
MARTIN’S AXIOM AND SEPARATED MAD FAMILIES
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Abstract. Two families A,B of subsets of ω are said to be sep-
arated if there is a subset of ω which mod finite contains every
member of A and is almost disjoint from every member of B. If
A and B are countable disjoint subsets of an almost disjoint fam-
ily, then they are separated. Luzin gaps are well-known examples
of ω1-sized subfamilies of an almost disjoint family which can not
be separated. An almost disjoint family will be said to be ω1-
separated if any disjoint pair of ≤ω1-sized subsets are separated.
It is known that the proper forcing axiom (PFA) implies that no
maximal almost disjoint family is ≤ω1-separated. We prove that
this does not follow from Martin’s Axiom.

1. Introduction

In this paper we construct a model of Martin’s Axiom in which there
is a maximal almost disjoint family of subsets of ω which has a strong
separation property we call ω1-separated. Combinatorial properties of
almost disjoint families are fundamental and well-studied. Two sets
are said to be almost disjoint, also orthogonal to each other, if their
intersection is finite, and two families of sets are orthogonal if each
member of one is orthogonal to each in the other. Two families of
subsets of ω are separated if there is a set C which is orthogonal to the
first while ω \ C is orthogonal to the other (i.e. C mod finite contains
each member of the first family).

One of the most famous and influential papers on orthogonal almost
disjoint families is the 1947 paper of Luzin.

Proposition 1.1. [3] There exist orthogonal ℵ1-sized almost disjoint
families of subsets of ω which can not be separated.
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Of course Luzin’s method was based on the ideas introduced by
Hausdorff in constructing (ω1, ω

∗
1)-gaps. Todorcevic [6] introduces the

terminology of a Luzin gap. A pair ({aα}α∈ω1 , {bα}α∈ω1) of families of
countable sets is a Luzin gap if for all α 6= β, aα ∩ bα is empty, while
(aα ∩ bβ) ∪ (aβ ∩ bα) is not empty. It is well-known that a Luzin gap
can not be separated.

Abraham and Shelah [1] study the notions of Luzin sequences and
Luzin* sequences. A sequence {aα : α ∈ ω1} is a Luzin sequence
(respectively Luzin* sequence) if for all ζ ∈ ω1 and n ∈ ω, the set {α ∈
ζ : aα ∩ aζ ⊂ n} is finite (respectively {α ∈ ζ : |aα ∩ aζ | < n} is finite).
An uncountable almost disjoint family is defined to be inseparable if
no uncountable pair can be separated. Each Luzin* family is Luzin,
and each Luzin family is inseparable. One of the results of [1] was to
establish that MA(ω1) implies that each inseparable sequence could be
written as a countable union of Luzin* sequences.

We may say that an almost disjoint family is nowhere inseparable if
it contains no inseparable subfamily. Regrettably the word separable
in the context of almost disjoint families is already defined to mean
something quite unrelated; specifically the term completely separable
almost disjoint family is defined to mean that every set having infinite
intersection with infinitely many of the members will contain a member.

There is a particularly natural example of a Luzin gap ( [5, Lemma
1] and [6, p57]) which can best be defined as subsets of the tree 2<ω.

Proposition 1.2. If {fα : α ∈ ω1} ⊂ 2ω, and for each α ∈ ω1, let
aα = {fα � n : fα(n) = 0} and bα = {fα � n : fα(n) = 1}. Then, for all
α < β, aα ∩ bα = ∅, and |(aα ∩ bβ) ∪ (aβ ∩ bα)| = 1.

On the other hand, it is a very well-known result of Silver that
MA(ω1) implies that any family of ω1 many branches themselves is
nowhere inseparable ([4, p162]). This is the genesis of the following
notion.

Definition 1.3. A family A ⊂ [ω]ω is special if

(1) A is an almost disjoint family and
(2) there is a function c : [A]<ω → ω and a linear ordering < (or <c)

of A satisfying that, for each n ∈ ω, if B1 < · · · < Bn and C1 <
· · · < Cn are two sequences from A, and if c({B1, . . . , Bn}) =
c({C1, . . . , Cn}) = k, then for all i 6= j ∈ {1, . . . , n}, Bi ∩ Cj is
contained in k.

