ON THE COFINALITY OF THE SPLITTING NUMBER

ALAN DOW AND SAHARON SHELAH

ABSTRACT. The splitting number \mathfrak{s} can be singular. The key method is to construct a forcing poset with finite support matrix iterations of ccc posets introduced by Blass and the second author [Ultrafilters with small generating sets, Israel J. Math., 65, (1989)]

1. Introduction

The cardinal invariants of the continuum discussed in this article are very well known (see [5, van Douwen, p111]) so we just give a brief reminder. They deal with the mod finite ordering of the infinite subsets of the integers. A set $S \subset \omega$ is unsplit by a family $\mathcal{Y} \subset [\omega]^{\aleph_0}$ if S is mod finite contained in one member of $\{Y, \omega \setminus Y\}$ for each $Y \in \mathcal{Y}$. The splitting number \mathfrak{s} is the minimum cardinal of a family \mathcal{Y} for which there is no infinite set unsplit by \mathcal{Y} (equivalently every $S \in [\omega]^{\aleph_0}$ is split by some member of \mathcal{Y}). It is mentioned in [2] that it is currently unknown if \mathfrak{s} can be a singular cardinal.

Proposition 1.1. The cofinality of the splitting number is not countable.

Proof. Assume that θ is the supremum of $\{\kappa_n : n \in \omega\}$ and that there is no splitting family of cardinality less than θ . Let $\mathcal{Y} = \{Y_\alpha : \alpha < \theta\}$ be a family of subsets of ω . Let $S_0 = \omega$ and by induction on n, choose an infinite subset S_{n+1} of S_n so that S_{n+1} is not split by the family $\{Y_\alpha : \alpha < \kappa_n\}$. If S is any pseudointersection of $\{S_n : n \in \omega\}$, then S is not split by any member of \mathcal{Y} .

Date: December 29, 2018.

 $^{1991\} Mathematics\ Subject\ Classification.\quad 03E15\ .$

Key words and phrases. splitting number, cardinal invariants of the continuum, matrix forcing.

The research of the first author was supported by the NSF grant No. NSF-DMS 1501506. The research of the second author was supported by the United States-Israel Binational Science Foundation (BSF Grant no. 2010405), and by the NSF grant No. NSF-DMS 1101597. Paper no. 1127 on Shelah's publication list.

One can easily generalize the previous result and proof to show that the cofinality of the splitting number is at least \mathfrak{t} . In this paper we prove the following.

Theorem 1.2. If κ is any uncountable regular cardinal, then there is a $\lambda > \kappa$ with $\operatorname{cf}(\lambda) = \kappa$ and a ccc forcing $\mathbb P$ satisfying that $\mathfrak s = \lambda$ in the forcing extension.

To prove the theorem, we construct \mathbb{P} using matrix iterations.

2. A SPECIAL SPLITTING FAMILY

Definition 2.1. Let us say that a family $\{x_i : i \in I\} \subset [\omega]^{\omega}$ is θ -Luzin (for an uncountable cardinal θ) if for each $J \in [I]^{\theta}$, $\bigcap \{x_i : i \in J\}$ is finite and $\bigcup \{x_i : i \in J\}$ is cofinite.

Clearly a family is θ -Luzin if every θ -sized subfamily is θ -Luzin. We leave to the reader the easy verification that for a regular uncountable cardinal θ , each θ -Luzin family is a splitting family. A poset being θ -Luzin preserving will have the obvious meaning. For example, any poset of cardinality less than a regular cardinal θ is θ -Luzin preserving.

Lemma 2.2. If θ is a regular uncountable cardinal then any ccc finite support iteration of θ -Luzin preserving posets is again θ -Luzin preserving.

Proof. We prove this by induction on the length of the iteration. Fix any θ -Luzin family $\{x_i : i \in I\}$ and let $\langle\langle \mathbb{P}_\alpha : \alpha \leq \gamma \rangle, \langle \dot{\mathbb{Q}}_\alpha : \alpha < \gamma \rangle\rangle$ be a finite support iteration of ccc posets satisfying that \mathbb{P}_α forces that $\dot{\mathbb{Q}}_\alpha$ is ccc and θ -Luzin preserving, for all $\alpha < \gamma$.

If γ is a successor ordinal $\beta + 1$, then for any \mathbb{P}_{β} -generic filter G_{β} , the family $\{x_i : i \in I\}$ is a θ -Luzin family in $V[G_{\beta}]$. By the hypothesis on $\dot{\mathbb{Q}}_{\beta}$, this family remains θ -Luzin after further forcing by $\dot{\mathbb{Q}}_{\beta}$.

Now we assume that α is a limit. Let J_0 be any \mathbb{P}_{γ} -name of a subset of I and assume that $p \in \mathbb{P}_{\gamma}$ forces that $|J_0| = \theta$. We must produce a q < p that forces that J_0 is as in the definition of θ -Luzin. There is a set $J_1 \subset I$ of cardinality θ satisfying that, for each $i \in J_1$, there is a $p_i < p$ with $p_i \Vdash i \in J_0$. The case when the cofinality of α not equal to θ is almost immediate. There is a $\beta < \alpha$ such that $J_2 = \{i \in J_1 : p_i \in \mathbb{P}_{\beta}\}$ has cardinality θ . There is a \mathbb{P}_{β} -generic filter G_{β} such that $J_3 = \{i \in J_2 : p_i \in G_{\beta}\}$ has cardinality θ . By the induction hypothesis, the family $\{x_i : i \in I\}$ is θ -Luzin in $V[G_{\beta}]$ and so we have that $\bigcap \{x_i : i \in J_3\}$ is finite and $\bigcup \{x_i : i \in J_3\}$ is co-finite. Choose any q < p in G_{β} and a name J_3 for J_3 so that q forces this

property for \dot{J}_3 . Since q forces that $\dot{J}_3 \subset \dot{J}_0$, we have that q forces the same property for \dot{J}_0 .

