
ON THE COFINALITY OF THE SPLITTING NUMBER

ALAN DOW AND SAHARON SHELAH

Abstract. The splitting number s can be singular. The key
method is to construct a forcing poset with finite support matrix
iterations of ccc posets introduced by Blass and the second author
[Ultrafilters with small generating sets, Israel J. Math., 65, (1989)]

1. Introduction

The cardinal invariants of the continuum discussed in this article
are very well known (see [5, van Douwen, p111]) so we just give a brief
reminder. They deal with the mod finite ordering of the infinite subsets
of the integers. A set S ⊂ ω is unsplit by a family Y ⊂ [ω]ℵ0 if S is
mod finite contained in one member of {Y, ω \Y } for each Y ∈ Y . The
splitting number s is the minimum cardinal of a family Y for which
there is no infinite set unsplit by Y (equivalently every S ∈ [ω]ℵ0 is
split by some member of Y). It is mentioned in [2] that it is currently
unknown if s can be a singular cardinal.

Proposition 1.1. The cofinality of the splitting number is not count-
able.

Proof. Assume that θ is the supremum of {κn : n ∈ ω} and that there
is no splitting family of cardinality less than θ. Let Y = {Yα : α < θ}
be a family of subsets of ω. Let S0 = ω and by induction on n, choose
an infinite subset Sn+1 of Sn so that Sn+1 is not split by the family
{Yα : α < κn}. If S is any pseudointersection of {Sn : n ∈ ω}, then S
is not split by any member of Y . �
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2 A. DOW AND S. SHELAH

One can easily generalize the previous result and proof to show that
the cofinality of the splitting number is at least t. In this paper we
prove the following.

Theorem 1.2. If κ is any uncountable regular cardinal, then there is
a λ > κ with cf(λ) = κ and a ccc forcing P satisfying that s = λ in the
forcing extension.

To prove the theorem, we construct P using matrix iterations.

2. A special splitting family

Definition 2.1. Let us say that a family {xi : i ∈ I} ⊂ [ω]ω is θ-Luzin
(for an uncountable cardinal θ) if for each J ∈ [I]θ,

⋂
{xi : i ∈ J} is

finite and
⋃
{xi : i ∈ J} is cofinite.

Clearly a family is θ-Luzin if every θ-sized subfamily is θ-Luzin. We
leave to the reader the easy verification that for a regular uncountable
cardinal θ, each θ-Luzin family is a splitting family. A poset being
θ-Luzin preserving will have the obvious meaning. For example, any
poset of cardinality less than a regular cardinal θ is θ-Luzin preserving.

Lemma 2.2. If θ is a regular uncountable cardinal then any ccc finite
support iteration of θ-Luzin preserving posets is again θ-Luzin preserv-
ing.

Proof. We prove this by induction on the length of the iteration. Fix
any θ-Luzin family {xi : i ∈ I} and let 〈〈Pα : α ≤ γ〉, 〈Q̇α : α < γ〉〉
be a finite support iteration of ccc posets satisfying that Pα forces that
Q̇α is ccc and θ-Luzin preserving, for all α < γ.

If γ is a successor ordinal β + 1, then for any Pβ-generic filter Gβ,
the family {xi : i ∈ I} is a θ-Luzin family in V [Gβ]. By the hypothesis

on Q̇β, this family remains θ-Luzin after further forcing by Q̇β.

Now we assume that α is a limit. Let J̇0 be any Pγ-name of a

subset of I and assume that p ∈ Pγ forces that |J̇0| = θ. We must

produce a q < p that forces that J̇0 is as in the definition of θ-Luzin.
There is a set J1 ⊂ I of cardinality θ satisfying that, for each i ∈ J1,
there is a pi < p with pi 
 i ∈ J̇0. The case when the cofinality of
α not equal to θ is almost immediate. There is a β < α such that
J2 = {i ∈ J1 : pi ∈ Pβ} has cardinality θ. There is a Pβ-generic filter
Gβ such that J3 = {i ∈ J2 : pi ∈ Gβ} has cardinality θ. By the
induction hypothesis, the family {xi : i ∈ I} is θ-Luzin in V [Gβ] and
so we have that

⋂
{xi : i ∈ J3} is finite and

⋃
{xi : i ∈ J3} is co-finite.

Choose any q < p in Gβ and a name J̇3 for J3 so that q forces this
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property for J̇3. Since q forces that J̇3 ⊂ J̇0, we have that q forces the
same property for J̇0.

Finally we assume that α has cofinality θ. Naturally we may assume
that the collection {dom(pi) : i ∈ J1} forms a ∆-system with root
contained in some β < α. Again, we may choose a Pβ-generic filter Gβ

satisfying that J2 = {i ∈ J1 : pi � β ∈ Gβ} has cardinality θ. In V [Gβ],
let {J2,ξ : ξ ∈ ω1} be a partition of J2 into pieces of size θ. For each
ξ ∈ ω1, apply the induction hypothesis in the model V [Gβ], and so we
have that

⋂
{xi : i ∈ J2,ξ} is finite and

⋃
{xi : i ∈ J2,ξ} is co-finite.

For each ξ ∈ ω1 let mξ be an integer large enough so that
⋂
{xi : i ∈

J2,ξ} ⊂ mξ and
⋃
{xi : i ∈ J2,ξ} ⊃ ω \mξ. Let m be any integer such

that mξ = m for uncountably many ξ. Choose any condition p̄ ∈ Pα
so that p̄ � β ∈ Gβ. We prove that for each n > m there is a p̄n < p̄ so

that p̄n 
 n /∈
⋂
{xi : i ∈ İ} and p̄n 
 n ∈

⋃
{xi : i ∈ İ}. Choose any

ξ ∈ ω1 so that mξ = m and dom(pi)∩ dom(p̄) ⊂ β for all i ∈ J2,ξ. Now
choose any i0 ∈ J2,ξ so that n /∈ xi0 . Next choose a distinct ξ′ with
mξ′ = m so that dom(pi) ∩ (dom(p̄) ∪ dom(pi0)) ⊂ β for all i ∈ J2,ξ′ .
Now choose i1 ∈ J2,ξ′ so that n ∈ xi1 . We now have that p̄∪ pi0 ∪ pi1 is

a condition that forces {i0, i1} ⊂ İ. �

Next we introduce a σ-centered poset that will render a given family
non-splitting.

Definition 2.3. For a filter D on ω, we define the Laver style poset
L(D) to be the set of trees T ⊂ ω<ω with the property that T has a
minimal branching node stem(T ) and for all stem(T ) ⊆ t ∈ T , the
branching set {k : t_k ∈ T} is an element of D. If D is a filter base
for a filter D∗, then L(D) will also denote L(D∗).

The name L̇ = {(k, T ) : (∃t) t_k ⊂ stem(T )} will be referred to as
the canonical name for the real added by L(D).

If D is a principal (fixed) ultrafilter on ω, then L(D) has a minimum
element and so is forcing isomorphic to the trivial poset. If D is princi-
pal but not an ultrafilter, then L(D) is isomorphic to Cohen forcing. If
D is a free filter, then L(D) adds a dominating real and has similarities
to Hechler forcing. As usual, for a filter (or filter base) D of subsets
of ω, we use D+ to denote the set of all subsets of ω that meet every
member of D.

Definition 2.4. If E is a dense subset of L(D), then a function ρE
from ω<ω into ω1 is a rank function for E if ρE(t) = 0 if and only if
t = stem(T ) for some T ∈ E, and for all t ∈ ω<ω and 0 < α ∈ ω1,
ρE(t) ≤ α providing the set {k ∈ ω : ρE(t_k) < α} is in D+.
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When D is a free filter, then L(D) has cardinality c, but nevertheless,
if D has a base of cardinality less than a regular cardinal θ, L(D) is
θ-Luzin preserving.

Lemma 2.5. If D is a free filter on ω and if D has a base of cardi-
nality less than a regular uncountable cardinal θ, then L(D) is θ-Luzin
preserving.