Definition 1.4. An almost disjoint family A is <λ-special if each A′ ∈
[A]<λ is special. We say that A is λ-special if it is <λ+-special.

It is a well-known generalization of Silver’s result that
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Proposition 1.5. MAω1 implies that disjoint ≤ℵ1-sized subsets of an
ω1-special family are separated.

Proof. Let A be an ω1-special family and let A0 and A1 be disjoint
subsets of A, each with cardinality at most ω1. Of course if either is
countable, then the fact that MAω1 implies that b > ω1, shows that
they can be separated. Otherwise, let c be the function from [A0∪A1]

<ω

into ω which witnesses that A0 ∪A1 is special. A poset Q is defined to
be the family of functions q into ω such that dom(q) is a finite subset of
A0∪A1 and q satisfies that (a\q(a)) is disjoint from (b\q(b)) whenever
a ∈ dom(q) ∩A0 and b ∈ dom(q) ∩A1. The poset Q is simply ordered
by extension. It suffices to show that Q is ccc.

Let {qξ : ξ ∈ ω1} ⊂ Q. Towards proving that this is not an antichain,
we may assume that there are integers n, k̄ and subsets I, I0, I1 of n
such that, for each ξ 6= η ∈ ω1,

(1) dom(qξ) = {aξ` : ` < n} as ordered by <c,

(2) q(aξ`) = q(aη` ) < k̄ for all ` < n,

(3) aξ` ∈ A0 if ` ∈ I0,
(4) aξ` ∈ A1 if ` ∈ I1,
(5) n = I0 ∪ I1,
(6) aξ` = aη` if and only if ` ∈ I
(7) c(aξ0, . . . , a

ξ
n−1) = c(aη0, . . . , a

η
n−1) < k̄,

(8) aξ` ∩ k̄ = aη` ∩ k̄ for each ` < n,

We check that qξ ∪ qη ∈ Q for such ξ, η. Indeed, suppose that aξi ∈
dom(qξ) ∩ A0 and aηj ∈ dom(qη) ∩ A1. It follows that i 6= j and

so by the hypothesis on c, we have that aξi ∩ a
η
j ⊂ k̄. In addition,

k̄∩(aξi \qξ(a
ξ
i ))∩(aηj \qη(a

η
j )) is the same as k̄∩(aξi \qξ(a

ξ
i ))∩(aξj \qξ(a

η
j ))

and so is empty. �

For a collection A ⊂ [ω]ω with the property that no finite union from
A is cofinite, the well-known poset PA as defined in [4, p153] is ccc and
forces an infinite set a ⊂ ω which satisfies that for all Y ⊂ ω (in the
ground model), a is almost disjoint from Y if and only if Y is (mod
finite) covered by a finite union from A. We make a minor change so
that if A is the empty family, then PA simply adds a standard Cohen
real.

Definition 1.6. For a family A ⊂ [ω]ω, we define PA so that p ∈ PA if
p = (tp,Ap) ∈ [ω]<ω×[A]<ω, and p < q if tq ⊂ tp, max(tq) < min(tp\tq),
Aq ⊂ Ap, and tp ∩ A ⊂ tq for all A ∈ Aq.

The following result was the main motivation for this paper.
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Proposition 1.7. [2, 2.10] PFA implies that every maximal almost
disjoint family contains a Luzin sequence.

The previous result follows easily from Lemma 1.8 which is new and
illustrates some of the key ideas.

Lemma 1.8. Let U be an ultrafilter on ω and suppose that A is an
uncountable almost disjoint family satisfying that, for each U ∈ U , all
but countably many members of A meet U in an infinite set. Then
there is a ccc poset which forces that A contains a Luzin sequence.

Proof. Clearly we may assume that A has cardinality ω1 and fix an
enumeration {aα : α ∈ ω1}. The poset Q consists simply of conditions
q = (nq, Iq) ∈ ω × [ω1]

<ω where a condition p extends q if Ip ⊃ Iq,
np ≥ nq, and for β ∈ Ip \ Iq and all α ∈ Iq ∩ β, aα ∩ aβ 6⊂ nq.