Finally we assume that α has cofinality θ . Naturally we may assume that the collection $\{dom(p_i): i \in J_1\}$ forms a Δ -system with root contained in some $\beta < \alpha$. Again, we may choose a \mathbb{P}_{β} -generic filter G_{β} satisfying that $J_2 = \{i \in J_1 : p_i \upharpoonright \beta \in G_\beta\}$ has cardinality θ . In $V[G_\beta]$, let $\{J_{2,\xi}: \xi \in \omega_1\}$ be a partition of J_2 into pieces of size θ . For each $\xi \in \omega_1$, apply the induction hypothesis in the model $V[G_{\beta}]$, and so we have that $\bigcap \{x_i : i \in J_{2,\xi}\}$ is finite and $\bigcup \{x_i : i \in J_{2,\xi}\}$ is co-finite. For each $\xi \in \omega_1$ let m_{ξ} be an integer large enough so that $\bigcap \{x_i : i \in \}$ $J_{2,\xi}$ $\subset m_{\xi}$ and $\bigcup \{x_i : i \in J_{2,\xi}\} \supset \omega \setminus m_{\xi}$. Let m be any integer such that $m_{\xi} = m$ for uncountably many ξ . Choose any condition $\bar{p} \in \mathbb{P}_{\alpha}$ so that $\bar{p} \upharpoonright \beta \in G_{\beta}$. We prove that for each n > m there is a $\bar{p}_n < \bar{p}$ so that $\bar{p}_n \Vdash n \notin \bigcap \{x_i : i \in \dot{I}\}\$ and $\bar{p}_n \Vdash n \in \bigcup \{x_i : i \in \dot{I}\}\$. Choose any $\xi \in \omega_1$ so that $m_{\xi} = m$ and $dom(p_i) \cap dom(\bar{p}) \subset \beta$ for all $i \in J_{2,\xi}$. Now choose any $i_0 \in J_{2,\xi}$ so that $n \notin x_{i_0}$. Next choose a distinct ξ' with $m_{\xi'} = m$ so that $dom(p_i) \cap (dom(\bar{p}) \cup dom(p_{i_0})) \subset \beta$ for all $i \in J_{2,\xi'}$. Now choose $i_1 \in J_{2,\xi'}$ so that $n \in x_{i_1}$. We now have that $\bar{p} \cup p_{i_0} \cup p_{i_1}$ is a condition that forces $\{i_0, i_1\} \subset I$.

Next we introduce a σ -centered poset that will render a given family non-splitting.

Definition 2.3. For a filter \mathfrak{D} on ω , we define the Laver style poset $\mathbb{L}(\mathfrak{D})$ to be the set of trees $T \subset \omega^{<\omega}$ with the property that T has a minimal branching node stem(T) and for all stem $(T) \subseteq t \in T$, the branching set $\{k : t \cap k \in T\}$ is an element of \mathfrak{D} . If \mathfrak{D} is a filter base for a filter \mathfrak{D}^* , then $\mathbb{L}(\mathfrak{D})$ will also denote $\mathbb{L}(\mathfrak{D}^*)$.

The name $\dot{L} = \{(k,T) : (\exists t) \ t^k \subset \text{stem}(T)\}$ will be referred to as the canonical name for the real added by $\mathbb{L}(\mathfrak{D})$.

If \mathfrak{D} is a principal (fixed) ultrafilter on ω , then $\mathbb{L}(\mathfrak{D})$ has a minimum element and so is forcing isomorphic to the trivial poset. If \mathfrak{D} is principal but not an ultrafilter, then $\mathbb{L}(\mathfrak{D})$ is isomorphic to Cohen forcing. If \mathfrak{D} is a free filter, then $\mathbb{L}(\mathfrak{D})$ adds a dominating real and has similarities to Hechler forcing. As usual, for a filter (or filter base) \mathfrak{D} of subsets of ω , we use \mathfrak{D}^+ to denote the set of all subsets of ω that meet every member of \mathfrak{D} .

Definition 2.4. If E is a dense subset of $\mathbb{L}(\mathfrak{D})$, then a function ρ_E from $\omega^{<\omega}$ into ω_1 is a rank function for E if $\rho_E(t) = 0$ if and only if t = stem(T) for some $T \in E$, and for all $t \in \omega^{<\omega}$ and $0 < \alpha \in \omega_1$, $\rho_E(t) \leq \alpha$ providing the set $\{k \in \omega : \rho_E(t^{\frown}k) < \alpha\}$ is in \mathfrak{D}^+ .

When \mathfrak{D} is a free filter, then $\mathbb{L}(\mathfrak{D})$ has cardinality \mathfrak{c} , but nevertheless, if \mathfrak{D} has a base of cardinality less than a regular cardinal θ , $\mathbb{L}(\mathfrak{D})$ is θ -Luzin preserving.