Proof. Let {xi : i ∈ θ} be a θ-Luzin family with θ as in the Lemma. Let
J̇ be a L(D)-name of a subset of θ. We prove that if

⋂
{xi : i ∈ J̇} is

not finite, then J̇ is bounded in θ. By symmetry, it will also prove that
if
⋃
{xi : i ∈ J̇} is not cofinite, then J̇ is bounded in θ. Let ẏ be the

L(D)-name of the intersection, and let T0 be any member of L(D) that
forces that ẏ is infinite. Let M be any < θ-sized elementary submodel
of H((2c)+) such that T0,D, J̇ , and {xi : i ∈ θ} are all members of M
and such that M ∩D contains a base for D. Let iM = sup(M ∩ θ). If
x ∈ M ∩ [ω]ω, then Ix = {i ∈ θ : x ⊂ xi} is an element of M and has
cardinality less than θ. Therefore, if i ∈ θ\iM , then xi does not contain
any infinite subset of ω that is an element of M . We prove that xi is
forced by T0 to also not contain ẏ. This will prove that J̇ is bounded
by iM . Let T1 < T0 be any condition in L(D) and let t1 = stem(T1).
We show that T1 does not force that xi ⊃ ẏ. We define the relation 
w
on T0 × ω to be the set

{(t, n) ∈ T0 × ω : there is no T ≤ T0, stem(T ) = t, s.t. T 
 n /∈ ẏ} .
For convenience we may write, for T ≤ T0, T 
w n ∈ ẏ providing
(stem(T ), n) is in 
w, and this is equivalent to the relation that T has
no stem preserving extension forcing that n is not in ẏ. Let T2 ∈ M
be any extension of T0 with stem t1. Let L denote the set of ` ∈ ω
such that T2 
w ` ∈ ẏ. If L is infinite, then, since L ∈ M , there is an
` ∈ L\xi. This implies that T1 does not force xi ⊃ ẏ, since T2 
w j ∈ ẏ
implies that T1 fails to force that ` /∈ ẏ.

Therefore we may assume that L is finite and let ` be the maximum
of L. Define the set E ⊂ L(D) according to T ∈ E providing that
either t1 /∈ T or there is a j > ` such that T 
w j ∈ ẏ. Again this
set E is in M and is easily seen to be a dense subset of L(D). By
the choice of `, we note that ρE(t1) > 0. If ρE(t1) > 1, then the set
{k ∈ ω : 0 < ρE(t_1 k) < ρE(t1)} is in D+ and so there is a k1 in this
set such that t_1 k1 ∈ T1 ∩ T2. By a finite induction, we can choose an
extension t2 ⊇ t1 so that t2 ∈ T1 ∩ T2 and ρE(t2) = 1. Now, there is
a set D ∈ D ∩M contained in {k : t_2 k ∈ T1 ∩ T2} since M contains
a base for D. Also, DE = {k ∈ D : ρE(t_2 k) = 0} is in D+. For
each k ∈ DE, choose the minimal jk so that T_2 k 
 jk ∈ ẏ. The set



ON THE COFINALITY OF THE SPLITTING NUMBER 5

{jk : k ∈ DE} is an element of M . This set is not finite because if it
were then there would be a single j such that {k ∈ DE : jk = j} ∈ D+,
which would contradict that ρE(t2) > 0. This means that there is a
k ∈ D+

E with jk /∈ xi, and again we have shown that T1 fails to force
that xi contains ẏ. �

3. Matrix Iterations

The terminology “matrix iterations” is used in [3], see also forth-
coming preprint (F1222) from the second author. The paper [3] nicely
expands on the method of matrix iterated forcing first introduced in
[1].

Let us recall that a poset (P,<P ) is a complete suborder of a poset
(Q,<Q) providing P ⊂ Q, <P ⊂ <Q, and each maximal antichain of
(P,<P ) is also a maximal antichain of (Q,<Q). Note that it follows that
incomparable members of (P,<P ) are still incomparable in (Q,<Q), i.e.
p1 ⊥P p2 implies p1 ⊥Q p2. We use the notation (P,<P ) <◦ (Q,<Q) to
abbreviate the complete suborder relation, and similarly use P <◦ Q if
<P and <Q are clear from the context. An element p of P is a reduction
of q ∈ Q if r 6⊥Q q for each r <P p. If P ⊂ Q, <P⊂<Q, ⊥P ⊂ ⊥Q,
and each element of Q has a reduction in P , then P <◦ Q. The reason
is that if A ⊂ P is a maximal antichain and p ∈ P is a reduction of
q ∈ Q, then there is an a ∈ A and an r less than both p and a in P ,
such that r 6⊥Q q.

Definition 3.1. We will say that an object P is a matrix iteration if
there is an infinite cardinal κ and an ordinal γ (thence a (κ, γ)-matrix

iteration) such that P = 〈〈PP
i,α : i ≤ κ, α ≤ γ〉, 〈Q̇P

i,α : i ≤ κ, α < γ〉〉
where, for each (i, α) ∈ κ+ 1× γ and each j < i,

(1) PP
j,α is a complete suborder of the poset PP

i,α (i.e. PP
j,α<◦ P

P
i,α),

(2) Q̇P
i,α is a PP

i,α-name of a ccc poset, PP
i,α+1 is equal to PP

i,α ∗ Q̇
P
i,α,

(3) for limit δ ≤ γ, PP
i,δ is equal to the union of the family {PP

i,β :
β < δ}

(4) PP
κ,α is the union of the chain {PP

j,α : j < κ}.

When the context makes it clear, we omit the superscript P when
discussing a matrix iteration. Throughout the paper, κ will be a fixed
uncountable regular cardinal

Definition 3.2. A sequence ~λ is κ-tall if ~λ = 〈µξ, λξ : ξ < κ〉 is a
sequence of pairs of regular cardinals satisfying that µ0 = ω < κ < λ0

and, for 0 < η < κ, µη < λη where µη = (2sup{λξ:ξ<η})+.
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Also for the remainder of the paper, we fix a κ-tall sequence ~λ and λ
will denote the supremum of the set {λξ : ξ ∈ κ}. For simpler notation,
whenever we discuss a matrix iteration P we shall henceforth assume
that it is a (κ, γ)-matrix iteration for some ordinal γ. We may refer to
a forcing extension by P as an abbreviation for the forcing extension
by PP

κ,γ.

For any poset P , any P -name Ḋ, and P -generic filter G, Ḋ[G] will
denote the valuation of Ḋ by G. For any ground model x, x̌ denotes
the canonical name so that x̌[G] = x. When x is an ordinal (or an
integer) we will suppress the accent in x̌. A P -name Ḋ of a subset of
ω will be said to be nice or canonical if for each integer j ∈ ω, there is
an antichain Aj such that Ḋ =

⋃
{{j} ×Aj : j ∈ ω}. We will say that

Ḋ is a nice P -name of a family of subsets of ω just to mean that Ḋ is
a collection of nice P -names of subsets of ω. We will use (Ḋ)P if we
need to emphasize that we mean the P -name. Similarly if we say that
Ḋ is a nice P -name of a filter (base) we mean that Ḋ is a nice P -name

such that, for each P -generic filter, the collection {Ḋ[G] : Ḋ ∈ Ḋ} is a
filter (base) of infinite subsets of ω.

Following these conventions, the following notation will be helpful.

Definition 3.3. For a (κ, γ)-matrix P and i < κ, we let BP
i,γ denote

the set of all nice PP
i,γ-names of subsets of ω. We note that this then is

the nice PP
i,γ-name for the power set of ω. As usual, when possible we

suppress the P superscript.

For a nice P-name Ḋ of a filter (or filter base) of subsets of ω, we

let (Ḋ)+ denote the set of all nice P-names that are forced to meet

every member of Ḋ. It follows that (Ḋ)+ is the nice P-name for the

usual defined notion (Ḋ)+ in the forcing extension by P. We let 〈Ḋ〉
denote the nice P-name of the filter generated by Ḋ. We use the same
notational conventions if, for some poset P, Ḋ is a nice P-name of a
filter (or filter base) of subsets of ω.

The main idea for controlling the splitting number in the extension
by P will involve having many of the subposets being θ-Luzin preserv-
ing for θ ∈ {λξ : ξ ∈ κ}. Motivated by the fact that posets of the
form L(D) (our proposed iterands) are θ-Luzin preserving when D is

sufficiently small we adopt the name ~λ-thin for this next notion.

Definition 3.4. For a κ-tall sequence ~λ, we will say that a (κ, γ)-

matrix-iteration P is ~λ-thin providing that for each ξ < κ and α ≤ γ,
PP
ξ,α is λξ-Luzin preserving.
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Now we combine the notion of ~λ-thin matrix-iteration with Lemma
2.2. We adopt Kunen’s notation that for a set I, Fn(I, 2) denotes the
usual poset for adding Cohen reals (finite partial functions from I into
2 ordered by superset).