Obviously, if G ⊂ Q is a generic filter, the desired Luzin sequence
will be given by {aα : α ∈ İ =

⋃
p∈G Ip}. There will be a condition

that forces İ is uncountable so long as Q is ccc.
Assume now that {qξ : ξ ∈ ω1} ⊂ Q. By passing to a subcollection,

we may assume there is an n so that n = nqξ for all ξ ∈ ω1. In
addition, we may assume that the sequence {Iqξ : ξ ∈ ω1} forms a
∆-system with root I0 = {α1, α2, . . . , αm}. For each ξ ∈ ω1, let Iqξ \
I0 = {βξ1, . . . , β

ξ
`} be listed in increasing order, and assume that αm <

βξ1. One final reduction (not really needed) is to choose a sequence of
integers {k1, . . . , k`} so that for all ξ ∈ ω1 and 1 ≤ i ≤ `, we have that
ki ∈ aβξi .

We define a collection T ⊂ ([ω]<ω)` according to ~t = 〈t1, . . . , t`〉 ∈ T
if J~t = {ξ : ti ⊂ aβξi

\ n for all 1 ≤ i ≤ `} is uncountable. Of course we

have that the sequence 〈∅, . . . , ∅〉 is a member of T . We show that, for
each t ∈ T and 1 ≤ i ≤ `, the set

U(~t, i) = {k ∈ ω : 〈t1, . . . , ti−1, ti ∪ {k}, ti+1, . . . t`〉 ∈ T}

is a member of U . For each k /∈ U(~t, i), J~t,i,k = {ξ ∈ J~t : k ∈ aβξi } is

countable, thus we may choose ξ ∈ J~t \
⋃
k/∈U(~t,i) J~t,i,k and observe that

for each k ∈ aβξi , J~t,i,k is uncountable. This means that ω \ U(~t, i) is

disjoint from uncountably many members of A and so can not be a
member of U .

Now choose δ ∈ ω1 so large that for all ~t ∈ T , 1 ≤ i ≤ ` and k ∈ ω, if
J~t,i,k is countable, then it is contained in δ and, if U(~t, i) ∈ U , it meets

aβδj in an infinite set. If ~t = 〈t1, . . . , t`〉 ∈ T and if 1 ≤ i, j ≤ `, then

there is an k ∈ aβδj ∩ U(~t, i), which implies that ~t∗ = 〈t1, . . . , ti−1, ti ∪
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{k}, ti+1, . . . t`〉 ∈ T . Therefore a routine finite recursion shows the
existence of a sequence ~t = 〈t1, . . . , t`〉 ∈ T satisfying that for each
1 ≤ i, j ≤ `, ti ∩ aβδj is not empty. It is routine to verify that for any

ξ ∈ J~t, qξ and qδ are compatible since ti ∩ aβδj 6⊂ n is a witness to

aβξi
∩ aβδj 6⊂ n for each 1 ≤ i, j ≤ `. �

2. An ω1-special mad family and MAω1

We produce a model of MAω1 in which there is an ω1-special maximal
almost disjoint family. By Proposition 1.5, this will complete the proof
of the main theorem.

Theorem 2.1. It is consistent with Martin’s Axiom and c = ω2 that
there is a maximal almost disjoint family which is ω1-separated, and so
contains no Luzin family.

The method to construct the model is to begin with a forcing to
produce a model in which c = ω2 and there is an ω1-special maximal
almost disjoint family which remains maximal in extensions by ccc
forcings of cardinality ω1. Then the standard finite support iteration
of ccc posets of cardinality ω1 can be used to extend to a model of
Martin’s Axiom. Let us say that a maximal almost disjoint family is κ-
indestructible if its maximality is preserved by any forcing of cardinality
less than κ.

Lemma 2.2. Suppose that κ is a regular cardinal and A ⊂ [ω]ω is an
almost disjoint family of cardinality κ with the property that each Y ⊂ ω
is either (mod finite) covered by finitely many members of A or meets
all but fewer than κ many members of A. Then A is κ-indestructible.