Lemma 2.5. If \mathfrak{D} is a free filter on ω and if \mathfrak{D} has a base of cardinality less than a regular uncountable cardinal θ , then $\mathbb{L}(\mathfrak{D})$ is θ -Luzin preserving.

Proof. Let $\{x_i : i \in \theta\}$ be a θ -Luzin family with θ as in the Lemma. Let \dot{J} be a $\mathbb{L}(\mathfrak{D})$ -name of a subset of θ . We prove that if $\bigcap \{x_i : i \in \dot{J}\}$ is not finite, then \dot{J} is bounded in θ . By symmetry, it will also prove that if $\bigcup \{x_i : i \in \dot{J}\}$ is not cofinite, then \dot{J} is bounded in θ . Let \dot{y} be the $\mathbb{L}(\mathfrak{D})$ -name of the intersection, and let T_0 be any member of $\mathbb{L}(\mathfrak{D})$ that forces that \dot{y} is infinite. Let M be any $<\theta$ -sized elementary submodel of $H((2^{\mathfrak{c}})^+)$ such that $T_0, \mathfrak{D}, \dot{J}$, and $\{x_i : i \in \theta\}$ are all members of M and such that $M \cap \mathfrak{D}$ contains a base for \mathfrak{D} . Let $i_M = \sup(M \cap \theta)$. If $x \in M \cap [\omega]^\omega$, then $I_x = \{i \in \theta : x \subset x_i\}$ is an element of M and has cardinality less than θ . Therefore, if $i \in \theta \setminus i_M$, then x_i does not contain any infinite subset of ω that is an element of M. We prove that x_i is forced by T_0 to also not contain \dot{y} . This will prove that \dot{J} is bounded by i_M . Let $T_1 < T_0$ be any condition in $\mathbb{L}(\mathfrak{D})$ and let $t_1 = \operatorname{stem}(T_1)$. We show that T_1 does not force that $x_i \supset \dot{y}$. We define the relation \Vdash_w on $T_0 \times \omega$ to be the set

 $\{(t,n)\in T_0\times\omega: \text{ there is no } T\leq T_0, \text{stem}(T)=t, \text{s.t. } T\Vdash n\notin\dot{y}\}$.

For convenience we may write, for $T \leq T_0$, $T \Vdash_w n \in \dot{y}$ providing $(\operatorname{stem}(T), n)$ is in \Vdash_w , and this is equivalent to the relation that T has no stem preserving extension forcing that n is not in \dot{y} . Let $T_2 \in M$ be any extension of T_0 with stem t_1 . Let L denote the set of $\ell \in \omega$ such that $T_2 \Vdash_w \ell \in \dot{y}$. If L is infinite, then, since $L \in M$, there is an $\ell \in L \setminus x_i$. This implies that T_1 does not force $x_i \supset \dot{y}$, since $T_2 \Vdash_w \dot{y} \in \dot{y}$ implies that T_1 fails to force that $\ell \notin \dot{y}$.

Therefore we may assume that L is finite and let ℓ be the maximum of L. Define the set $E \subset \mathbb{L}(\mathfrak{D})$ according to $T \in E$ providing that either $t_1 \notin T$ or there is a $j > \ell$ such that $T \Vdash_w j \in \dot{y}$. Again this set E is in M and is easily seen to be a dense subset of $\mathbb{L}(\mathfrak{D})$. By the choice of ℓ , we note that $\rho_E(t_1) > 0$. If $\rho_E(t_1) > 1$, then the set $\{k \in \omega : 0 < \rho_E(t_1^{\frown}k) < \rho_E(t_1)\}$ is in \mathfrak{D}^+ and so there is a k_1 in this set such that $t_1^{\frown}k_1 \in T_1 \cap T_2$. By a finite induction, we can choose an extension $t_2 \supseteq t_1$ so that $t_2 \in T_1 \cap T_2$ and $\rho_E(t_2) = 1$. Now, there is a set $D \in \mathfrak{D} \cap M$ contained in $\{k : t_2^{\frown}k \in T_1 \cap T_2\}$ since M contains a base for \mathfrak{D} . Also, $D_E = \{k \in D : \rho_E(t_2^{\frown}k) = 0\}$ is in \mathfrak{D}^+ . For each $k \in D_E$, choose the minimal j_k so that $T_2^{\frown}k \Vdash j_k \in \dot{y}$. The set

 $\{j_k:k\in D_E\}$ is an element of M. This set is not finite because if it were then there would be a single j such that $\{k \in D_E : j_k = j\} \in \mathcal{D}^+$, which would contradict that $\rho_E(t_2) > 0$. This means that there is a $k \in D_E^+$ with $j_k \notin x_i$, and again we have shown that T_1 fails to force that x_i contains \dot{y} .

3. Matrix Iterations

The terminology "matrix iterations" is used in [3], see also forthcoming preprint (F1222) from the second author. The paper [3] nicely expands on the method of matrix iterated forcing first introduced in

Let us recall that a poset $(P, <_P)$ is a complete suborder of a poset $(Q, <_Q)$ providing $P \subset Q, <_P \subset <_Q$, and each maximal antichain of $(P, <_P)$ is also a maximal antichain of $(Q, <_Q)$. Note that it follows that incomparable members of $(P, <_P)$ are still incomparable in $(Q, <_Q)$, i.e. $p_1 \perp_P p_2$ implies $p_1 \perp_Q p_2$. We use the notation $(P, <_P) < \circ (Q, <_Q)$ to abbreviate the complete suborder relation, and similarly use $P < \circ Q$ if $<_P$ and $<_Q$ are clear from the context. An element p of P is a reduction of $q \in Q$ if $r \not\perp_Q q$ for each $r <_P p$. If $P \subset Q$, $<_P \subset <_Q$, $\bot_P \subset \bot_Q$, and each element of Q has a reduction in P, then P < Q. The reason is that if $A \subset P$ is a maximal antichain and $p \in P$ is a reduction of $q \in Q$, then there is an $a \in A$ and an r less than both p and a in P, such that $r \not\perp_Q q$.