Lemma 3.5. Suppose that P is a ~λ-thin (κ, γ)-matrix iteration for

some κ-tall sequence ~λ. Further suppose that Q̇i,0 is the Pi,0-name of
the poset Fn(λξ, 2) for each ξ ∈ κ, and therefore Pκ,1 is isomorphic to
Fn(λ, 2). Let ġ denote the generic function from λ onto 2 added by
Pκ,1 and, for i < λ, let ẋi be the canonical name of the set {n ∈ ω :
ġ(i + n) = 1}. Then the family {ẋi : i < λ} is forced by P to be a
splitting family.

Proof. Let Gκ,γ be a Pκ,γ-generic filter. For each ξ ∈ κ and α ≤ γ, let
Gξ,α = Gκ,γ∩Pξ,α. Let ẏ be any nice Pκ,γ-name for a subset of ω. Since
ẏ is a countable name, we may choose a ξ < κ so that ẏ is a Pξ,γ-name.
It is easily shown, and very well-known, that the family {ẋi : i < λξ} is
forced by Pξ,1 (i.e. Fn(λξ, 2)) to be a λξ-Luzin family. By the hypothesis

that P is ~λ-thin, we have, by Lemma 2.2, that {ẋi : i < λξ} is still λξ-
Luzin in V [G ∩ Pξ,γ]. Since ẏ is a Pξ,γ-name, there is an i < λξ such
that ẏ[Gξ,γ] ∩ ẋi[Gξ,γ] and ẏ[Gξ,γ] \ ẋi[Gξ,γ] are infinite. �

4. The construction of P

When constructing a matrix-iteration by recursion, we will need no-
tation and language for extension. We will use, for an ordinal γ, Pγ to
indicate that Pγ is a (κ, γ)-matrix iteration.

Definition 4.1. (1) A matrix iteration Pγ is an extension of Pδ

providing δ ≤ γ, and, for each α ≤ δ and i ≤ κ, PPδ

i,α = PPγ

i,α .
We can use Pγ � δ to denote the unique (κ, δ)-matrix iteration
extended by Pγ.

(2) If, for each i < κ, Q̇i,γ is a PP
i,γ-name of a ccc poset satisfying

that, for each i < j < κ, Pi,γ ∗ Q̇i,γ is a complete subposet of

Pj,γ ∗ Q̇j,γ, then we let P ∗ 〈Q̇i,γ : i < κ〉 denote the (κ, γ + 1)-

matrix 〈〈Pi,α : i ≤ κ, α ≤ γ + 1〉, 〈Q̇i,α : i ≤ κ, α < γ + 1〉〉,
where Q̇κ,γ is the P-name of the union of {Q̇i,γ : i < κ} and,

for i ≤ κ, Pi,γ = PP
i,γ, Pi,γ+1 = PP

i,γ ∗ Q̇i,γ, and for α < γ,

(Pi,α, Q̇i,α) = (PP
i,α, Q̇

P
i,α).

The following, from [3, Lemma 3.10], shows that extension at limit
steps is canonical.
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Lemma 4.2. If γ is a limit and if {Pδ : δ < γ} is a sequence of matrix
iterations satisfying that for β < δ < γ, Pδ � β = Pβ, then there is a
unique matrix iteration Pγ such that Pγ � δ = Pδ for all δ < γ.

Proof. For each δ < γ and i < κ, we define PPγ

i,δ to be PPδ

i,δ and Q̇Pγ

i,δ to

be Q̇Pδ+1

i,δ . It follows that Q̇Pγ

i,δ is a PPγ

i,δ -name. Since γ is a limit, the

definition of PPγ

i,γ is required to be
⋃
{PPγ

i,δ : δ < γ} for i < κ. Similarly,

the definition of PPγ

κ,γ is required to be
⋃
{PPγ

i,γ : i < κ}. Let us note

that PPγ

κ,γ is also required to be the union of the chain
⋃
{PPγ

κ,δ : δ < γ},
and this holds by assumption on the sequence {Pδ : δ < γ}.

To prove that Pγ is a (κ, γ)-matrix it remains to prove that for

j < i ≤ κ, and each q ∈ PPγ

i,γ , there is a reduction p in PPγ

j,γ . Since γ

is a limit, there is an α < γ such that q ∈ PPα

i,α and, by assumption,

there is a reduction, p, of q in PPα

j,α . By induction on β (α ≤ β ≤ γ)

we note that q ∈ PPβ

i,β and that p is a reduction of q in PPβ

j,β . For limit
β it is trivial, and for successor β it follows from condition (1) in the
definition of matrix iteration. �

We also will need the next result taken from [3, Lemma 13], which
they describe as well known, for stepping diagonally in the array of
posets.

Lemma 4.3. Let P,Q be partial orders such that P is a complete sub-
order of Q. Let Ȧ be a P-name for a forcing notion and let Ḃ be a
Q-name for a forcing notion such that 
Q Ȧ ⊂ Ḃ, and every P-name

of a maximal antichain of Ȧ is also forced by Q to be a maximal an-
tichain of Ḃ. Then P ∗ Ȧ <◦ Q ∗ Ḃ

Let us also note if Ḃ is equal to Ȧ in Lemma 4.3, then the hypothesis
and the conclusion of the Lemma are immediate. On the other hand,
if Ȧ is the P-name of L(Ḋ) for some P-name of a filter Ḋ, then the

Q-name of L(Ḋ) is not necessarily equal to Ȧ.

Lemma 4.4 ([6, 1.9]). Suppose that P,Q are posets with P<◦Q. Sup-

pose also that Ḋ0 is a P-name of a filter on ω and Ḋ1 is a Q-name of
a filter on ω. If 
Q Ḋ0 ⊆ Ḋ1 then P ∗ L(Ḋ0) is a complete subposet of

Q ∗ L(Ḋ1) if either of the two equivalent conditions hold:

(1) 
Q ((Ḋ0)+)P ⊆ Ḋ+
1 ,

(2) 
Q Ḋ1 ∩ V P ⊆ 〈Ḋ0〉 (where V P is the class of P-names).

Proof. Let Ė be any P-name of a maximal antichain of L(Ḋ0). By
Lemma 4.3, it suffices to show that Q forces that every member of
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L(Ḋ1) is compatible with some member of Ė. Let G be any Q-generic
filter and let E denote the valuation of Ė by G ∩ P. Working in the
model V [G ∩ P], we have the function ρE as in Lemma 2.4. Choose
δ ∈ ω1 satisfying that ρE(t) < δ for all t ∈ ω<ω. Now, working in

V [G], we consider any T ∈ L(Ḋ1) and we find an element of E that is
compatible with T . In fact, by induction on α < δ, one easily proves
that for each T ∈ L(Ḋ1) with ρE(stem(T )) ≤ α, T is compatible with
some member of E. �

Definition 4.5. For a (κ, γ)-matrix-iteration P, and ordinal iγ < κ,

we say that an increasing sequence 〈Ḋi : i < κ〉 is a (P, ~λ(iγ))-thin
sequence of filter bases, if for each i < j < κ

(1) Ḋi is a subset of Bi,γ (hence a nice PP
i,γ-name)

(2) 
Pi,γ Ḋi is a filter with a base of cardinality at most µiγ ,

(3) if iγ ≤ i, then 
Pj,γ 〈Ḋj〉 ∩ Bi,γ ⊆ 〈Ḋi〉.

Notice that a (P, ~λ(iγ))-thin sequence of filter bases can be (essen-

tially) eventually constant. Thus we will say that a sequence 〈Ḋi :

i ≤ j〉 (for some j < κ) is a (P, ~λ(iγ))-thin sequence of filter bases if

the sequence 〈Ḋi : i < κ〉 is a (P, ~λ(iγ))-thin sequence of filter bases

where Ḋi is the Pi,γ-name for Bi,γ ∩ 〈Ḋj〉 for j < i ≤ κ. When P is

clear from the context, we will use ~λ(iγ)-thin as an abbreviation for

(P, ~λ(iγ))-thin.

Corollary 4.6. For a (κ, γ)-matrix-iteration P, ordinal iγ < κ, and a

(P, ~λ(iγ))-thin sequence of filter bases 〈Ḋξ : i < κ〉, P ∗ 〈Q̇i,γ : i ≤ κ〉 is

a γ + 1-extension of P, where, for each i ≤ iγ, Q̇i,γ is the trivial poset,

and for iγ ≤ i < κ, Q̇i,γ is L(Ḋi).

Definition 4.7. Whenever 〈Ḋi : i < κ〉 is a (P, ~λ(iγ))-thin sequence

of filter bases, let P ∗ L(〈Ḋi : iγ ≤ i < κ〉) denote the γ + 1-extension
described in Corollary 4.6.