Proof. Let Q be a poset of cardinality less than κ. Assume that Ẏ
is a Q-name of a subset of ω. For each A ∈ A, choose qA ∈ Q (if
one exists) and nA ∈ ω which forces that Ẏ ∩ A ⊂ nA. Fix any
q ∈ Q and n ∈ ω so that Aq,n = {A ∈ A : qA = q, and nA = n}
has cardinality κ. It follows from the assumptions on A then that
Ẏ +
q = {m ∈ ω : (∃p < q) p  m ∈ Ẏ } is mod finite covered by finitely

many members of A. This shows that q forces that Ẏ is also covered
by finitely many members of Ȧ. �

Lemma 2.3. If A is an ω2-indestructible maximal almost disjoint fam-
ily, then it remains maximal in any extension by a finite support iter-
ation of ccc posets of size at most ω1.

Proof. Let 〈Pα, Q̇α : α ∈ λ〉 be a finite support iteration so that, for
each α,

Pα Q̇α is ccc and |Q̇α| ≤ ω1 .



6 A. DOW AND S. SHELAH

For convenience, we may assume that for each α there is a Pα-name <̇α

of a subset of ω1×ω1 so that Q̇α is forced to be the poset (ω1, <̇α). Let
Ẏ be a Pλ-name of a subset of ω. Let {Mξ : ξ ∈ ω1} be an increasing
ε-chain of countable elementary submodels of H(θ) for a sufficiently
large θ such that Pλ and Ẏ are in M0. Let M =

⋃
ξ∈ω1

Mξ and let
P ′ = Pλ ∩ M . Since P ′ is a ccc poset of cardinality ω1, there is a
condition p̄ ∈ P ′ and an A ∈ A such that p̄ P ′ Ẏ ∩ A is infinite.
Assume that p̄ > p ∈ Pλ is such that there is an n ∈ ω with p Pλ

Ẏ ∩A ⊂ n. We may assume that p satisfies that for each α ∈ dom(p),
p(α) is an element of ω1 (and not just forced to be). There is a δ ∈ ω1

such that p(α) ∈ δ for all α ∈ dom(p) and so that dom(p) ∩M ∈ Mδ.
It follows by elementarity that, for each α ∈ dom(p̄) ∩ dom(p) ∩Mδ,
p � (dom(p) ∩ Mδ ∩ α)  p(α) <̇α p̄(α). Now choose p′ ∈ P ′ and
m ∈ A \ n such that p′ < p � Mδ and p′  n ∈ Ẏ . It is easily checked
that p′ is compatible with p (mainly since dom(p′)∩dom(p) ⊂ dom(p′)).
It follows that p̄ Pλ Ẏ ∩A is infinite; and that A remains maximal. �

Now we define the natural poset for introducing a function to make
an almost disjoint family special.

Definition 2.4. For an almost disjoint family A and a linear order ≺
of A, the poset QA,≺ will simply be the set of functions c such that
dom(c) = P(Ac) for some finite Ac ⊂ {aβ : β < α} which satisfy con-
dition (2) of Definition 1.3. The ordering on QA,≺ is simple extension.
We use QA if the choice of ≺ is clear from the context.

We make the following observations about QA,≺.

Lemma 2.5. Let A ⊂ [ω]ω be an almost disjoint family which is special.

(1) If ≺ is any linear ordering of A, then the poset QA,≺ is ccc.
(2) If a ∈ [ω]ω is almost disjoint from each member of A, then
A ∪ {a} is also special.

