (Remark 5.3 applied to f � K) and, in particular, f [Vm ∩ d] ∩ (ω1 × {m}) is
uncountable as we needed.

Define K1 :=
⋃
{Vm : m ∈ Hr} ∩ f−1[(γ + 1) × (ω + 1)] and observe that if

x ∈ K1 ∩ ∆(er), then our choice for n gives f(x) ∈ {ω1} × (ω + 1) (because
K1 ⊆ K0); a contradiction to x ∈ K1.

For each x ∈ K1 let tx be the least element of {s ∈ T : s ≤ er ∧ x ∈ a(s∗)}
(the argument given above proves that this sest is nonempty) and for each C ⊆ K1

define C] := {tx : x ∈ C}.
We affirm that if C is a closed nonempty subset of K1, then C] has a maximum

element. Indeed, by definition, {a(t∗x) : x ∈ C} covers C so there exists a finite
nonempty set F ⊆ C] satisfying C ⊆

⋃
{a(t∗x) : x ∈ F}. Let z ∈ F be so that

tz = maxF . Note that if x ∈ C, then x ∈ a(t∗y) for some y ∈ F and therefore, given
tx’s minimality, we obtain tx ≤ ty ≤ tz.

Let y0 ∈ K1 be such that ty0 = maxK]
1. Fix s0, an immediate successor of

r (i.e., s0 = r_i for some i < 2), such that y0 /∈ a(es0). Now, if K1 ∩ a(es0) is
non-empty, let y1 be an element of this set satisfying ty1 = max(K1 ∩ a(es0))] and
let s1 be an immediate successor of s0 so that y1 /∈ a(es1). And so forth: y2 will
be an element of K1 ∩ a(es0) ∩ a(es1) (assuming this set is not empty) such that
ty2 is the maximum of (K1 ∩ a(es0) ∩ a(es1))]. Given that ty0 > ty1 > ty2 > . . . ,
there must be an integer ` for which K1 ∩

⋂
{a(esk) : k ≤ `} = ∅, giving us the

contradiction to Claim 4 that finishes the proof. �

6. Consistency Results

In this section: for unexplained notation, definitions and results on Forcing cf.
[23, Chapters IV and V]; also, space will mean Hausdorff space.

Let us start by recalling that

Definition 6.1. Hechler forcing is the set ω<ω × ωω ordered by (s, f) ≤ (t, g) iff

(1) t ⊆ s,
(2) g(n) ≤ f(n) for all n ∈ ω, and
(3) g(i) < s(i) whenever i ∈ dom s \ dom t.

This notion of forcing was introduced in [16] and, as one easily verifies, it is ccc
so, in particular, it preserves ω1. Moreover, it adds a dominating real: if G is a
generic filter, then g :=

⋃
{s : ∃f [(s, f) ∈ G]} is a member of ωω ∩ V [G] satisfying

f ≤∗ g, for all f ∈ ωω ∩ V . For this reason, Hechler’s poset is also called the
dominating forcing or forcing adding a dominating real.

The main result of this section is the following.

Theorem 6.2. There is an Efimov T -algebra of countable tightness in the generic
extension yield by the finite support iteration of length ω2 of Hechler forcing over a
model of CH.
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Let us note that in the model described above, h, s, and t are all equal to ω1

and b = d = c = ω2 (see [4]).
A standard feature of such iterated forcing constructions is the need for preser-

vation results. In our case, we need to insure that further forcing will not introduce
undesired converging sequences. For this purpose we introduce the following new
notion.

Definition 6.3. Let X be a topological space. We say that X has the stationary
set property (X has the SSP, for short) if it possesses a cover of compact open
subsets, {cα : α < ω1}, so that

(1) each cα is countable,
(2) for any stationary set S ⊆ ω1, X \

⋃
{cξ : ξ ∈ S} is a compact subspace of

X.

Lemma 6.4. Any space having the SSP is countably compact.

Proof. Assume that X has the SSP and let Y be an infinite countable subset of X.
If Y ∩ cβ were infinite for some β < ω1, Y would have an accumulation point in X.
So let us assume that Y ∩ cα is finite for each α < ω1. Since Y is countable, there
is a finite set F ⊆ Y for which the set S := {α < ω1 : Y ∩ cα = F} is stationary.
Thus Y \F is an infinite subset of the compact subspace X \

⋃
α∈S cα and therefore

Y has an accumulation point in X. �

Definition 6.5. Let P be a notion of forcing which preserves ω1. We say that
P preserves the SSP if whenever a family {cα : α < ω1} witnesses the SSP for a
topological space X in the ground model, the same family witnesses the SSP for X
after forcing with P.

The following result seems to be a well-known theorem of K. Kunen, but since
we could not find a reference for it, we are including a proof here.

Lemma 6.6. Let P be a notion of forcing. If X is a compact scattered topological
space in the ground model, then P ‖− “X is compact.”

Proof. Working in V , the ground model, set B := CO(X). Denote by Xα the αth
scattered level, i.e., Xα is the set of isolated points of X \

⋃
β<αXβ . Also, for each

x ∈ Xα, let us fix Wx ∈ B satisfying Wx \
⋃
β<αXα = {x} and let us denote by δ

the only ordinal for which X =
⋃
ξ≤δXξ and Xδ 6= ∅.

Observe that X is covered by a finite subset of {Wx : x ∈ X} and therefore we
only need to show that each Wx is compact in the generic extension yield by P. We
will do this by transfinite induction. More accurately, given G, a P-generic filter
over V , we claim that for each α ≤ δ: if x ∈ Xα, then Wx is compact in V [G].