This next corollary is immediate.

Corollary 4.8. If P is a ~λ-thin (κ, γ)-matrix and if 〈Ḋi : i < κ〉 is a

(P, ~λ(iγ))-thin sequence of filter bases, then P ∗L(〈Ḋi : iγ ≤ i < κ〉) is

a ~λ-thin (κ, γ + 1)-matrix.

We now describe a first approximation of the scheme, K(~λ), of posets
that we will be using to produce the model.

Definition 4.9. For an ordinal γ > 0 and a (κ, γ)-matrix iteration P,

we will say that P ∈ K(~λ) providing for each 0 < α < γ,
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(1) for each i ≤ κ, PP
i,1 is Fn(λi, 2), and

(2) there is an iα = i
P
α < κ and a (P � α,~λ(iα))-thin sequence

〈Ḋα
i : i < κ〉 of filter bases, such that P � α + 1 is equal to

P � α ∗ L(〈Ḋα
i : iα ≤ i < κ〉).

For each 0 < α < γ, we let Ḋα
κ denote the P � α-name of the union⋃

{Ḋα
i : iα ≤ i < κ}, and we let L̇α denote the canonical P � α+1-name

of the subset of ω added by L(Dα
κ).

Let us note that each P ∈ K(~λ) is ~λ-thin. Furthermore, by Lemma

3.5, this means that each P ∈ K(~λ) forces that s ≤ λ. We begin a new

section for the task of proving that there is a P ∈ K(~λ) that forces that
s ≥ λ.

It will be important to be able to construct (P, ~λ(iγ))-thin sequences
of filter bases, and it seems we will need some help.

Definition 4.10. For an ordinal γ > 0 and a (κ, γ)-matrix iteration

P we will say that P ∈ H(~λ) if P is in K(~λ) and for each 0 < α < γ,

if iα = i
P
α > 0 then ω1 ≤ cf(α) ≤ µiα and there is a βα < α such that

(1) for βα ≤ ξ < α of countable cofinality, iξ = 0 and Dξ
iξ

is a free
filter with a countable base that is strictly descending mod finite,

(2) if βα ≤ η < α, iη > 0 and ξ = η + ω1 ≤ α, then L̇η ∈ Ḋξ
iξ

, and

Piξ,ξ 
 Ḋα
iξ

has a descending mod finite base of cardinality ω1,

(3) if βα < ξ ≤ α, iξ > 0, and η + ω1 < ξ for all η < ξ, then

{L̇η : βα ≤ η < α, cf(η) ≥ ω1} is a base for Ḋξ
iξ

.

5. Producing ~λ-thin filter sequences

In this section we prove this main lemma.

Lemma 5.1. Suppose that Pγ ∈ H(~λ) and that Y is a set of fewer
than λ nice Pγ-names of subsets of ω, then there is a δ < γ + λ and

an extension Pδ of Pγ in H(~λ) that forces that the family Y is not a
splitting family.

The main theorem follows easily.

Proof of Theorem 1.2. Let θ be any regular cardinal so that θ<λ = θ

(for example, θ = (2λ)+). Construct Pθ ∈ H(~λ) so that for all Y ⊂ Bκ,θ
with |Y| < λ, there is a γ < δ < θ so that Y ⊂ Bκ,γ and, by applying
Lemma 5.1, such that Pθ � δ forces that Y is not a splitting family. �

We begin by reducing our job to simply finding a (P, ~λ(iγ))-thin
sequence. For the remainder of the paper, we always assume that
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when discussing p ∈ Pγ, that for each ξ ∈ dom(p) there is a tpξ ∈ ω<ω
such that p � ξ 
 tpξ = stem(p(ξ)).

Definition 5.2. For a (κ, γ)-matrix-iteration Pγ, we say that a subset

E of Bκ,γ is a (Pγ, ~λ(iγ))-thin filter subbase if, iγ < κ, |E| ≤ µiγ , and

the sequence 〈〈E ∩ Bi,γ〉 : i < κ〉 is a (Pγ, ~λ(iγ))-thin sequence of filter
bases.

Lemma 5.3. For any Pγ ∈ H(~λ), and any (Pγ, ~λ(iγ))-thin filter base

E, there is an α ≤ γ+µiγ + 1 and extensions Pα,Pα+1 of Pγ in H(~λ),

such that, Pα+1 = Pα∗L(〈Ḋα
i : iα ≤ i < κ〉) and Pα forces that E ∩Bi,γ

is a subset of Ḋα
i for all i < κ.

Proof. The case iγ = 0 is trivial, so we assume iγ > 0. There is
no loss of generality to assume that E ∩ Biγ ,γ has character µiγ . Let

{Ėξ : ξ < µiγ} ⊂ E ∩ Biγ ,γ enumerate a filter base for 〈E〉 ∩ Biγ ,γ. We

can assume that this enumeration satisfies that Ėξ\Ėξ+1 is forced to be
infinite for all ξ < µiγ . Let A be any countably generated free filter on
ω that is not principal mod finite. By induction on ξ < µiγ we define

Pγ+ξ by simply defining iγ+ξ and the sequence 〈Ḋγ+ξ
i : iγ+ξ ≤ i ≤ κ〉.

We will also recursively define, for each ξ < µiγ , a Pγ+ξ-name Ḋξ such

that Pγ+ξ forces that Ḋξ ⊂ Ėξ. An important induction hypothesis

is that {Ḋη : η < ξ} ∪ {Ėζ : ζ < µiγ} ∪ E is forced to have the finite
intersection property.

For each ξ < γ + ω1, let iξ = 0 and Ḋξ
i be the Pξ-name 〈A〉 ∩ Bi,ξ

for all i ≤ κ. The definition of Ḋ0 is simply Ė0. By recursion, for each
η < ω1 and ξ = η+1, we define Ḋξ to be the intersection of Ḋη and Ėξ.
For limit ξ < ω1, we note that Piγ ,ξ forces that L(〈A〉) is isomorphic to

L(〈{Ḋη ∩ Ėξ : η < ξ}〉). Therefore, we can let Ḋξ be a Pξ+1-name for

the generic real added by L(〈{Ḋη ∩ Ėξ : η < ξ}〉). A routine density
argument shows that this definition satisfies the induction hypothesis.

The definition of iγ+ω1 is iγ and the definition of Ḋγ+ω1

iγ
is the filter

generated by {Ḋξ : ξ < ω1}. The definition of Ḋω1 is L̇γ+ω1 .
Let S denote the set of η < µiγ with uncountable cofinality. We now

add additional induction hypotheses:

(1) if ζ = sup(S ∩ ξ) < ξ and ξ = ν + 1, then Ḋξ = Ḋν ∩ Ėξ, and

iξ = 0 and Ḋγ+ξ
i = 〈A〉 for all i ≤ κ

(2) if ζ = sup(S∩ξ) < ξ and ξ is a limit of countable cofinality, then

iξ = 0 and Ḋγ+ξ
i = 〈A〉 for all i ≤ κ, and Ḋξ is forced by Pγ+ξ+1

to be the generic real added by L({Ḋη ∩ Ėξ : ζ ≤ η < ξ}),
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(3) if ζ = sup(S ∩ ξ) and ξ = ζ +ω1, then iξ = iγ, Ḋ
γ+ξ
iξ

is the filter

generated by {Ėξ ∩ Ḋη : ζ ≤ η < ξ} and Ḋξ is L̇γ+ξ,

(4) if S ∩ ξ is cofinal in ξ and cf(ξ) > ω, then iξ = iγ and Ḋγ+ξ
iξ

is

the filter generated by {Ḋγ+η : η ∈ S ∩ ξ} and Ḋξ = L̇γ+ξ,

(5) if S∩ξ is cofinal in ξ and cf(ξ) = ω, then iξ = 0 and Ḋγ+ξ
i = 〈A〉

for all i ≤ κ, and Ḋξ is forced by Pγ+ξ+1 to be the generic real

added by L({Ḋηn ∩ Ėξ : n ∈ ω}), where {ηn : n ∈ ω} is some
increasing cofinal subset of S ∩ (γ, ξ).

It should be clear that the induction continues to stage µiγ and that

Pγ+ξ ∈ H(~λ(iγ)) for all ξ ≤ µiγ , with βγξ = γ being the witness to
Definition 4.10 for all ξ with cf(ξ) > ω.