Proof. Let c and <̃ be the witnesses (as in (2) of Definition 1.3) that
A is special. To prove item 2, let us notice that 2c (doubling each
value) is also a witness to A is special; so we may assume that c takes
on only even values. Extend <̃ to all of A ∪ {a} by declaring b<̃a
for all b ∈ A. Also extend c by defining c(B1, . . . , Bn−1, a) as follows.
Choose k0 minimal so that Bi ∩ a ⊂ k0 for all 1 ≤ i < n and let k1 =
c(B1, . . . , Bn−1). Now define c(B1, . . . , Bn−1, a) to be (the odd integer)
3k0 · 5k1 . Assume that c(B1, . . . , Bn−1, a) = c(C1, . . . , Cn−1, a) = k. It
follows that c(B1, . . . , Bn−1) = c(C1, . . . , Cn−1) < k and so Bi ∩Cj ⊂ k
for distinct 1 ≤ i, j < n. Of course each of Bi ∩ a and Ci ∩ a are
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contained in k because of the choice of k0. This proves that A∪ {a} is
special.

Now we prove that QA,≺ is ccc. Let {qξ : ξ ∈ ω1} be a subset. We
may assume that the family {Aqξ : ξ ∈ ω1} forms a ∆-system, each
with cardinality n and with root R. For each ξ, let Aqξ be enumerated

in ≺-increasing order: {aξ1, . . . , aξn}. We may assume that for each ξ, ζ

and each 1 ≤ i ≤ n, aξi ∈ R whenever aζi ∈ R. We may also assume
that there is an uncountable I0 ⊂ ω1 and a fixed permutation π of n
such that aξπ(i)<̃a

ξ
π(i+1) for each 1 ≤ i < n for all ξ ∈ I0. Similarly,

there is an uncountable I1 ⊂ I0, an integer k and a function c defined
on the power set of n satisfying that, for each increasing sequence
1 ≤ ρ(1) < · · · < ρ(`) ≤ n,

cqξ({a
ξ
ρ(1), . . . , a

ξ
ρ(`)}) = c({ρ(1), . . . , ρ(`)}) < k

and
c({aξ1, . . . , aξn}) < k .

Now choose ξ < ζ ∈ I1 so that for each 1 ≤ i ≤ n, aξi ∩ k = aζi ∩ k.
By virtue of c, it follows that cqξ ∪ cqζ is a partial function on P(A′)
(as in there are no disagreements), where A′ = Aqξ ∪ Aqζ . Extend
this to a function c′ with domain P(A′) so that if c′({B1, . . . , Bm}) =
c′({C1, . . . , Cm}) then each of {B1, . . . , Bm} and {C1, . . . , Cm} are con-
tained in one of Aqξ or Aqζ . To check that q′ = (c′,A′) is a common ex-
tension of qξ and qζ we simply have to show that c′ satisfies the require-
ment of being a specializing function. Now the only case to check is
if c′({B1, . . . , Bm}) = c′({C1, . . . , Cm}) = k′ < k with {B1, . . . , Bm} ⊂
Aqξ and {C1, . . . , Cm} ⊂ Aqζ . Let ρ0 and ρ1 be the increasing map-

pings from m into n so that {B1, . . . , Bm} = {aξρ0(1)
, . . . , aξρ0(m)} and

{C1, . . . , Cm} = {aζρ1(1)
, . . . , aζρ1(m)}. It follows that c(ρ0) = c(ρ1).

Therefore cqξ({a
ξ
ρ0(1)

, . . . , aξρ0(m)} = cqξ({a
ξ
ρ1(1)

, . . . , aξρ1(m)}) = k′. There-

fore, for 1 ≤ i 6= j ≤ m, aξρ0(i)
∩ aξρ1(j)

⊂ k′. If, for example aξρ1(j)
is in

the root R, then we have that aξρ0(i)
∩ aζρ1(j)

= Bi ∩ Cj ⊂ k′. If neither

is in the root, then ρ0(i) 6= ρ1(j) and so we know that aξρ1(i)
∩aζρ1(j)

⊂ k

and so

Bi ∩ Cj = aξρ0(i)
∩ aζρ1(j)

∩ k = aξρ1(i)
∩ (aξρ1(j)

∩ k) ⊂ k′ .