When α = 0, each Wx is a singleton so let us assume that for some 0 < α ≤ δ,
Wx is compact in V [G] whenever β < α and x ∈ Xβ . Let z ∈ Xα be arbitrary and
let U ⊆ B be a cover for Wx in V [G] (recall that B is a base for X in V [G]). Thus
there exists U ∈ U with z ∈ U and so Wz \ U is a compact subset of

⋃
β<αXβ in

V . Hence there is a finite set F ⊆
⋃
β<αXβ for which K :=

⋃
x∈F Wx ⊇ Wz \ U

and therefore, our inductive hypothesis implies that Wz \U is compact in V [G]. To
finish our argument, note that if U0 ∈ [U ]<ω covers Wz \ U , then U0 ∪ {U} covers
Wz �
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As a consequence, if {cα : α < ω1} is as in Definition 6.3 and S is a stationary
subset of ω1, then X \

⋃
{cα : α ∈ S} is contained in

⋃
{cα : α ∈ F}, for some finite

set F ⊆ ω1. Since each cα is compact scattered, we get the following.

Remark 6.7. If {cα : α < ω1} witnesses that X has the SSP and S is a stationary
subset of ω1, then the subspace X \

⋃
{cα : α ∈ S} is compact scattered in any

generic extension.

Lemma 6.8. Hechler forcing preserves the SSP.

Proof. Assume that X is a locally countable locally compact topological space in
the ground model which has the SSP as witnessed by {cα : α < ω1}.

For each set A ⊆ ω1, define A] :=
⋃
{cα : α ∈ A}.

Let P be Hechler’s poset and let Ṡ be a P-name for a stationary subset of ω1.
Set E := {α < ω1 : ∃p ∈ P (p ‖− α̌ ∈ Ṡ)} and for each α ∈ E fix a condition (sα, fα)

which forces α̌ ∈ Ṡ. Since P is ccc, E is stationary ([17, Lemma 22.5]) and so there
is s ∈ ω<ω for which S0 := {α ∈ E : sα = s} is stationary.

Our assumptions on X imply that this space is zero-dimensional and locally
compact so there exists K, a compact clopen subset of X, satisfying X \(S0)] ⊆ K.

For each t ∈ ω<ω let St := {α ∈ S0 : ∀i ∈ dom t (fα(i) ≤ t(i))}.
Claim. If t ∈ ω<ω satisfies X \ K ⊆ (St)

], then X \ K ⊆ (St_m)] for some
integer m.

In order to prove the Claim let us set Uk :=
⋃
{cα : α ∈ St ∧ fα(|t|) < k}, for

each k ∈ ω. Then {Uk : k ∈ ω} is an increasing sequence of open sets in X which
covers X \K. According to Lemma 6.8, there exists m ∈ ω such that X \K ⊆ Um
and therefore t_m is as required.

Since S∅ = S0, we use the Claim to inductively construct a function h : ω → ω
so that X \K ⊆ (Sh�n)] for all n ∈ ω.

We will prove that (s, h) ‖−X \ K ⊆
⋃
{cα : α ∈ Ṡ} by showing that for each

y ∈ X \K the set Dy := {p ∈ P : ∃α < ω1(y ∈ cα ∧ p ‖− α̌ ∈ Ṡ)} is dense below
(s, h). Let y ∈ X \K and (t, g) ≤ (s, h) be arbitrary. Our choice for h guarantees
that y ∈ cα, for some α ∈ Sh�|t|. Thus p := (t, fα + g) satisfies p ∈ Dy (because
p ≤ (s, fα)) and p ≤ (t, g).

The previous paragraph shows that X \
⋃
{cα : α ∈ Ṡ} is forced by (s, h) to be

contained in K and since K is compact in the generic extension (Lemma 6.6) this
finishes the proof. �

Notice that if P is a notion of forcing which preserves the SSP and Q completely
embedds into P, then Q also preserves the SSP. In particular, since ω<ω is com-
pletely embedded into Hechler’s poset, we obtain that the notion of forcing which
adjoins one Cohen real also preserves the SSP.

Lemma 6.9. Let P be a ccc poset and let E be a stationary subset of ω1. If p ∈ P
and {pα : α ∈ E} ⊆ P satisfy pξ ≤ p, for all ξ ∈ E, then there is p′ ≤ p such that

p′ ‖−{α ∈ E : pα ∈ Ġ} is stationary.

Proof. Seeking a contradiction, let us assume that there is no such condition p′.
Define D ⊆ P by q ∈ D iff there is a club Cq ⊆ ω1 such that q ‖− pα /∈ Ġ, whenever
α ∈ Cq. Our assumption and the fact that P is ccc, imply that D is dense below p
(see [17, Lemma 22.5]).

Let A be a maximal antichain in D. Then C :=
⋂
{Ca : a ∈ A} is a club and so

there is β ∈ C ∩ E. Our choice for A guarantees the existence of q ∈ A and r ∈ P
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satisfying r ≤ q and r ≤ pβ . Clearly, r ‖− pβ ∈ Ġ. On the other hand, β ∈ C ⊆ Cq
and r ≤ q imply r ‖− pβ /∈ Ġ, which is the contradiction we were looking for. �

For our next two results we assume the reader is familiar with elementary sub-
models (cf. [23, Section III.8]).

Lemma 6.10. Let E be a stationary subset of ω1. If {Fα : α ∈ E} is a family
of finite subsets of ω1, there exist a stationary set E′ ⊆ E and µ < ω1 for which
{Fα \ µ : α ∈ E′} is pairwise disjoint.

Proof. We divide the proof into two cases. First, if E0 := {α ∈ E : Fα ∩ α 6= ∅} is
stationary, then the map f : E0 → ω1 given by f(α) := max(Fα ∩ α) is regressive
and so there is β < ω1 for which E′ := {α ∈ E0 : f(α) = β} is stationary. To finish
this case, set µ := β + 1.