The final definition of the sequence 〈Ḋδ
i : iδ = iγ ≤ i ≤ κ〉, where

δ = γ + µiγ is that Ḋδ
iγ is the filter generated by {L̇γ+ξ : cf(ξ) > ω},

and for iγ < i ≤ κ, Ḋδ
i is the filter generated by Ḋδ

iγ ∪ (E ∩ Bi,γ). �

Lemma 5.4. Suppose that E is a (Pγ, ~λ(iγ))-thin filter base. Also

assume that i < κ and α ≤ γ and E1 ⊂ Bi,α is a (Pα, ~λ(iγ))-thin filter

base satisfying that 〈E〉 ∩ Bi,α ⊂ 〈E1〉, then there is a (Pγ, ~λ(iγ))-thin
filter base E2 such that E ∪ E1 ⊂ E2 ⊂ 〈E ∪ E1〉.

Proof. The first claim is that if α = γ, then E2 simply equalling E ∪ E1

will work. To see this, assume that iγ ≤ j1 < j2 and that for some p

and ḃ ∈ Bj1,γ, some p 
 ḃ ∩ (Ė ∩ Ė1) = ∅ for a pair Ė, Ė1 ∈ Bj2,γ with

Ė ∈ E and Ė1 ∈ E1. If i ≤ j1, then ḃ ∩ Ė1 ∈ Bj1,γ. So just use that
E is thin. For j1 ≤ i, we proceed by induction on j2. If j1 ≤ i < j2,
then p 
 (ḃ ∩ Ė1) ∩ Ė = ∅, so again, there is Ė2 ∈ E ∩ Bi,γ such that

p 
 (ḃ ∩ Ė1) ∩ Ė2 = ḃ ∩ (Ė1 ∩ Ė2) is empty. Then, by the induction

hypothesis, there is an Ė3 ∈ 〈E ∪ E1〉 ∩ Bj1,γ such that p 
 ḃ ∩ Ė3 is

empty. Finally, if j2 ≤ i, then Ė∩Ė1 ∈ 〈E1〉, so there is Ė3 ∈ 〈E1〉∩Bj1,γ
with p 
 ḃ ∩ Ė3 = ∅.

Choose any ω-closed elementary submodel M of H(2λ·γ+) containing
{E ,Pγ}. We may assume that E contains all ẏ ∈ M ∩ Bi,γ such that
1 
 ẏ ∈ 〈E ∩ Bi,γ〉. Now we show that E has the following closure

property: if Ė0 ∈ E ∩ Bi,β and p ∈ Pi,γ, there is a Ė2 ∈ Bj,β such that

p 
 Ė2 = Ė0 and r 
 Ė2 = ω for all r ⊥ p. For each ` ∈ ω, choose a
maximal antichain A` ⊂M ∩ Pi,β such that for each q ∈ A`

(1) either q 
 ` ∈ Ė0 or q 
 ` /∈ Ė0,
(2) either q ⊥ p or every extension of q in Pi,γ ∩M is compatible

with p (i.e. q is an M ∩ Pi,γ ∩M -reduct of p).
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We define Ė2 to be the set of all pairs (`, q) with q ∈ A` ∩ p⊥ or with
q 
 ` ∈ Ė0. That is, the only pairs (`, q) from {`}×A` are those q that
are compatible with p and force that q is not in Ė0. It is immediate
that 1 
 Ė2 ⊃ Ė0. It should be clear that if r ⊥ p, then r 
 Ė2 = ω.
Similarly if r < p and r < q for some q ∈ A`, then q is compatible with
p and so q 
 ` ∈ Ė0.

We may similarly assume that E1 has this same closure property. We
let q <j p denote the relation that q ∈ Pj,γ and every extension of q in
Pj,γ is compatible with p (i.e. q is a Pj,γ-reduct of p). For any ẏ ∈ Bi,γ
and j < i, let ẏPj,γ be any nice Pj,γ-name that is forced to be equal to
{(`, q) : (∃(`, q`) ∈ ẏ) q <j p}.

By the α = γ case, it is sufficient to prove that

E2 = {(Ė0 ∩ Ė1)Pj,γ : Ė0 ∈ E ∩ Bi,γ, Ė1 ∈ E1}

is (Pγ,~(λiγ ))-thin. It is clear that |E2| ≤ µiγ . So now suppose that

p ∈ Pi,γ, ḃ ∈ Bj,γ and that p 
 ḃ∩ (Ė0 ∩ Ė1) = ∅ for some Ė0 ∈ E ∩Bi,γ
and Ė1 ∈ E1. It suffices to produce Ė2 ∈ E and Ė3 ∈ E1 so that
p 
 ḃ ∩ (Ė0 ∩ Ė1)Pj,γ = ∅.

Choose Ė2 ∈ E ∩Bi,γ so that p 
 Ė2 = Ė0 and each r ⊥ p forces that

E2 = ω. Similarly choose Ė3 ∈ E1 so that p 
 Ė3 = Ė1 and each r ⊥ p
forces that Ė3 = ω. Suppose that q <j p and suppose that q 
 ` ∈ ḃ.
Since p 
 ` /∈ Ė2 ∩ Ė3, it follows that q ⊥ p. Therefore, if q <j p

q 
 ḃ ∩ (Ė2 ∩ Ė3)Pj,γ is empty. This in turn implies that p forces that

ḃ is disjoint from (Ė2 ∩ Ė3)Pj,γ . �

Let Pγ ∈ H(~λ) and let ẏ ∈ Bκ,γ. For a family E ⊂ Bκ,γ and condition
p ∈ Pγ say that p forces that E measures ẏ if p 
Pγ {ẏ, ω\ ẏ}∩〈E〉 6= ∅.
Naturally we will just say that E measures ẏ if 1 forces that E measures
ẏ.

Given Lemma 5.3, it will now suffice to prove.

Lemma 5.5. If Y ⊂ Bκ,γ for some Pγ ∈ H(~λ) and |Y| ≤ µiγ for some

iγ < κ, then there is a (Pγ, ~λ(iγ))-thin filter E ⊂ Bκ,γ that measures
every element of Y.

In fact, to prove Lemma 5.5, it is evidently sufficient to prove:

Lemma 5.6. If Pγ ∈ H(~λ), ẏ ∈ Bκ,γ, and if E is a (Pγ, ~λ(iγ))-thin fil-

ter, then there is a family E1 ⊃ E measuring ẏ that is also a (Pγ, ~λ(iγ))-
thin filter.

Proof. Throughout the proof we suppress mention of Pγ and refer in-
stead to component member posets Pi,α, Q̇i,α of Pγ. We proceed by
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induction on the lexicographic ordering on κ × γ. That, we assume
that i < κ is minimal such that the lemma fails for some ẏ ∈ Bi,γ, and
we also assume that α ≤ γ is minimal such that the lemma fails for
some ẏ ∈ Bi,α. Fix a well-ordering @ of H( (2λ·γ)+ ) and also assume
that ẏ is the @-minimal element of Bi,α for which the lemma fails. Also
assume that, for every j < iẏ and β < α, every element of Bi,β ∪ Bj,α
is @-below ẏ. We can free up the variables i, α by using iẏ and αẏ in-
stead. By the minimality of αẏ, it is immediate that αẏ has countable
cofinality.

Let θ = (2λ·γ)+ and let M denote the set of elementary submodels
M of H(θ+) that contain µiγ ,@,P

γ, E , ẏ and so that M has cardinality
equal to µiγ and, by our cardinal assumptions, Mλj ⊂M for all j < iγ.
Naturally this also implies that Mω ⊂ M . Choose any M0 ∈ M and
assume (as in the proof of Lemma 5.4), that 〈E〉∩M0∩Biẏ ,αẏ is a subset
of E . By Lemma 5.4, it suffices to prove that the lemma holds Pαẏ .
Thus, we may henceforth assume that γ = αẏ.

Fact 1. 1 < γ and iγ < iẏ.