Definition 3.1. We will say that an object P is a matrix iteration if there is an infinite cardinal κ and an ordinal γ (thence a (κ, γ) -matrix iteration) such that $\underline{\mathbf{P}} = \langle \langle \mathbb{P}^{\underline{\mathbf{P}}}_{i,\alpha} : i \leq \kappa, \alpha \leq \gamma \rangle, \langle \dot{\mathbb{Q}}^{\underline{\mathbf{P}}}_{i,\alpha} : i \leq \kappa, \alpha < \gamma \rangle \rangle$ where, for each $(i, \alpha) \in \kappa + 1 \times \gamma$ and each j < i,

- (1) $\mathbb{P}^{\mathbf{P}}_{j,\alpha}$ is a complete suborder of the poset $\mathbb{P}^{\mathbf{P}}_{i,\alpha}$ (i.e. $\mathbb{P}^{\mathbf{P}}_{j,\alpha} < \circ \mathbb{P}^{\mathbf{P}}_{i,\alpha}$), (2) $\dot{\mathbb{Q}}^{\mathbf{P}}_{i,\alpha}$ is a $\mathbb{P}^{\mathbf{P}}_{i,\alpha}$ -name of a ccc poset, $\mathbb{P}^{\mathbf{P}}_{i,\alpha+1}$ is equal to $\mathbb{P}^{\mathbf{P}}_{i,\alpha} * \dot{\mathbb{Q}}^{\mathbf{P}}_{i,\alpha}$,
- (3) for limit $\delta \leq \gamma$, $\mathbb{P}^{\mathbf{P}}_{i,\delta}$ is equal to the union of the family $\{\mathbb{P}^{\mathbf{P}}_{i,\delta}:$
- (4) $\mathbb{P}^{\underline{\mathbf{P}}}_{\kappa,\alpha}$ is the union of the chain $\{\mathbb{P}^{\underline{\mathbf{P}}}_{j,\alpha}: j < \kappa\}$.

When the context makes it clear, we omit the superscript $\underline{\mathbf{P}}$ when discussing a matrix iteration. Throughout the paper, κ will be a fixed uncountable regular cardinal

Definition 3.2. A sequence $\vec{\lambda}$ is κ -tall if $\vec{\lambda} = \langle \mu_{\xi}, \lambda_{\xi} : \xi < \kappa \rangle$ is a sequence of pairs of regular cardinals satisfying that $\mu_0 = \omega < \kappa < \lambda_0$ and, for $0 < \eta < \kappa$, $\mu_{\eta} < \lambda_{\eta}$ where $\mu_{\eta} = (2^{\sup{\{\lambda_{\xi}: \xi < \eta\}}})^{+}$.

Also for the remainder of the paper, we fix a κ -tall sequence $\vec{\lambda}$ and λ will denote the supremum of the set $\{\lambda_{\xi} : \xi \in \kappa\}$. For simpler notation, whenever we discuss a matrix iteration \mathbf{P} we shall henceforth assume that it is a (κ, γ) -matrix iteration for some ordinal γ . We may refer to a forcing extension by \mathbf{P} as an abbreviation for the forcing extension by $\mathbf{P}^{\mathbf{P}}_{\kappa,\gamma}$.

For any poset P, any P-name \dot{D} , and P-generic filter G, $\dot{D}[G]$ will denote the valuation of \dot{D} by G. For any ground model x, \check{x} denotes the canonical name so that $\check{x}[G] = x$. When x is an ordinal (or an integer) we will suppress the accent in \check{x} . A P-name \dot{D} of a subset of ω will be said to be nice or canonical if for each integer $j \in \omega$, there is an antichain A_j such that $\dot{D} = \bigcup \{\{j\} \times A_j : j \in \omega\}$. We will say that $\dot{\mathfrak{D}}$ is a nice P-name of a family of subsets of ω just to mean that $\dot{\mathfrak{D}}$ is a collection of nice P-names of subsets of ω . We will use $(\dot{\mathfrak{D}})_P$ if we need to emphasize that we mean the P-name. Similarly if we say that $\dot{\mathfrak{D}}$ is a nice P-name of a filter (base) we mean that $\dot{\mathfrak{D}}$ is a nice P-name such that, for each P-generic filter, the collection $\{\dot{D}[G] : \dot{D} \in \dot{\mathfrak{D}}\}$ is a filter (base) of infinite subsets of ω .

Following these conventions, the following notation will be helpful.

Definition 3.3. For a (κ, γ) -matrix $\underline{\mathbf{P}}$ and $i < \kappa$, we let $\mathbb{B}^{\underline{\mathbf{P}}}_{i,\gamma}$ denote the set of all nice $\mathbb{P}^{\underline{\mathbf{P}}}_{i,\gamma}$ -names of subsets of ω . We note that this then is the nice $\mathbb{P}^{\underline{\mathbf{P}}}_{i,\gamma}$ -name for the power set of ω . As usual, when possible we suppress the $\underline{\mathbf{P}}$ superscript.