Now assume that E1 := {α ∈ E : Fα ∩ α = ∅} is stationary. Let θ be a cardinal
such that Hθ has a continuous ∈-chain, 〈Mα : α < ω1〉, of countable elementary
submodels with {Fα : α ∈ E1} ∈ M0. Define C := {α < ω1 : Mα ∩ ω1 = α}. Then
C is a club and so E′ := C ∩E1 is stationary. Moreover, if α, β ∈ E0 satisfy α < β,
then Fα ∈Mβ and Fβ ∩Mβ = Fβ ∩ β = ∅; thus Fα ∩ Fβ = ∅.

Finally, observe that the equality E = E0 ∪ E1 implies that Ei is stationary for
some i < 2 and therefore the argument given in the two previous paragraphs proves
our lemma. �

Theorem 6.11. Let 〈Pα, Q̇α : α < ε〉 be a finite support iteration of ccc posets

and let P be its limit. If, for each α < ε, Pα ‖− “Q̇α preserves the SSP”, then P
preserves the SSP.

Proof. The result will be proved by induction on ε. Let us fix, in V , a space X
which has the SSP as witnessed by {cα : α < ω1} and let Ṡ be a P-name which is
forced by p ∈ P to be a stationary subset of ω1.

Define S0 := {α < ω1 : ∃q ≤ p (q ‖− α̌ ∈ Ṡ)} and for each α ∈ S0 fix a condition

pα ≤ p in such a way that pα ‖− α̌ ∈ Ṡ. Notice that p ‖− Ṡ ⊆ Š0 and therefore S0

is stationary (ω1 is not collapsed because P is ccc). The proof will be divided into
three cases.

Case 1. ε has countable cofinality.
Since p and each condition pα (α ∈ S0) have finite support, there is µ < ω1

for which p ∈ Pµ and S1 := {α ∈ S0 : pα ∈ Pµ} is stationary. Lemma 6.9

provides us with a Pµ-name, Ė, and a condition p′ ∈ Pµ such that p′ ≤ p and

p′ ‖−“Ė = {α ∈ S1 : pα ∈ Ġµ} is stationary,” where Ġµ is a name for the Pµ-

generic filter. Observe that p′ forces in P that Ė ⊆ Ṡ.
Our inductive hypothesis guarantees that Pµ preserves the SSP so there is q ∈ Pµ

such that q ≤ p′ and q ‖−“X \
⋃
{cα : α ∈ Ė} is compact.” Thus (see Remark 6.7)

X \
⋃
{cα : α ∈ Ṡ} is forced by q to be compact.

Case 2. cf(ε) = ω1.
For each condition r ∈ P, s(r) will denote its support. Apply Lemma 6.10 to

{s(pα) : α ∈ S0} to obtain a stationary set S′0 ⊆ S0 and an ordinal µ < ε in such a
way that {s(pα)\µ : µ ∈ S′0} is pairwise disjoint. Then (see Lemma 6.9) there exist

p′ ∈ Pµ and Ṡ1, a Pµ-name, in such a way that p′ ‖−“Ṡ1 = {α ∈ S′0 : pα � µ ∈ Ġµ}
is stationary.”
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Fix a Pµ-name, Ḃ, satisfying p′ ‖− Ḃ = {x ∈ X : |{ξ ∈ Ṡ1 : x ∈ cξ}| < ω} and
define p := p′ ∪ p � (ε \ µ) ∈ P. We will show that

(?) p ‖−X \ Ḃ ⊆
⋃
{cα : α ∈ Ṡ}.

Let q ≤ p be an arbitrary condition in P and let Gµ be a Pµ-generic filter over V

with q � µ ∈ Gµ. Denote by S1 and B the valuations of Ṡ1 and Ḃ with respect to
Gµ, respectively, and let x ∈ X \ B be arbitrary. Working in V [Gµ], since s(q) is
finite and S1 is stationary, there is α ∈ S1 so that x ∈ cα and s(q) is disjoint from
s(pα) \ µ. Hence there exists r ∈ Gµ satisfying r ≤ pα � µ and r ≤ q � µ. Therefore
r := r ∪ pα � (ε \ µ) is a condition in P which extends q and pα; in particular,

r ‖− α̌ ∈ Ṡ.
Fix G, a P-generic filter over V , with p ∈ G and define Gµ := {q � µ : q ∈ G} to

obtain a Pµ-generic filter over V .
The discussion in this paragraph takes place in V [Gµ]. Let θ be a cardinal

for which Hθ has a continuous ∈-chain, 〈Mα : α < ω1〉, of countable elementary
submodels satisfying {cα : α < ω1}, S1 ∈M0. Then S2 := {α ∈ S1 : Mα ∩ ω1 = α}
is stationary.

Now we will show that {B ∩ cα : α ∈ S2} is pairwise disjoint. Given α ∈ S2

and x ∈ B ∩ cα, set β := min{ξ ∈ S2 : x ∈ cξ}. Assume, seeking a contradiction,
that β < α. Then β ∈ Mα and therefore cβ ∈ Mα; since cβ is countable, x ∈ Mα.
The fact x ∈ B implies that {ξ ∈ S1 : x ∈ cξ} ⊆ Mα and, in particular, x /∈ cα.
This contradiction proves that β = α and hence the collection is indeed pairwise
disjoint.