Proof of Fact 1. The fact that 1 < γ follows from the fact that P1

is simply Cohen forcing. That is, it is well-known that 〈ḃ〉 ∩ Bj,1 is

countably generated for all j < κ. This implies that 〈ḃ ∪ (E ∩ Bκ,1)〉
is (P1, ~λ(iγ))-thin for all ḃ ∈ Bκ,1. Then, by Lemma 5.4, 〈ḃ ∪ E〉 can

be extended to a (P1, ~λ(iγ))-thin filter. Similarly, if iẏ ≤ iγ, then

〈{ẏ}∪ (Biẏ ,γ ∩E)〉 is a (Pγ, ~λ(iγ))-thin filter. Therefore, by Lemma 5.4,
this contradicts that the lemma fails for ẏ. �

Working in M0 use the well-ordering @, to perform a transfinite re-

cursion to choose a (Pγ, ~λ(iγ))-thin E0 ⊂ Biẏ ,γ that extends E ∩ Biẏ ,γ.
The induction chooses the @-least (Pγ, ~λ(iγ))-thin filter in M0 (which
will be in H(θ)) that extends the union of the recursively chosen se-
quence and also measures the @-least member of Biẏ ,γ that is @-below
ẏ and is not yet measured. Suppose that ẋ ∈ Biẏ ,γ is the @-least that is
not measured by E0. Since E0 is definable from ẋ and @, it follows that
E0 ∈ M0. Since the recursion stopped, it follows that ẋ is ẏ. There-

fore E0 ⊃ (E ∩ Biẏ) is (Pγ, ~λ(iγ))-thin and measures every element of
M0 ∩ Biẏ ,γ that is @-below ẏ.

Let A1(M0, E0) be the set of all p ∈ M0 ∩ Piy ,γ that force that E1

measures ẏ. We may similarly choose {M0, E0} ∈ M1 ∈ M and select
E1 ⊃ E0 just as we did E0. Similarly, let A1(M1, E1) be the set of all
p ∈ M1 ∩ Piy ,γ that force that E1 measures ẏ. Note that A1(M0, E0) ⊂
A1(M1, E1). If M1 can be chosen so that A1(M0, E0) is not pre-dense
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in A1(M1, E1), then we make such a choice. Suppose that ρ < ω1 and
that we have recursively chosen a sequence {Mξ, Eξ : ξ < ρ} so that for
ξ < ρ,

⋃
{Eη : η < ξ} ⊂ Eξ ⊂ Mξ, {

⋃
{Mη : η < ξ},

⋃
{Eη : η < ξ}} ∈

Mξ, and so that Eξ is (Pγ, ~λ(iγ))-thin and measures every element of
Mξ ∩ Bj,γ that is @-below ẏ. Suppose further that for each ξ + 1 < ρ,
A1(Mξ, Eξ) is not pre-dense in A1(Mξ+1, Eξ+1). If ρ is a limit, then⋃
{Eξ : ξ < ρ} is a (Pγ, ~λ(iγ))-thin filter base and the properties of M

ensures that there is a suitable Mρ ∈M, and the family
⋃
{Eξ : ξ < ρ}

can be suitably extended to Eρ just as E0 was chosen to extend E . If
ρ = ξ + 1 is a successor, then we extend (Mξ, Eξ) to (Mρ, Eρ) as we did
when choosing (M1, E1) to extend (M0, E0), but only if there is such an
extension with A1(Mξ, Eξ) not being pre-dense in A1(Mρ, Eρ).

Since Piẏ ,γ is ccc, there is some ρ+ 1 < ω1 when this recursion must
stop and for the reason that A1(Mρ, Eρ) can not be made larger. Now
we work with such an (Mρ, Eρ). Let A1 ⊂ A1(Mρ, Eρ) be an antichain
that is pre-dense in A1(Mρ, Eρ).

We work in the poset Piẏ ,γ. We can replace ẏ by any ẋ ∈ Biẏ ,γ that
has the property that 1 
 ẋ ∈ {ẏ, ω \ ẏ} since if we measure ẋ then
we also measure ẏ. With this reduction then we can assume that no
condition forces that ω \ ẏ is in the filter generated by E .

Fact 2. There is a maximal antichain A ⊂Mρ∩Piẏ ,γ extending A1 such

that for each p ∈ A \ A1, there is an ip < iẏ and an Ėp ∈ Eρ such that

(1) there is a ḃ1 ∈ Bip,γ ∩ E+
ρ , such that p 
 ḃ1 ∩ Ėp ∩ ẏ = ∅, and

(2) there is ḃ2 ∈ Bip,γ ∩ E+
ρ such that p 
 ḃ2 ∩ Ėp ∩ (ω \ ẏ) = ∅.

Proof of Fact 2. Suppose that p1 ∈ Piẏ ,γ ∩A⊥1 has no extension p with

a suitable pair ip, ḃ1, Ė1 as in (1). Define Ė ∈ Biẏ ,γ so that p1 forces

Ė = ẏ and each q ∈ Piẏ ,γ ∩ p1
⊥ forces that Ė = ω. It is easily checked

that Biẏ ,γ ∩ 〈Eρ ∪ {Ė}〉 is then (Pγ, ~λ(iγ))-thin and that p1 forces that
it measures ẏ. Therefore we can choose p2 < p1 so that there are
ip2 , ḃ1, Ėp2 as in (1). Similarly, p2 has an extension p so that there are

ip, ḃ2, Ėp as in (2). There is no loss to assuming that ip ≥ ip2 and


 Ėp ⊂ Ėp2 . Then ip, ḃ1, Ėp also satisfy (1) for p. �

Now we choose any p ∈ A \ A1. It suffices to produce an Ėp ∈ Biẏ ,γ
that can be added to Eρ that measures ẏ and satisfies that q 
 Ėp = ω

for all q ∈ p⊥. This is because we then have that E1∪{Ėp : p ∈ A\A1}
is contained in a ~λ(iγ)-thin filter that measures ẏ. By symmetry, we
may assume that ip ≤ jp.
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Fact 3. There is an α such that γ = α + 1.

Proof of Fact 3. Otherwise, let j = ip and for each r < p in Piẏ ,γ,
choose β ∈ Mρ ∩ γ such that r ∈ Piẏ ,β, and define a name ẏ[r] in
Mρ ∩ Bj,γ according to (`, q) ∈ ẏ[r] providing there is a pair (`, p`) ∈ ẏ
such that q <j p` and q�β is in the set Mρ ∩ Pj,β \ (r ∧ p`�β)⊥ . This
set, namely ẏ[r], is in Mρ because Pj,β is ccc and Mω

ρ ⊂Mρ.
We prove that r forces that ẏ[r] contains ẏ. Suppose that r1 < r and

there is a pair (`, p`) ∈ ẏ with r1 < p`. Choose an r2 ∈ Pj,γ so that
r2 <j r1. It suffices to show r2 
 ` ∈ ẏ[r]. Let q <j p` with q ∈ Mρ.
Then r2 6⊥ p` implies r2 6⊥ q. Since r2 was any <j-projection of r1 we
can assume that r2 < q. Since r2 � β is in (Pj,β ∩ (r ∧ p` � β)⊥)⊥, it
follows that q � β /∈ (r ∧ p` � β)⊥. This implies that (`, q) ∈ ẏ[r] and
completes the proof that r2 
 ` ∈ ẏ[r].

Now assume that β < γ and r 
 ḃ∩ Ė∩ ẏ is empty for some r < p in
Piẏ ,β, ḃ ∈ Bj,γ, and Ė ∈ Eρ ∩Biẏ ,γ. Let ẋ = (Ė ∩ ẏ)[r] (defined as above

for ẏ[r]). We complete the proof of Fact 3 by proving that r 
 ḃ ∩ ẋ is
empty. Since each are in Bj,γ, we may choose any r1 <j r, and assume

that r1 
 ` ∈ ḃ ∩ ẋ. In addition we can suppose that there is a pair
(`, q) ∈ ẋ such that r1 < q. The fact that (`, q) ∈ ẋ means there is a p`
with (`, p`) in the name Ė ∩ ẏ such that q <j p`. Since r1 ∈ Pj,γ and
r1 < q, it follows that r1 6⊥ p`. Now it follows that r1 has an extension
forcing that ` ∈ ḃ ∩ (Ė ∩ ẏ) which is a contradiction. �

Fact 4. iẏ = iα and so also ip < iα.

Proof of Fact 4. Since Pi,α+1 = Pi,α for i < iα, we have that iα ≤ iẏ.
Now assume that iα < iẏ and we proceed much as we did in Fact 3
to prove that ip does not exist. Assume that r < p (in Piẏ ,α+1) and

r 
 ḃ ∩ (Ė ∩ ẏ) is empty for some Ė ∈Mρ ∩ 〈Eρ〉 ∩ Biẏ ,γ and ḃ ∈ Bip,γ.
Let Ṫα be the Piẏ ,α-name such that r � α 
 r(α) = Ṫα ∈ L(Dα

iẏ
).