�

Theorem 2.6. If 2ω1 = ω2, then there is a ccc poset of cardinality ω2

which forces that there is an ω2-indestructible maximal almost disjoint
family which is ω1-special.
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Proof. We define a finite support iteration 〈Pα, Q̇α : α ∈ ω2〉 and a
sequence 〈ċα, ȧα : α ∈ ω2〉 so that, for each α < ω2,

(1) for each β < α, ȧβ is a Pα-name of a subset of ω,
(2) ċα is a Pα+1-name such that Pα+1 forces that ċα witnesses that
Ȧα = {ȧβ : β < α} is special

(3) Q̇α is a Pα-name of a product, Q̇0
α × Q̇1

α, of cardinality at most
ω1,

(4) Q̇0
α is the Pα-name of PAα (as in Definition 1.6),

(5) Q̇1
α is the Pα-name of the poset QAα as in Definition 2.4 which

adds ċα.

To prove that the poset Pω2 is ccc it is sufficient to prove by induction
on α, that each Q̇1

α is forced to be ccc. Before doing so, let us assume
that Pω2 satisfies the above conditions and check that this will prove the
statement of the theorem. In particular, we check that the collection
{ȧα : α ∈ ω2} of Pω2-names is forced to be a maximal almost disjoint
family which is ω1-special and ω2-indestructible. Clearly condition 2
implies that it is forced to be ω1-special (which implies almost disjoint).
To show that it will be ω2-indestructible (and therefore maximal) we
check that it will satisfy the hypothesis of Lemma 2.2. If Ẏ is any Pω2-
name of a subset of ω, there is an α < ω2 such that Ẏ is a Pα-name.
By condition 4 and the remarks preceding Definition 1.6, we have that
it is forced that Ẏ meets ȧβ for all β ≥ α.

Now assume, by induction on α, that Pα is ccc and let Gα be a Pα-
generic filter. If α is a successor then Lemma 2.5 shows that QAα is
ccc, so we assume that α is a limit ordinal. Working in V [Gα], consider
an uncountable collection {qξ : ξ ∈ ω1} ⊂ QAα . If α had countable
cofinality, then there would be a µ < α such that J = {ξ : qξ ∈ QAµ}
is uncountable. Again, by Lemma 2.5, QAµ is (still) ccc and so two
members of {qξ : ξ ∈ J} would be compatible in QAµ and also in QAα .
Therefore we may assume that α has cofinality ω1.

By passing to a subcollection, we may assume that there is some n ∈
ω such thatAqξ has cardinality n for all ξ. For each ξ, fix {βξi : i < n} ⊂
α so that Aqξ = {aβξi : i < n}. Fix a function c from P(n) into ω so

that for some uncountable set Γ ⊂ ω1, and all increasing sequences 1 ≤
ρ(1) < · · · < ρ(`) ≤ n, c̄({ρ(1), . . . , ρ(`)}) = cqξ({aβξ

ρ(1)
, . . . , aβξ

ρ(`)
}).

For simplicity of notation, we again just assume that Γ is all of ω1.
Choose m ≤ n maximal (possibly m = 0) so that there is a µ < α

such that βξm < µ for uncountably many (and, by another reduction,
all) ξ. Further, choose a sufficiently large k and arrange that for each
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ξ ≤ ζ and increasing sequence 1 ≤ ρ(1) < · · · < ρ(`) ≤ m

cµ({aβξρ(1), . . . , aβξρ(`)}) = cµ({aβζρ(1), . . . , aβζρ(`)}) < k .

Further arrange that k is sufficiently large (and by a futher reduction)
that there is a fixed sequence {t1, . . . , tn} ⊂ P(k) so that for all ξ and
for distinct 1 ≤ i, j ≤ n, aβξi

∩ aβξj ⊂ k and aβξi
∩ k = ti. Finally for

ξ < ζ, we may assume that βξn < βζm+1.
Now we return to the extension V [Gα∩Pµ] and fix elements pξ ∈ Pα

for ξ ∈ ω1 so that pξ � µ ∈ Gα and pξ forces that qξ has the desired
properties developed above. We may assume several things about pξ:

(1) pξ has determined the sequence {βξi : 1 ≤ i ≤ n} and the value
of c

(2) βξi ∈ dom(pξ) for each m < i ≤ n,
(3) for all γ ∈ dom(pξ),

(a) pξ � γ forces that pξ(γ) = ((tξγ,Aξγ), cξγ) ∈ Q̇0
γ × Q̇1

γ

(b) tξγ is a member of [ω]<ω and tξγ 6⊂ k,

(c) there is a finite set Iξγ ⊂ γ ∩ dom(pξ) such that Aξγ = {ȧδ :

δ ∈ Iξγ},
(d) the domain of cξγ is P(Aξγ) and the integer values have been

determined.