Our inductive hypothesis applied to µ guarantees that X \
⋃
{cα : α ∈ S2} is

compact and so there is F ∈ [ω1]<ω in such a way that the set U :=
⋃
{cα : α ∈ F}

satisfies X = U ∪
⋃
{cα : α ∈ S2}. Then {B ∩ cα \ U : α ∈ S2} is a discrete

family in X. According to Lemma 6.8, there is a finite set F0 ⊆ S2 such that⋃
{B ∩ cα : α ∈ S2 \ F0} ⊆ U . Thus B is a subset of the compact scattered

subspace U ∪
⋃
{cα : α ∈ F0} and so we get that X \

⋃
{cα : α ∈ ṠG} is compact

(see the paragraph preceeding Remark 6.7 and (?)).
Case 3. cf(ε) > ω1.

Here we can assume, without loss of generality, that Ṡ is a nice name for a
subset of ω̌1 (see [23, Definition IV.3.8]) and therefore, for some µ < ε, Ṡ is a
Pµ-name and p ∈ Pµ. Hence the inductive hypothesis applied to µ takes care of
the conclusion. �

We will need two lemmas concerning countable tightness.

Lemma 6.12. If A is a T -algebra, then St(A) has countable tightness provided
St(Ab) has countable tightness for each maximal branch b ⊂ T .

Proof. Let u ∈ St(B) be any point and Y ⊂ St(B) be any set such that u is a
limit point of Y . According to Corollary 3.5, there is a unique maximal branch
b such that the ultrafilter u is generated {at : t ∈ b}. Assuming that St(Ab) has
countable tightness, we may choose a countable family {yn : n ∈ ω} ⊂ Y , so that
the ultrafilter u ∩Ab ∈ St(Ab) is a limit of the family {yn ∩Ab : n ∈ ω}. We finish
by showing that u is a limit of {yn : n ∈ ω}. Choose any a ∈ u, we must show
there is an n such that a ∈ yn. Since u ∩ Ab is a base for u ∈ A we may assume
that a ∈ u ∩Ab. Therefore there is an n ∈ ω such that a ∈ yn ∩Ab. Of course this
means that a ∈ yn. �
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Lemma 6.13. If B is a Boolean algebra whose Stone space has countable tightness,
then any finite support iteration of σ-centered posets will preserve that St(B) has
countable tightness.

Proof. Assume that the Stone space of B has countable tightness. Recall that
{bξ : ξ ∈ ω1} ⊂ B is an algebraic free sequence if for each α ∈ ω1, the family
{bξ : α ≤ ξ} ∪ {1− bξ : ξ < α} generates a filter. It suffices to show B contains no
algebraic free sequences in the forcing extension ([20]). Suppose that Q is a finite
support iteration of σ-centered posets. Let us note that each uncountable subset
of Q will have an uncountable centered subset. We show that no uncountable free
sequence is added. For each α ∈ ω1 suppose that ḃα is a Q-name of a member
of B and that some q ∈ Q forces that {ḃα : α ∈ ω1} is a free sequence. For

each α, choose qα < q so that there is a bα ∈ B such that qα ‖− ḃα = b̌α. Let
I ⊂ ω1 be an uncountable set such that {qα : α ∈ I} is a centered subset of Q. It
follows easily that {bα : α ∈ I} must be an uncountable free sequence – which is a
contradiction. �

Using a similar proof, the following result is well-known.

Proposition 6.14. If Q is a finite support iteration of σ-centered posets, then
forcing with Q adds no new cofinal branches to the tree 2<ω1 .

The proof of Theorem 6.2 will be split into a series of lemmas so, for simplicity,
we will establish notation that will be followed for the rest of the section: 〈Pα, Q̇α :
α < ω2〉 denotes a finite support iteration of Hechler forcing whose limit is P and
V is a model of CH. Also, let us define E := {0} ∪ {α < ω2 : cf(α) = ω}.

Given two ordinals, α and β, their product will be denoted by α·β. In particular,
if γ is an ordinal, γ2 = γ · γ.

Lemma 6.15. There are {ṫα : α ∈ E} and δ : E → ω1 such that the following
conditions hold, for each α ∈ E,

(1) {ṫξ : ξ ∈ E ∩ γ2} = {š : s ∈ 2<γ ∩ V }, whenever γ ∈ {ω, ω1},
(2) ṫα is a Pα-name,
(3) Pα ‖− ṫα ∈ 2δ(α) \ {ṫξ : ξ ∈ E ∩ α},
(4) Pα ‖−{ṫα � β : β < δ(α)} ⊆ {ṫξ : ξ ∈ E ∩ α}, and
(5) P ‖− 2<ω1 = {ṫξ : ξ ∈ E}.

Proof. Let E0 be the set of all limit ordinals in E; in other words, α ∈ E0 iff α ∈ E
and β + ω < α for all β ∈ E ∩ α.

Since CH holds in the ground model, a lexicographical ordering of the limit levels
of the tree 2<ω1 ∩ V provides us with an enumeration {sα : α < ω2

1} of 2<ω1 ∩ V in
such a way that for all α < ω2

1 : {sα � β : β < dom sα} ⊆ {sξ : ξ < α} and if α is a
limit ordinal, then {sα_r : r ∈ 2<ω} = {sα+n : n ∈ ω}. Note that these conditions
imply {sn : n ∈ ω} = 2<ω and s0 = ∅.

Let us denote by S the set consisting of all triples (p, ṙ, β), where p ∈ P, β < ω1,
and ṙ is a nice P-name for a subset of β × 2 with p ‖− ṙ ∈ 2β .