For a nice $\underline{\mathbf{P}}$ -name $\dot{\mathfrak{D}}$ of a filter (or filter base) of subsets of ω , we let $(\dot{\mathfrak{D}})^+$ denote the set of all nice $\underline{\mathbf{P}}$ -names that are forced to meet every member of $\dot{\mathfrak{D}}$. It follows that $(\dot{\mathfrak{D}})^+$ is the nice $\underline{\mathbf{P}}$ -name for the usual defined notion $(\dot{\mathfrak{D}})^+$ in the forcing extension by $\underline{\mathbf{P}}$. We let $\langle \dot{\mathfrak{D}} \rangle$ denote the nice $\underline{\mathbf{P}}$ -name of the filter generated by $\dot{\mathfrak{D}}$. We use the same notational conventions if, for some poset \mathbb{P} , $\dot{\mathfrak{D}}$ is a nice \mathbb{P} -name of a filter (or filter base) of subsets of ω .

The main idea for controlling the splitting number in the extension by $\underline{\mathbf{P}}$ will involve having many of the subposets being θ -Luzin preserving for $\theta \in \{\lambda_{\xi} : \xi \in \kappa\}$. Motivated by the fact that posets of the form $\mathbb{L}(\mathfrak{D})$ (our proposed iterands) are θ -Luzin preserving when \mathfrak{D} is sufficiently small we adopt the name $\vec{\lambda}$ -thin for this next notion.

Definition 3.4. For a κ -tall sequence $\vec{\lambda}$, we will say that a (κ, γ) -matrix-iteration $\underline{\mathbf{P}}$ is $\vec{\lambda}$ -thin providing that for each $\xi < \kappa$ and $\alpha \leq \gamma$, $\mathbb{P}^{\underline{\mathbf{P}}}_{\xi,\alpha}$ is λ_{ξ} -Luzin preserving.

Now we combine the notion of $\vec{\lambda}$ -thin matrix-iteration with Lemma 2.2. We adopt Kunen's notation that for a set I, $\operatorname{Fn}(I,2)$ denotes the usual poset for adding Cohen reals (finite partial functions from I into 2 ordered by superset).

Lemma 3.5. Suppose that \mathbf{P} is a $\vec{\lambda}$ -thin (κ, γ) -matrix iteration for some κ -tall sequence $\vec{\lambda}$. Further suppose that $\dot{\mathbb{Q}}_{i,0}$ is the $\mathbb{P}_{i,0}$ -name of the poset $\operatorname{Fn}(\lambda_{\xi}, 2)$ for each $\xi \in \kappa$, and therefore $\mathbb{P}_{\kappa,1}$ is isomorphic to $\operatorname{Fn}(\lambda, 2)$. Let \dot{g} denote the generic function from λ onto 2 added by $\mathbb{P}_{\kappa,1}$ and, for $i < \lambda$, let \dot{x}_i be the canonical name of the set $\{n \in \omega : \dot{g}(i+n)=1\}$. Then the family $\{\dot{x}_i: i < \lambda\}$ is forced by \mathbf{P} to be a splitting family.

Proof. Let $G_{\kappa,\gamma}$ be a $\mathbb{P}_{\kappa,\gamma}$ -generic filter. For each $\xi \in \kappa$ and $\alpha \leq \gamma$, let $G_{\xi,\alpha} = G_{\kappa,\gamma} \cap \mathbb{P}_{\xi,\alpha}$. Let \dot{y} be any nice $\mathbb{P}_{\kappa,\gamma}$ -name for a subset of ω . Since \dot{y} is a countable name, we may choose a $\xi < \kappa$ so that \dot{y} is a $\mathbb{P}_{\xi,\gamma}$ -name. It is easily shown, and very well-known, that the family $\{\dot{x}_i : i < \lambda_{\xi}\}$ is forced by $\mathbb{P}_{\xi,1}$ (i.e. $\operatorname{Fn}(\lambda_{\xi},2)$) to be a λ_{ξ} -Luzin family. By the hypothesis that $\underline{\mathbf{P}}$ is $\overrightarrow{\lambda}$ -thin, we have, by Lemma 2.2, that $\{\dot{x}_i : i < \lambda_{\xi}\}$ is still λ_{ξ} -Luzin in $V[G \cap \mathbb{P}_{\xi,\gamma}]$. Since \dot{y} is a $\mathbb{P}_{\xi,\gamma}$ -name, there is an $i < \lambda_{\xi}$ such that $\dot{y}[G_{\xi,\gamma}] \cap \dot{x}_i[G_{\xi,\gamma}]$ and $\dot{y}[G_{\xi,\gamma}] \setminus \dot{x}_i[G_{\xi,\gamma}]$ are infinite. \square

4. The construction of \mathbf{P}

When constructing a matrix-iteration by recursion, we will need notation and language for extension. We will use, for an ordinal γ , \mathbf{P}^{γ} to indicate that \mathbf{P}^{γ} is a (κ, γ) -matrix iteration.