Choose any Mρ ∩ Piα,α-generic filter Ḡ such that r � α ∈ Ḡ+. Since
Piα,α is ccc and Mω

ρ ⊂ Mρ, it follows that Mρ[Ḡ] is closed under ω-

sequences in the model H(θ+)[Ḡ].
In this model, define an L(Dα

iα)-name ẋ. A pair (`, T`) ∈ ẋ if trα ≤
stem(T`) ∈ T` ∈ L(Dα

iα) and for each stem(T`) ≤ t ∈ T`, there is

q`,t ∈Mρ such that tq`α = t, q`,t 
 ` ∈ (ẏ ∩ Ė), and q`,t ∧ r is in G̃+. We

will show that r forces over the poset Ḡ+ that ẋ contains Ė ∩ ẏ and
that ẋ ∩ ḃ is empty. This will complete the proof since it contradicts
the assumption on ip.

To prove that r forces that ẋ contains ẏ ∩ Ė, we consider any r` < r
in G̃+ that forces over Ḡ+ that ` ∈ ẏ ∩ Ė We may choose p` ∈ Mρ
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such that r` < p` and p` 
 ` ∈ Ė ∩ ẏ). Since r` ∈ G̃+, it follows that
p` ∧ r is in G̃+. We may assume that tr`α = tp`α . To show that r forces
that ` ∈ ẋ we have to show there is a T` ∈ L(Dα

iα) with tp`α = stem(T`).
Starting with t = tp`α , assume that t ∈ T` with q`,t as the witness.
Let L− = {k : t_k /∈ T`}; it suffices to show that L− /∈ (Dα

iα)+. By
assumption that qt,` is the witness, there is an rt < (q`,t � α ∧ r � α)

in Piẏ ,α, such that rt 
 t ∈ Ṫα and t = trtα . By strengthening rt we

can assume that rt forces a value Ḋ ∈ Ḋα
iẏ

on {k : t_k ∈ Ṫα ∩ q`,t(α)}.
But now, it follows that rt forces that Ḋ is disjoint from L− since if
rt,k 
 k ∈ Ḋ for some rt,k < rt, rt,k is the witness to t_k is in T`. Since

some condition forces that L− is not in (Ḋα
iẏ

)+ it follows that L− is not

in (Ḋα
iα)+

Finally we must show that r forces over Ḡ+ that ḃ is disjoint from
ẋ. Suppose that r̄ 
 ` ∈ ḃ ∩ ẋ where r̄ <ip r and r̄ ∈ Ḡ+. We obtain

a contradiction by showing that r 6
 ` /∈ Ė ∩ ẏ. We may assume, by
possibly strengthening r̄�α, that t = tr̄α is a branching node of T`. This
means that there is some q`,t ∈ Mρ such that q`,t 
 ` ∈ Ė ∩ ẏ and

q`,t ∧ r ∈ G̃+. Let p̄ = r̄ ∧ q`,t ∧ r. Notice that p̄ 
 trα ⊂ t ∈ Ṫα.

Since p̄ ∈ G̃+, we have that G̃ is disjoint from Pip,α ∩ r̄⊥. Since G̃ is

Pip,α-generic, there is a q̄ ∈ G̃ satisfying that q̄ <ip p̄. In particular,
q̄ < r̄. But also, it follows that q̄ has an extension in Piẏ ,α that is below

q`,t ∧ r, which forces that ` ∈ (Ė ∩ ẏ). �

Fact 5. The character of Dα
iα is greater than µiγ .

Proof of Fact 5. Since iα = iẏ > 0 and Pγ ∈ H(~λ), the cofinality of α
is uncountable. It also means that Dα

iα is forced to have a descending
mod finite base with cofinality equal to the cofinality of α. As usual,
we proceed by contradiction and assume that the character of Dα

iα , and
therefore the cofinality of α, is less than µiγ . Choose βα < α as per the

definition of Pγ ∈ H(~λ). Choose ḃ1, ḃ2 ∈ E+
ρ ∩Bip,α+1 = E+

ρ ∩Bip,α and

Ėp ∈ Eρ as in Fact 2. That is, p 
 ḃ1 ∩ Ėρ ∩ ẏ = ḃ2 ∩ Ėρ \ ẏ = ∅.
Let Ṫα be a Piα,α-name such that p�α 
 p(α) = Ṫα. There is no

loss of generality to assume that stem(Ṫα) is forced to be the empty
sequence. Since Dα

iα has a descending mod finite base (contained in

M) with uncountable cofinality, there is a Ḋ0 ∈ M ∩ Biα,α such that

p�α forces that Ḋ0 ∈ M ∩ Dα
iα and for each t ∈ Ṫα, (Ṫα)t is almost

Ḋ0-branching in the sense that {k ∈ Ḋ0 : t_k ∈ Ṫα} contains a cofinite
subset of Ḋ0. Choose also a sequence {Ḋn : 0 < n ∈ ω} ⊂ Mρ ∩ Dα

iα



18 A. DOW AND S. SHELAH

so that it is forced (by 1Piα,α) that {Ḋn : n ∈ ω} is strictly descending
mod finite.

Choose β ∈M ∩ α large enough so that

(1) βα < β and {Ḋn : n ∈ ω} ⊂ Biα,β
(2) p�α ∈ Piα,β and Ṫα is a Piα,β-name, and,

(3) for all (`, q) ∈ Ėr ∩ ẏ, q�α ∈ Piα,β, and q(α) is a Piα,β-name.

If the cofinality of α is greater than ℵ1, then choose β ≤ η ∈M∩α with
uncountable cofinality and let Q̇ denote L(Dηiα). If the cofinality of α
is ℵ1, then set η = β. Recall that iη ≤ iα and that Dη

iα
is free and has

a countable strictly descending mod finite base. Choose a Piα,η-name

ḟ of a bijection on ω so that L(Dη
iα

) is equal to L({{ḟ(Ḋn) : n ∈ ω}}).
In this case we let Q̇ be the Piα,η-name of L({Ḋn : n ∈ ω}). Regardless

of our definition of Q̇, we have that qp = p � η∪{(η, Ṫα)} is an element

of Piα,η ∗ Q̇.

Now construct the name ẏη ∈ Biα,η+1 where, for each (`, q) ∈ (Ė∩ ẏ),
(`, q�η∪{(η, q(α))}) ∈ ẏη. It is routine to check that qp forces, over the

poset Piα,η ∗ Q̇ that ḃ1 ∩ ẏη is empty. Next, let ẋη be the name where,

for each (`, q) ∈ Ėp \ ẏ, (`, q�η ∪ {(η, q(α))}) ∈ ẋη, and it also follows

that qp forces, over the poset Piα,η ∗ Q̇, that ḃ2 ∩ ẏη is empty.

Let ϕ denote the canonical isomorphism from Piα,η ∗Q̇ to Piα,η+1 and
let p̄ = ϕ(qp). Let ϕ(ẏη) denote the name {(`, ϕ(q)) : (`, q) ∈ ẏη} and
similarly define ϕ(ẋη).

Consider any (`, q) ∈ (Ėp ∩ ẏ) ∪ (Ėp \ ẏ) and any r < p̄ ∧ p =

p̄ ∪ {(α, Ṫα)} such that r < q. Let t = trη and choose r2 < r�η ∪
{(α, (Ṫα)t)}, If r2 
 ` ∈ Ėp, we can assume that r2 < q` for some

(`, q`) ∈ (Ėp∩ẏ)∪(Ėp\ẏ). Therefore (`, q`�η∪{(η, q`(α))} is an element
of ẏη ∪ ẋη. This, in turn, implies that (η, ϕ(q`(α))) ∈ ϕ(yη) ∪ ϕ(xη)

and proves that p̄ ∧ p forces that ϕ(ẏη) ∪ ϕ(ẋη) contains Ėp. By the
minimality of αẏ, p̄ ∧ p forces that Ep ∩ {ϕ(yη), ϕ(xη)} is not empty.

However this then implies that p̄ ∧ p forces that one of ḃ1, ḃ2 is not in
E+
p , and this contradiction completes the proof. �

Definition 5.7. For each t ∈ ω<ω, define the Piα,α-name Ėα
t according

to the rule that r 
 ` ∈ Ėα
t providing r ∈ Piα,α forces that there is a Ṫ

with r 
 Ṫ ∈ L(Dα
iẏ

), r 
 t = stem(Ṫ ), and r ∪ {(α, Ṫ )} 
 ` /∈ ẏ.

Fact 6. There is a Ṫα ∈ L(Ḋα
iα)∩Mρ such that p�α forces the statement:

Ṫα < p(α) and Ėt ∈ Eρ for all t such that stem(Ṫ ) ≤ t ∈ Ṫα .
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Proof of Fact 6. By elementarity, there is a maximal antichain of Piα,α
each element of which decides if there is a Ṫ with Ėt ∈ Eρ for all t ∈ Ṫ
above stem(Ṫ ). Since p ∈ A \ A1 it follows that there is an ip < iα as
in condition (2) of Fact 2. Let t0 ∈ ω<ω so that p�α 
 t0 = stem(p(α)).