Given that P is ccc, we have that for each (p, ṙ, β) ∈ S there is γ < ω2 satisfying

(?) ṙ is a Pγ-name and p ∈ Pγ .
On the other hand, the fact that V models CH implies that for any fixed γ < ω2

there are at most ω1 triples (p, ṙ, β) ∈ S for which (?) holds. As a consequence
of these remarks, we get that there is an enumeration {(pα, ṙα, βα) : α < ω2} of
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S in such a way that, for each α < ω2, pα ∈ Pα and ṙα is a Pα-name. Moreover,
ṙα = šα, whenever α < ω2

1 .
We will obtain {ṫα : α ∈ E} and δ by transfinite induction on E. Let us start

by setting, for each α < ω2
1 , ṫω·α := šα and δ(ω · α) := dom sα. This produces

{ṫξ : ξ ∈ E ∩ ω2
1} and δ � (E ∩ ω2

1) as required in conditions (1)–(4).
Now assume that for some α ∈ E \ ω2

1 we have defined {ṫξ : ξ ∈ E ∩ α} and
δ � (E ∩ α) satisfying conditions (1)–(4) and in such a way that for any ξ ∈
E0 ∩ α and n < ω, we obtain the following: ξ + ω · n < α; δ(ξ) is a limit ordinal;
δ(ξ+ω ·n) = δ(ξ) + |sn|; and Pξ+ω·n ‖− ṫξ+ω·n = ṫξ

_šn. Notice that a consequence
of these hypotheses is α ∈ E0.

Let {γn : n ∈ ω} be an strictly increasing sequence whose supremum is α and
let Gα be a Pα-generic filter over V . For each integer n, set Gγn := Gα ∩ Pγn and
note that the quotient forcing Pγn+1

/Gγn adds a new real to V [Gγn ] because each

Q̇γn is forced by 1 to be Hechler’s poset. This proves the following claim.

Claim 1. 2ω ∩ V [Gα] \
⋃
n V [Gγn ] 6= ∅.

Claim 2. There is η < ω2 with pη ∈ Pα and

pη ‖− ṙη /∈ {ṫξ : ξ ∈ E ∩ α} ∧ ({ṙη � β : β < βη} ⊆ {ṫξ : ξ ∈ E ∩ α}).

Let us start the proof by noticing that Claim 1 implies the existence of ṙ, a
nice Pα-name for a subset of ω × 2, with Pα ‖− ṙ ∈ 2ω \ {ṫξ : ξ ∈ E ∩ α}. Hence
we obtain (1, ṙ, ω) = (pη, ṙη, βη), for some η < ω2. Finally, note that the equality
{sn : n < ω} = 2<ω and our definition of ṫω·n, n ∈ ω, guarantee that η is as needed.

Let η be the least ordinal satisfying all conditions in Claim 2.
Let us show that βη is a limit ordinal. Indeed, given γ < βη, our choice for η

gives q ≤ pη and ξ ∈ E ∩ α such that q ‖− ṙη � γ = ṫξ. Thus, according to the
inductive hypothesis,

q ‖− ṙη � (γ + 1) = (ṙη � γ)_ṙη(γ) ∈ {ṫξ : ξ ∈ E ∩ α},

which implies γ + 1 6= βη.
Define δ(α) := βη and fix W , a maximal antichain in Pα with pη ∈ W . We will

obtain, for each q ∈W , a Pα-name ṫq such that

q ‖−(ṫq ∈ 2δ(α) \ {ṫξ : ξ ∈ E ∩ α}) ∧ ({ṫq � β : β < δ(α)} ⊆ {ṫξ : ξ ∈ E ∩ α}).

Notice that once this is done, we would be able to use [23, Lemma IV.7.2] to get
a Pα-name which is forced by each q ∈ W to be equal to its corresponding ṫq. By
letting ṫα be this name, the induction will be complete except for the verification
of condition (5).

Let q ∈ W be arbitrary. When q = pη, it suffices to set ṫq := ṫη, so assume
q 6= pη and fix an strictly increasing sequence 〈αn : n < ω〉 whose supremum is

δ(α). Working in V , let {er : r ∈ 2<ω} ⊆ 2δ(α) be such that for all r, s ∈ 2<ω: r < s
implies er < es and dom(er) = α|r|, i.e., a cofinal copy of the Cantor tree.

The discussion in this paragraph takes place in V [Gα]. As usual, we drop the dots
to indicate the valuation of the corresponding name with respect to Gα. According
to Claim 1, there is f ∈ 2ω \

⋃
n V [Gγn ] and hence tq :=

⋃
n ef�n is an element of

2δ(α) \ {tξ : ξ ∈ E ∩ α}. On the other hand, if β < δ(α), then β < αn, for some
n ∈ ω, and therefore tq � β = ef�n � β ∈ {tξ : ξ ∈ E ∩α}. This proves the existence
of ṫq as discussed above.
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Before we embark on the proof of (5), notice that at stage α ∈ E \ ω2
1 of the

induction we selected an ordinal η = η(α) as the least one satisfying the conditions
of Claim 2. This gives a map α 7→ η(α) which is strictly increasing: α < β
implies η(α) < η(β). Also, our definition of ṫα was done in such a way that
pη(α) ‖− ṫα = ṙη(α).