- **Definition 4.1.** (1) A matrix iteration \mathbf{P}^{γ} is an extension of \mathbf{P}^{δ} providing $\delta \leq \gamma$, and, for each $\alpha \leq \delta$ and $i \leq \kappa$, $\mathbb{P}^{\mathbf{P}^{\delta}}_{i,\alpha} = \mathbb{P}^{\mathbf{P}^{\gamma}}_{i,\alpha}$. We can use $\mathbf{P}^{\gamma} \upharpoonright \delta$ to denote the unique (κ, δ) -matrix iteration extended by \mathbf{P}^{γ} .
 - (2) If, for each $i < \kappa$, $\dot{\mathbb{Q}}_{i,\gamma}$ is a $\mathbb{P}^{\mathbf{P}}_{i,\gamma}$ -name of a ccc poset satisfying that, for each $i < j < \kappa$, $\mathbb{P}_{i,\gamma} * \dot{\mathbb{Q}}_{i,\gamma}$ is a complete subposet of $\mathbb{P}_{j,\gamma} * \dot{\mathbb{Q}}_{j,\gamma}$, then we let $\mathbf{P} * \langle \dot{\mathbb{Q}}_{i,\gamma} : i < \kappa \rangle$ denote the $(\kappa, \gamma + 1)$ -matrix $\langle \langle \mathbb{P}_{i,\alpha} : i \leq \kappa, \alpha \leq \gamma + 1 \rangle, \langle \dot{\mathbb{Q}}_{i,\alpha} : i \leq \kappa, \alpha < \gamma + 1 \rangle \rangle$, where $\dot{\mathbb{Q}}_{\kappa,\gamma}$ is the \mathbf{P} -name of the union of $\{\dot{\mathbb{Q}}_{i,\gamma} : i < \kappa\}$ and, for $i \leq \kappa$, $\mathbb{P}_{i,\gamma} = \mathbb{P}^{\mathbf{P}}_{i,\gamma}$, $\mathbb{P}_{i,\gamma+1} = \mathbb{P}^{\mathbf{P}}_{i,\gamma} * \dot{\mathbb{Q}}_{i,\gamma}$, and for $\alpha < \gamma$, $(\mathbb{P}_{i,\alpha}, \dot{\mathbb{Q}}_{i,\alpha}) = (\mathbb{P}^{\mathbf{P}}_{i,\alpha}, \dot{\mathbb{Q}}_{i,\alpha}^{\mathbf{P}})$.

The following, from [3, Lemma 3.10], shows that extension at limit steps is canonical.

Lemma 4.2. If γ is a limit and if $\{\underline{\mathbf{P}}^{\delta} : \delta < \gamma\}$ is a sequence of matrix iterations satisfying that for $\beta < \delta < \gamma$, $\underline{\mathbf{P}}^{\delta} \upharpoonright \beta = \underline{\mathbf{P}}^{\beta}$, then there is a unique matrix iteration $\underline{\mathbf{P}}^{\gamma}$ such that $\underline{\mathbf{P}}^{\gamma} \upharpoonright \delta = \underline{\mathbf{P}}^{\delta}$ for all $\delta < \gamma$.

Proof. For each $\delta < \gamma$ and $i < \kappa$, we define $\mathbb{P}^{\mathbf{P}^{\gamma}}_{i,\delta}$ to be $\mathbb{P}^{\mathbf{P}^{\delta}}_{i,\delta}$ and $\dot{\mathbb{Q}}^{\mathbf{P}^{\gamma}}_{i,\delta}$ to be $\dot{\mathbb{Q}}^{\mathbf{P}^{\delta+1}}_{i,\delta}$. It follows that $\dot{\mathbb{Q}}^{\mathbf{P}^{\gamma}}_{i,\delta}$ is a $\mathbb{P}^{\mathbf{P}^{\gamma}}_{i,\delta}$ -name. Since γ is a limit, the definition of $\mathbb{P}^{\mathbf{P}^{\gamma}}_{i,\gamma}$ is required to be $\bigcup \{\mathbb{P}^{\mathbf{P}^{\gamma}}_{i,\delta} : \delta < \gamma\}$ for $i < \kappa$. Similarly, the definition of $\mathbb{P}_{\kappa,\gamma}^{\mathbf{P}^{\gamma}}$ is required to be $\bigcup \{\mathbb{P}_{i,\gamma}^{\mathbf{P}^{\gamma}}: i < \kappa\}$. Let us note that $\mathbb{P}_{\kappa,\gamma}^{\mathbf{P}^{\gamma}}$ is also required to be the union of the chain $\bigcup \{\mathbb{P}_{\kappa,\delta}^{\mathbf{P}^{\gamma}} : \delta < \gamma\}$, and this holds by assumption on the sequence $\{\underline{\mathbf{P}}^{\delta}: \delta < \gamma\}$.

To prove that $\underline{\mathbf{P}}^{\gamma}$ is a (κ, γ) -matrix it remains to prove that for $j < i \leq \kappa$, and each $q \in \mathbb{P}_{i,\gamma}^{\mathbf{P}^{\gamma}}$, there is a reduction p in $\mathbb{P}_{j,\gamma}^{\mathbf{P}^{\gamma}}$. Since γ is a limit, there is an $\alpha < \gamma$ such that $q \in \mathbb{P}^{\mathbf{P}^{\alpha}}_{i,\alpha}$ and, by assumption, there is a reduction, p, of q in $\mathbb{P}_{j,\alpha}^{\mathbf{P}^{\alpha}}$. By induction on β ($\alpha \leq \beta \leq \gamma$) we note that $q \in \mathbb{P}^{\mathbf{P}^{\beta}}_{i,\beta}$ and that p is a reduction of q in $\mathbb{P}^{\mathbf{P}^{\beta}}_{j,\beta}$. For limit β it is trivial, and for successor β it follows from condition (1) in the definition of matrix iteration.