Now we may choose an uncountable J ⊂ ω1 so that the sequence
{dom(pξ) : ξ ∈ ω1} forms a ∆-system (and by possibly increasing µ)
with root contained in µ.

Since Pα is ccc, it is routine to find ξ < ζ such that

(1) pξ and pζ are compatible,
(2) max(dom(pξ)) < min(dom(pζ) \ µ),

(3) tξ
βξi

= tζ
βζi

end-extends ti for each m < i ≤ n.

Now we show that pξ and pζ have a common extension which forces

that qξ and qζ are compatible. This will complete the proof that Pα Q̇
1
α

is ccc.
Define p̄ so that dom(p̄) = dom(pξ) ∪ dom(pζ). The definition of

p̄ � µ is any member of Gµ which is below each of pξ � µ and pζ � µ.

For each m < i ≤ n, and γ = βξi ,

p̄(γ) = ((tξγ,Aξγ ∪ {ȧβζj : 1 ≤ j ≤ m}) , cξγ)

and for γ = βζi

p̄(γ) = ((tζγ,Aζγ ∪ {ȧβξj : 1 ≤ j ≤ n}) , cζγ) .
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For other γ ∈ dom(pξ) \µ, define p̄(γ) = pξ(γ), and similarly, for other
γ ∈ dom(pζ) \ µ, p̄(γ) = pζ(γ).

We show that p̄ forces that cqξ ∪ cqζ , as a partial function on P(Aqξ ∪
Aqζ), does not have any violations of the requirements on a specializing
function. As was shown in Lemma 2.5 this ensures that there is a
suitable extension, thus showing that qξ and qζ are compatible.

Let us first observe that p̄ forces that aβξi
∩ aβζj is contained in k̄

for all distinct 1 ≤ i, j ≤ n. If m < j ≤ n then it follows that this
intersection is contained in aβξi

∩ tζ
βζj

because of the fact that βξi was

added appropriately in the definition of p̄(βζj ). Then, since tξ
βξj

= tζ
βξj

, we

have that aβξi
∩aβζj = aβξi

∩aβξj , which was forced by pξ to be contained

in k. This is also the case if j ≤ m < i, since βζj was appropriately

added in the definition of p̄(βξi ). If 1 ≤ i, j ≤ m, then the fact that

cµ({aβξi , aβξj }) = cµ({aβζi , aβζj }) < k

ensures that aβξi
∩aβζj is contained in k. Since p̄ also forces that aβξj

∩k =

aβζj
∩ k, it also follows that for distinct 1 ≤ i, j ≤ n,

(2.1) aβξi
∩ aβζj = aβξi

∩ (aβζj
∩ k) = aβξi

∩ (aβξj
∩ k) = aβξi

∩ aβξj .

Suppose that ρ0 and ρ1 are increasing functions from {1, . . . , `} into
{1, . . . , n}. Assume that c({ρ0(1), . . . , ρ0(`)}) = c({ρ1(1), . . . , ρ1(`)} =
k. By the choice of c, not only is ρ0 and ρ1 coding an arbitrary instance
where cqξ will equal cqζ but also, if ρ0 6= ρ1, where cqξ will agree with
itself. From this latter fact, we can see that if i 6= j, then ı′ = ρ0(i) 6=
ρ1(j) = ′, since aβξ

ı′
is required to be almost disjoint from aβξ

′
. Now

suppose that i is in the range of ρ0 and j 6= i is in the range of ρ1.
We must show that aβξi

∩ aβζj is contained in k. We know already, by

virtue of cqξ , that aβξi
∩ aβξj is contained in k; and so, by equation 2.1,

aβξi
∩ aβζj is contained in k as required. �
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