To verify (5) let us suppose, seeking a contradiction, that there is a P-name ṡ
and a condition p ∈ P such that p ‖− ṡ ∈ 2<ω \ {ṫξ : ξ ∈ E}. There is no loss of
generality in assuming that, for some γ < ω1, we get

p ‖− ṡ ∈ 2γ ∧ ({ṡ � β : β < γ} ⊆ {ṫξ : ξ ∈ E}).
Hence (p, ṡ, γ) = (pν , ṙν , βν), for some ν < ω2. Since βν is countable and Pν is ccc,
there exists α ∈ E for which pν ∈ Pα and pν ‖−{ṙν � β : β < βν} ⊆ {ṫξ : ξ ∈ E∩α}.
Note that condition (1) gives α ≥ ω2

1 .
From the two previous paragraphs we obtain η(α) ≤ ν; moreover, the equality

η(α) = ν would imply pν ‖− ṫα = ṙν , i.e., p ‖− ṫα = ṡ. Hence η(α) < ν and therefore,
by letting α ∈ E \ω2

1 be so that ν < η(α), we get α < α. This, in turn, implies that
if one replaces η and α with ν and α, respectively, in Claim 2, then all conditions
are fulfilled and so η(α) ≤ ν, contradicting our choice for α. �

To simplify notation we will set δα := δ(α), for each α ∈ E.
The argument given in [22, Example 2.9] shows that there is a collection Y =

{a(s_k) : s ∈ 2<ω ∧ k < 2} ⊆ P(ω) ∩ V in such a way that the Boolean algebra
generated by Y in P(ω) is (a) isomorphic to CO(2ω) and (b) a (2<ω \ {∅})-algebra
as witnessed by Y .

On the other hand, condition (1) in our previous lemma gives {š : s ∈ 2<ω} =
{ṫξ : ξ ∈ E∩ω2}; therefore, by letting ȧ(š_k) be the canonical name for a(s_k) we
get a family {ȧ(ṫξ

_k) : ξ ∈ E ∩ω2∧k < 2} in such a way that for each α ∈ E ∩ω2:

(1α) ȧ(ṫα
_k), k < 2, is a Pα+ω-name for a subset of ω and

Pα+ω ‖− ȧ(ṫα
_1) = ω \ ȧ(ṫα

_0).

We plan to obtain, by transfinite induction on E, a collection of names {ȧ(ṫα) :
α ∈ E ∧ k < 2} satisfying (1α) together with conditions (2α)–(4α′) below. In
order to understand the meaning of these last four conditions, some remarks and
definitions are needed.

First, observe that at stage α ∈ E of our induction we will be assuming that
{ȧ(ṫξ) : ξ ∈ E ∩ α ∧ k < 2} is given. By noticing that ξ + ω ≤ α, for all ξ ∈ E ∩ α,
we obtain {a(tξ) : ξ ∈ E ∩ α ∧ k < 2} ⊆ V [Gα], whenever Gα is a Pα-generic filter
over V . Hence Yα := {a(tα � (β + 1)) : β + 1 < δα} turns out to be an element of
V [Gα] and so are Aα, the Boolean algebra generated by Yα in P(ω), and uα, the
ultrafilter generated by Yα in Aα.

Working in V [Gα], define Rα as follows, p ∈ Rα iff there exist p0, p1 ∈ Rα \ uα
with p = (p0, p1) and p0 ∩ p1 = ∅. We order Rα by p ≤ q iff q0 ⊆ p0 and q1 ⊆ p1.
This poset was introduced by Koszmider in [22] to force a minimal element, i.e.,
whenever Hα is an Rα-generic filter over V [Gα],

⋃
{p0 : p ∈ Hα} is minimal for

(Aα, uα). The following relations between Rα and Aα will be of use.

Lemma 6.16. When Aα is an atomless Boolean algebra, the following holds.

(1) Rα is an atomless poset.
(2) If Hα is Rα-generic over V [Gα] and x :=

⋃
{p0 : p ∈ Hα}, then the Boolean

algebra generated by Aα ∪ {x} is atomless.
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Proof. Let p ∈ Rα be arbitrary, Then −(p0 ∪ p1) ∈ uα and thus −(p0 ∪ p1) 6= ∅; so
there are q0, q1 ∈ Aα \ {∅} such that q0 ∩ q1 = ∅ and q0 ∪ q1 = −(p0 ∪ p1) ∈ uα.
Hence we can assume, without loss of generality, that q0 ∈ uα and q1 /∈ uα. Once
again, the fact that q1 is not an atom implies the existence of r0, r1 ∈ Aα \{∅} with
q1 = r0∪r1 and r0∩r1 = ∅. In particular, r0, r1 /∈ uα and therefore (p0∪r0, p1∪r1)
and (p0 ∪ r1, p1 ∪ r0) are two incompatible extensions of p in Rα. This proves (1).

For (2), let b 6= ∅ be an element of Aα(x), the Boolean algebra generated by
Aα ∪ {x}. Then there are b0, b2 ∈ Aα with b = (b0 ∩ x) ∪ (b1 − x). Thus b0 ∩ x 6= ∅
or b1 − x 6= ∅. In the first case, p0 ∩ b0 6= ∅, for some p0 ∈ Rα, and so p0 ∩ b0 is not
an atom in Aα, which implies that b is not an atom in Aα(x). A similar argument
can be used when b1 − x 6= ∅. �

Observe that Aω2 is atomless because 2ω has no isolated points. We want to
keep this property in our induction:

(2α) Pα ‖−“The Boolean algebra generated by {ȧ(ṫα � (β + 1)) : β + 1 < δα}, is
atomless.”

Note that, as a consequence of (2α), Rα is a countable atomless poset and so (see
[23, Exercise III.3.70]) the poset (ω<ω,⊇) embedds densely into Rα. On the other
hand, the quotient forcing Pα+ω/Gα adjoins a Cohen real to V [Gα], i.e., V [Gα+ω]
always contains an Rα-generic filter over V [Gα]. Therefore, by letting ȧ(ṫα

_0) be
a Pα+ω-name for the generic object added by Rα to V [Gα], conditions (1α) and

(2α+ω) hold. Moreover, if Ȧα and u̇α are Pα-names for the corresponding objects
discussed above, then

(3α) For each k < 2, Pα+ω ‖−“ȧ(ṫα
_k) is minimal for (Ȧα, u̇α).”