We also will need the next result taken from [3, Lemma 13], which they describe as well known, for stepping diagonally in the array of posets.

Lemma 4.3. Let \mathbb{P}, \mathbb{Q} be partial orders such that \mathbb{P} is a complete suborder of \mathbb{Q} . Let $\dot{\mathbb{A}}$ be a \mathbb{P} -name for a forcing notion and let $\dot{\mathbb{B}}$ be a \mathbb{Q} -name for a forcing notion such that $\Vdash_{\mathbb{Q}} \mathbb{A} \subset \mathbb{B}$, and every \mathbb{P} -name of a maximal antichain of \mathbb{A} is also forced by \mathbb{Q} to be a maximal antichain of $\dot{\mathbb{B}}$. Then $\mathbb{P} * \dot{\mathbb{A}} < \circ \mathbb{Q} * \dot{\mathbb{B}}$

Let us also note if $\dot{\mathbb{B}}$ is equal to $\dot{\mathbb{A}}$ in Lemma 4.3, then the hypothesis and the conclusion of the Lemma are immediate. On the other hand, if A is the P-name of $\mathbb{L}(\mathfrak{D})$ for some P-name of a filter \mathfrak{D} , then the \mathbb{Q} -name of $\mathbb{L}(\mathfrak{D})$ is not necessarily equal to \mathbb{A} .

Lemma 4.4 ([6, 1.9]). Suppose that \mathbb{P}, \mathbb{Q} are posets with $\mathbb{P} < \circ \mathbb{Q}$. Suppose also that $\dot{\mathfrak{D}}_0$ is a \mathbb{P} -name of a filter on ω and $\dot{\mathfrak{D}}_1$ is a \mathbb{Q} -name of a filter on ω . If $\Vdash_{\mathbb{Q}} \dot{\mathfrak{D}}_0 \subseteq \dot{\mathfrak{D}}_1$ then $\mathbb{P} * \mathbb{L}(\dot{\mathfrak{D}}_0)$ is a complete subposet of $\mathbb{Q} * \mathbb{L}(\mathfrak{D}_1)$ if either of the two equivalent conditions hold:

- $(1) \Vdash_{\mathbb{Q}} ((\dot{\mathfrak{D}}_0)^+)_{\mathbb{P}} \subseteq \dot{\mathfrak{D}}_1^+,$ $(2) \Vdash_{\mathbb{Q}} \dot{\mathfrak{D}}_1 \cap V^{\mathbb{P}} \subseteq \langle \dot{\mathfrak{D}}_0 \rangle \text{ (where } V^{\mathbb{P}} \text{ is the class of } \mathbb{P}\text{-names)}.$

Proof. Let E be any \mathbb{P} -name of a maximal antichain of $\mathbb{L}(\mathfrak{D}_0)$. By Lemma 4.3, it suffices to show that \mathbb{Q} forces that every member of $\mathbb{L}(\dot{\mathfrak{D}}_1)$ is compatible with some member of \dot{E} . Let G be any \mathbb{Q} -generic filter and let E denote the valuation of \dot{E} by $G \cap \mathbb{P}$. Working in the model $V[G \cap \mathbb{P}]$, we have the function ρ_E as in Lemma 2.4. Choose $\delta \in \omega_1$ satisfying that $\rho_E(t) < \delta$ for all $t \in \omega^{<\omega}$. Now, working in V[G], we consider any $T \in \mathbb{L}(\dot{\mathfrak{D}}_1)$ and we find an element of E that is compatible with T. In fact, by induction on $\alpha < \delta$, one easily proves that for each $T \in \mathbb{L}(\dot{\mathfrak{D}}_1)$ with $\rho_E(\operatorname{stem}(T)) \leq \alpha$, T is compatible with some member of E.

Definition 4.5. For a (κ, γ) -matrix-iteration $\underline{\mathbf{P}}$, and ordinal $i_{\gamma} < \kappa$, we say that an increasing sequence $\langle \hat{\mathfrak{D}}_i : i < \kappa \rangle$ is a $(\underline{\mathbf{P}}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases, if for each $i < j < \kappa$

- (1) $\dot{\mathfrak{D}}_i$ is a subset of $\mathbb{B}_{i,\gamma}$ (hence a nice $\mathbb{P}^{\mathbf{P}}_{i,\gamma}$ -name)
- (2) $\Vdash_{\mathbb{P}_{i,\gamma}} \dot{\mathfrak{D}}_i$ is a filter with a base of cardinality at most μ_{i_γ} ,
- (3) if $i_{\gamma} \leq i$, then $\Vdash_{\mathbb{P}_{j,\gamma}} \langle \dot{\mathfrak{D}}_{j} \rangle \cap \mathbb{B}_{i,\gamma} \subseteq \langle \dot{\mathfrak{D}}_{i} \rangle$.