By the maximum principle, there is a ḃ ∈ Bip,γ and a Ė0 ∈ Eρ satisfying

that p 
 ḃ∩ Ė0∩ ẏ is empty, while p 
 ḃ∩ Ė is infinite for all Ė ∈ 〈Eρ〉.
This means that p forces that ḃ ∩ Ė0 is an element of 〈Eρ〉+ that is

contained in ω \ ẏ. As in the proof of Lemma 5.4, there is an Ė2 ∈
〈Eρ〉 ∩ Bip,γ such that p forces that ḃ ∩ Ė2 is contained in Ė0. We also

have that (ḃ ∩ Ė2)�α is forced to be contained in ω \ ẏ. It now follows
that p�α forces that for all t0 ≤ t ∈ p(α), p�α forces that Ėt contains

(ḃ∩ Ė2)�α and so is in 〈Eρ〉+. Since Ėt is also measured by Eρ, we have

that p�α forces that such Ėt are in Eρ. This completes the proof. �

Now we show how to extend Eρ ∩ Biα,γ so as to measure ẏ. Choose

a Piα,α-name, Ṫα as in Fact 6. Let β = sup(Mρ ∩ α). By Fact 5, β < α

and by the definition of H(~λ), L̇β ∈ Ḋα
iα , iβ = iα, and Mρ ∩ Ḋα

iα is a

subset of 〈Ḋβ
iβ
〉. We also have that the family {L̇ξ : cf(ξ) ≥ ω1 and βα ≤

ξ ∈Mρ ∩ β} is a base for Ḋβ
iβ

. For convenience let q <Mρ p denote the
relation that q is an Mρ ∩ Piα,α+1-reduct of p. Let p̄ be any condition
in Piβ ,β+1 satisfying that p̄�β = p�α and p̄�β 
 stem(p̄(β)) = tα (recall
that p�α 
 tα = stem(p(α)).

Let us note that for each q ∈Mρ∩Pα,iα+1, q�α = q�β and q�β 
 q(α)

is also a Pβ,iβ -name of an element of L(Ḋβiβ). Let ẋ be the following
Piβ ,β+1-name

ẋ = {(`, q�β ∪ {(β, q(α))}) : (`, q) ∈ ẏ ∩Mρ and q <Mρ p} .
We will complete the proof by showing that there is an extension of p
that forces that Eρ ∪ {ω \ (ẋ[L̇β])} measures ẏ and that 1 forces that

〈Eρ ∪ {ω \ (ẋ[L̇β])}〉 ∩ Biẏ ,β+1 is ~λ(iγ)-thin. Here ẋ[L̇β] abbreviates the
Piβ ,β+1-name

{(`, r) : (∃q) (`, q) ∈ ẋ, q�β = r�β, and r 
 stem(q(β)) ∈ L̇<ωβ }.

The way to think of ẋ[L̇β] is that if p̄ is in some Piα,α-generic filter G,

then ẏ[G] is now an L(Dαiα)-name, L<ωβ = (L̇β[G])<ω is in L(Dαiα), and

(ẋ[L̇β])[G] is equal to {` : L<ωβ 6
 ` /∈ ẏ}. We will use the properties

of ẋ to help show that Eρ ∪ {ω \ (ẋ[L̇β])} is ~λ(iγ)-thin. This semantic

description of ẋ[L̇β] makes clear that p̄∪{(α, (L̇β)<ω)} ∈ Piα,α+1 forces

that ẋ[L̇β] contains ẏ. This implies that Eρ ∪ {ω \ (ẋ[L̇β])} measures ẏ.
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Each element of Eρ is in Mρ and simple elementarity will show that

for any condition in q in Mρ that forces Ė ∩ (ω \ ẏ) is infinite, the

corresponding q̄ = q�α ∪ {(β, q(α))} will also force that Ė ∩ (ω \ ẋ) is
infinite. Therefore, it is forced by p̄ that ω \ ẋ is not measured by Eρ.

Recall that q 
 ẋ = ∅ for all q ⊥ p̄. Additionally, Eρ ∩Biβ ,β+1 equals
Eρ ∩ Biβ ,β. It thus follows from Fact 5 and the minimality of αẏ, that

(Eρ ∩ Biβ ,β+1) ∪ {ω \ ẋ} is (Piβ ,β+1, ~λ(iγ))-thin.

Claim 1. If ḃ ∈ Bi,β (i < iβ) and there is an Ė ∈ Eρ ∩ Biα,β and

q 
 ḃ ∩ (Ė \ ẋ) = ∅, then q�β 
 (∃Ė ∈ Eρ) ḃ ∩ Ė = ∅.

Proof of Claim: Let q and ḃ be as in the hypothesis of the Claim. Since

Eρ ∪{ω \ ẋ} is (Piα,β+1, ~λ(iγ))-thin, there is an Ė1 ∈ Eρ ∩Bi,β such that

q forces that ḃ ∩ Ė1 = ∅. Since each of ḃ and Ė1 are in Bi,β, q�β forces

that ḃ ∩ Ė1 = ∅. This proves the claim. �

Now to prove that Eρ ∪ {ω \ (ẋ[L̇β])} is also (Piα,β+1, ~λ(iγ))-thin, we
prove that

〈Eρ ∪ {ω \ (ẋ[L̇β])}〉 ∩ Bi,β = 〈Eρ ∪ {ω \ ẋ}〉 ∩ Bi,β
for all i < iα. Assume that ḃ ∈ Biβ ,β and q 
 ḃ ∩ Ė ∩ (ω \ (ẋ[L̇β])) = ∅
for some q ∈ Piβ ,β+1 and Ė ∈ Eρ ∩ Biβ ,β. If q ⊥ p̄, then q 
ω \ ẋ = ω
so we can assume that q < p̄. We want to prove that there is some
Ė1 ∈ Eρ such that q 
 ḃ ∩ (Ė1 ∩ (ω \ ẋ)) is finite. Let t = tqβ and let H
be the range of t.

Let Ė1 be the Piβ ,β-name for Ė∩
⋂
{Ės : s ∈ H<ω}. By Fact 6, p�α 


Ė1 ∈ Eρ, and by definition of β, 1 ∈ Biβ ,β. Therefore ḃ∩ Ė1∩ (ω \ ẋ[L̇β])

is a Piβ ,β-name. Now suppose that r < p̄�β and r 
 ` ∈ ḃ∩ Ė1. It then

follows that r 
 ` ∈ ẋ[L̇β]. Let r be an element of any Piβ ,β-generic filter
Gβ. We just have to prove that ` ∈ valGβ(ẋ). For each s ∈ H<ω, we

have that ` ∈ valGβ(Ės) and so we may choose Ts ∈ L[Dα
iα ]∩Mρ so that

s = stem(Ts) and Ts 
 ` /∈ ẏ. Choose any D ∈ Dα
iα ∩Mρ so that each

Ts (s ∈ H<ω) is almost D-branching. For s ∈ H<ω and t̄ ∈ ω<ω, let s∗ t̄
denote the function extending s so that s∗ t̄(k+ |s|) = t̄(k) for k < | t̄ |.
For each s ∈ H<ω choose gs : ω<ω 7→ ω so that for all t̄ ∈ ω<ω and
k ∈ D \ gs(t̄), s ∗ (t̄_〈k〉) is in Ts. Now define Tβ ∈ L(Dβ

iβ
) according

to the recursive rule that tqβ = stem(Tβ) and for all (tqβ) ∗ t̄ ∈ Tβ,

{k : (tqβ) ∗ t̄_k ∈ Tβ} is equal to D \max{gs(t̄) : s ∈ H<ω}. It is easily
checked that if Gβ+1 is a generic filter for Piβ ,β+1 such that Gβ ⊂ Gβ+1

and the condition {(β, Tβ)} is in Gβ+1, then Lβ = valGβ+1
(L̇β) has

the property that, for each s ∈ H<ω, (L<ωβ )s ⊂ Ts. To prove that
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` ∈ valGβ(ẋ), it suffices to prove that L<ωβ 6
 ` /∈ ẏ. Let T be any

extension of L<ωβ and let s ∈ H<ω be maximal so that s ⊂ stem(T ).
Since T < Ts, it follows that T 
 ` /∈ ẏ. This completes the proof. �
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