Up to this point our induction is guaranteed to produce a T -algebra, but since
we are interested in getting an Efimov T -algebra, our next result is needed.

Lemma 6.17. Assume that, in V [Gα], uα is an accumulation point of a countable
set S ⊆ St(Aα). If k < 2, then x ∪ {a(tα

_k)} has the finite intersection property
for infinitely many x ∈ S.

Proof. We will discuss only the case k = 0 because the same argument, mutatis
mutandis, works for k = 1. Start by enumerating S \ {uα} as {xn : n ∈ ω} in such
a way that xm 6= xn, whenever m 6= n.

Now, for each integer m, define Dm := {p ∈ Rα : ∃n ≥ m (p0 ∈ xn)}. We claim
that Dm is dense in Rα: given p ∈ Rα, we get p0 ∪ p1 /∈ uα and therefore, our
assumption on uα implies that p0 ∪ p1 /∈ xn, for some n ≥ m. Since xn 6= uα, there
is q ∈ xn \uα with q∩ (p0 ∪ p1) = ∅. Finally, (p0 ∪ q, p1) is an element of Dm which
extends p.

To conclude the proof: if m < ω, there is p ∈ Hα ∩ Dm and so p0 ∈ xn and
p0 ⊆ a(tα

_0), for some n ≥ m. Hence xn ∪ {a(tα
_0)} has the finite intersection

property. �

A set S satisfying the hypothesis of the Lemma will be called unbounded in
V [Gα].

As discussed at the beginning of Section 3, uα is the only ultrafilter in Aα that
can be extended to more than one ultrafilter in the Boolean algebra generated by
Aα ∪ {a(tα

_0)}. Thus, for any x ∈ St(Aα) \ {uα}, x ∪ {a(tα
_k)} has the finite

intersection property for exactly one k ∈ {0, 1}. Keeping this in mind, one may
paraphrase the lemma as a(tα

_0) splits any unbounded subset of St(Aα) from
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V [Gα], i.e., a(tα
_0) “grabs” infinitely many elements of S and “leaves” infinitely

many. This will be our official statement for the last condition in our induction:

(4α) Pα+ω ‖−“ȧ(ṫα
_0) splits all unbounded subsets of St(Ȧα) in V [Ġα].”

(4α′) Pα+ω ‖−“each unbounded subset of St(Ȧα) from V [Ġα] remains unbounded.”

Thus the induction can be carried through, giving us the following (recall Lemma
6.15):

Lemma 6.18. Let G be a P-generic filter over V and, in V [G], let B be the Boolean
algebra generated by {a(tα

_k) : α ∈ E ∧ k < 2}. Then B is a T -algebra, where

T := {s_k : s ∈ 2<ω1 ∧ k < 2}.

The only thing left now is to verify that B is, indeed, Efimov and has countable
tightness. For Efimov, by Remark 3.1 it suffices to show that St(B) has no con-
verging sequences. To do this we will prove that no point in St(B) is the limit of
an infinite sequence in the Stone space of B. So let z ∈ St(B) be arbitrary.

According to Proposition 3.5, there is f ∈ 2ω1 ∩V [G] in such a way that z is the
ultrafilter generated by {a(f � (α+ 1)) : α < ω1} in B. Define

Tf := {(f � α)_k : α < ω1 ∧ k < 2},
denote by Bf the Boolean algebra generated by {a(s) : s ∈ Tf}, and let uf be the
ultrafilter generated by {a(s) : s ∈ Tf} in Bf . Also, set Xf := St(Bf ) \ {uf}.

For each α < ω2, define Gα := G ∩ Pα. Since P is ccc and the iteration has
length ω2, f ∈ V [Gλ], for some λ < ω2.

Condition (5) in Lemma 6.15 implies that for each β < ω1 there is α ∈ E
with tα = f � β. Moreover, if α ∈ E \ (α + 1) satisfies tα = f � β, then tα =
tα ∈ {tξ : ξ ∈ E ∩ α}, contradicting Lemma 6.15-(3). This remark proves that
µ := sup{α ∈ E : ∃β < ω1(tα = f � β)} < ω2. It follows from Lemma 6.14, that
λ ≤ µ. In summary, we have that f ∈ V [Gµ] and for each β < ω1, there is a γ < µ
such that {a(f � (α+ 1)) : α < β} ∈ V [Gγ ].

From the last paragraph we deduce that Tf , Bf , uf , and the topological space
Xf are all elements of V [Gµ]. More can be proved:

Lemma 6.19. Xf has countable tightness.

Proof. Let Ef = {α ∈ E : tα ⊂ f}. Choose any α ∈ Ef and any unbounded
S ⊂ St(Aα) in V [Gα] as described above. We show that it follows from induction
condition (4α′) and induction on β ∈ E \ α, we have that if tα ⊂ tβ ⊂ f , then S
can be regarded as a subset of St(Aβ), and that S remains unbounded in St(Aβ).
If β ∈ E \ Ef , then the introduction of a(tβ) has no effect on the unboundedness
of S, while for β ∈ Ef \α, the fact that S remains unbounded is assumption (4α′).
Therefore, for each α ∈ Ef and S ∈ V [Gα] which is unbounded in St(Aα), we have
that z is a limit point of S.

By Lemma 6.13, it suffices to show that for each uncountable S ⊂ St(Af ) which
is a member of V [Gµ], there is an α ∈ Ef such that S ∩ St(Aα) is unbounded in
St(Aα) and is a member of V [Gα]. For each s ∈ S, there is a minimal ξs ∈ µ such
that s ∈ St(Aξs+1). The special nature of T -algebras also ensures that for each
ξ < ω1, there is a unique s ∈ St(Af ) such that ξs = ξ. By the definition of µ,

the set {ξs : s ∈ S} is cofinal in µ. Fix a Pµ-name Ẏ for the set {ξs : s ∈ S}.
It will be most convenient to use a countable elementary submodel argument. Fix
any countable elementary submodel M ≺ H(ℵ3) such that Ẏ , Pµ, {ṫβ : β ∈ µ} are
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all in M . Let γ = sup(M ∩ µ) and let ṠM be the name Ṡ ∩M . It follows easily

that ṠM is a Pγ-name, and that ‖−Pµ “Ṡ ⊃ ṠM”. An easy elementary argument

shows that valGγ (ṠM ) = SM is cofinal in γ. In addition, if α = min(Ef \ γ), then
{s : ξs ∈ SM} is unbounded in St(Aα). �

By an argument very much the same as in Lemma 6.19, one can show the fol-
lowing.

Lemma 6.20. In V [Gµ], Xf is sequentially compact.

Unfortunately we need to prove something stronger because we need this to hold
in V [G] and it is not true that Hechler forcing preserves the sequential compactness
of general spaces. This is the reason we needed to introduce the SSP property and
to finish the paper by proving the following.

Lemma 6.21. In V [Gµ], Xf has the SSP property.

Proof. For each ξ ∈ ω1, let xξ be the point in Xf with filter base equal to {a(t) :
t < f � ξ} ∪ {ω \ a(f � ξ + 1)}. For each ξ ∈ ω1, let αξ ∈ µ be the unique value
so that f � ξ = tαξ . Also, let cξ = ω \ a(f � ξ + 1). To show that Xf has the SSP
property, we must show that for each stationary set S ⊂ ω1, there is a b ∈ Bf \ uf
such that Xf \

⋃
{cξ : ξ ∈ S} is contained in the compact open set corresponding

to b. We may assume that we have a Pµ-name ḟ for f .

To do so, let Ṡ be a Pµ-name and assume there is a p ∈ Pµ forcing that S is
stationary. Let S1 denote the set of ξ ∈ ω1 such that there is some pξ < p in Pµ
with pξ ‖− ξ ∈ Ṡ. It follows immediately that S1 is stationary. Naturally, we select
such a pξ < p for each ξ ∈ S1. We may suppose additionally, that pξ forces a value

on αξ so that pξ ‖− ṫαξ = ḟ � ξ + 1. For each ξ ∈ S1, ċξ will denote the canonical

Pαξ+ω-name for cξ, which is simply the complement of ȧ(ṫαξ). By passing to a

stationary subset of S1, and by symmetry, we may suppose that pξ ‖− ḟ(ξ) = 1 for
each ξ ∈ S1. There is no loss of generality to assume that αξ ∈ dom(pξ) for all
ξ ∈ S1.

For each ξ ∈ S1, we have that pξ � αξ forces that pξ � [αξ, αξ + ω) corresponds

to a certain pair (bξ0, b
ξ
1) in the poset Rαξ . Let us understand this better. In the

extension V [Gαξ ] (with p � αξ ∈ Gαξ), we have that (bξ0, b
ξ
1) is a disjoint pair in

Aαξ \ uαξ and that, for any extension (cξ0, c
ξ
1) < (bξ0, b

ξ
1) in Rαξ , we can find an

extension of pξ � [αξ, αξ + ω) which forces that a(tαξ+1) contains cξ0 and is disjoint

from cξ1. In particular, if there is some ζ < ξ such that bξ0 /∈ xζ , then we can extend
pξ � [αξ, αξ + ω) to force that xζ ∈ cξ (where cξ is defined as above).

For each ξ ∈ S1, choose a finite Lξ ⊂ ξ such that pξ � αξ forces that bξ0 and bξ1 are
in the Boolean algebra generated by {a(f � γ + 1) : γ ∈ Lξ}. By the pressing down
lemma, we may choose a stationary set S2 ⊂ S1 such that for ξ, ξ′ ∈ S2, Lξ = Lξ′

and (bξ0, b
ξ
1) = (bξ

′

0 , b
ξ′

1 ). Let (b0, b1) denote this common pair.
For each ξ ∈ S2 \ min(S2), let g(ξ) ∈ S2 ∩ ξ be chosen so that dom(pξ) ∩

max(dom(pβ)) ⊂ dom(pξ) ∩ max(dom(pg(ξ))) for all β ∈ S2 ∩ ξ. In words, just
pick a witness to the largest intersection of max(dom(pβ)) with dom(pξ). By the
pressing down lemma, there is a δ ∈ ω1 and a stationary S3 ⊂ S2 such that g(ξ) < δ
for all ξ ∈ S3. We may also assume that Lξ ⊂ δ for all ξ ∈ S3. Let µδ < µ be such
that dom(pβ) ⊂ µδ for all β < δ. Using that Pµδ is ccc, there is a generic filter
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Gµδ for Pµδ such that S4 = {ξ ∈ S3 : pξ � µδ ∈ Gµδ} is stationary (in the model
V [Gµδ ]).

Now we prove that if Gµ is Pµ-generic, and Gµ∩Pµδ = Gµδ , then Xf \
⋃
{cξ : ξ ∈

S} is contained in the clopen set given by b1. Choose any condition q ∈ Pµ such that
q � µδ ∈ Gµδ . Assume that q ‖− b /∈ xζ . Choose any β ∈ S3 so that dom(q) ⊂ αβ .
Then choose any ξ ∈ S4 \β. Therefore we have that dom(pξ)∩max(dom(pβ)) ⊂ µδ,
which implies that q and pξ � αξ are compatible conditions in Pαξ . By the discussion
above, there is a common extension of q and pξ which forces that cξ ∈ xζ . �
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