Notice that a $(\mathbf{P}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases can be (essentially) eventually constant. Thus we will say that a sequence $\langle \dot{\mathfrak{D}}_i : i \leq j \rangle$ (for some $j < \kappa$) is a $(\mathbf{P}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases if the sequence $\langle \dot{\mathfrak{D}}_i : i < \kappa \rangle$ is a $(\mathbf{P}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases where $\dot{\mathfrak{D}}_i$ is the $\mathbb{P}_{i,\gamma}$ -name for $\mathbb{B}_{i,\gamma} \cap \langle \dot{\mathfrak{D}}_j \rangle$ for $j < i \leq \kappa$. When \mathbf{P} is clear from the context, we will use $\vec{\lambda}(i_{\gamma})$ -thin as an abbreviation for $(\mathbf{P}, \vec{\lambda}(i_{\gamma}))$ -thin.

Corollary 4.6. For a (κ, γ) -matrix-iteration $\underline{\mathbf{P}}$, ordinal $i_{\gamma} < \kappa$, and a $(\underline{\mathbf{P}}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases $\langle \dot{\mathfrak{D}}_{\xi} : i < \kappa \rangle$, $\underline{\mathbf{P}} * \langle \dot{\mathbb{Q}}_{i,\gamma} : i \leq \kappa \rangle$ is a $\gamma + 1$ -extension of $\underline{\mathbf{P}}$, where, for each $i \leq i_{\gamma}$, $\dot{\mathbb{Q}}_{i,\gamma}$ is the trivial poset, and for $i_{\gamma} \leq i < \kappa$, $\dot{\mathbb{Q}}_{i,\gamma}$ is $\mathbb{L}(\dot{\mathfrak{D}}_{i})$.

Definition 4.7. Whenever $\langle \dot{\mathfrak{D}}_i : i < \kappa \rangle$ is a $(\underline{\mathbf{P}}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases, let $\underline{\mathbf{P}} * \mathbb{L}(\langle \dot{\mathfrak{D}}_i : i_{\gamma} \leq i < \kappa \rangle)$ denote the $\gamma + 1$ -extension described in Corollary 4.6.

This next corollary is immediate.

Corollary 4.8. If $\underline{\mathbf{P}}$ is a $\vec{\lambda}$ -thin (κ, γ) -matrix and if $\langle \dot{\mathfrak{D}}_i : i < \kappa \rangle$ is a $(\underline{\mathbf{P}}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases, then $\underline{\mathbf{P}} * \mathbb{L}(\langle \dot{\mathfrak{D}}_i : i_{\gamma} \leq i < \kappa \rangle)$ is a $\vec{\lambda}$ -thin $(\kappa, \gamma + 1)$ -matrix.

We now describe a first approximation of the scheme, $\mathcal{K}(\vec{\lambda})$, of posets that we will be using to produce the model.

Definition 4.9. For an ordinal $\gamma > 0$ and a (κ, γ) -matrix iteration $\underline{\mathbf{P}}$, we will say that $\underline{\mathbf{P}} \in \mathcal{K}(\vec{\lambda})$ providing for each $0 < \alpha < \gamma$,

- (1) for each $i \leq \kappa$, $\mathbb{P}^{\mathbf{P}}_{i,1}$ is $\operatorname{Fn}(\lambda_i, 2)$, and
- (2) there is an $i_{\alpha} = i\frac{\mathbf{P}}{\alpha} < \kappa$ and a $(\underline{\mathbf{P}} \upharpoonright \alpha, \vec{\lambda}(i_{\alpha}))$ -thin sequence $\langle \dot{\mathfrak{D}}_{i}^{\alpha} : i < \kappa \rangle$ of filter bases, such that $\underline{\mathbf{P}} \upharpoonright \alpha + 1$ is equal to $\underline{\mathbf{P}} \upharpoonright \alpha * \mathbb{L}(\langle \dot{\mathfrak{D}}_{i}^{\alpha} : i_{\alpha} \leq i < \kappa \rangle)$.

For each $0 < \alpha < \gamma$, we let $\dot{\mathfrak{D}}_{\kappa}^{\alpha}$ denote the $\underline{\mathbf{P}} \upharpoonright \alpha$ -name of the union $\bigcup \{\dot{\mathfrak{D}}_{i}^{\alpha} : i_{\alpha} \leq i < \kappa\}$, and we let $\dot{\mathbf{L}}_{\alpha}$ denote the canonical $\underline{\mathbf{P}} \upharpoonright \alpha + 1$ -name of the subset of ω added by $\mathbb{L}(\mathfrak{D}_{\kappa}^{\alpha})$.

Let us note that each $\mathbf{P} \in \mathcal{K}(\vec{\lambda})$ is $\vec{\lambda}$ -thin. Furthermore, by Lemma 3.5, this means that each $\mathbf{P} \in \mathcal{K}(\vec{\lambda})$ forces that $\mathbf{s} \leq \lambda$. We begin a new section for the task of proving that there is a $\mathbf{P} \in \mathcal{K}(\vec{\lambda})$ that forces that $s \geq \lambda$.

It will be important to be able to construct $(\underline{\mathbf{P}}, \vec{\lambda}(i_{\gamma}))$ -thin sequences of filter bases, and it seems we will need some help.

Definition 4.10. For an ordinal $\gamma > 0$ and a (κ, γ) -matrix iteration $\underline{\mathbf{P}}$ we will say that $\underline{\mathbf{P}} \in \mathcal{H}(\vec{\lambda})$ if $\underline{\mathbf{P}}$ is in $\mathcal{K}(\vec{\lambda})$ and for each $0 < \alpha < \gamma$, if $i_{\alpha} = i_{\alpha}^{\underline{\mathbf{P}}} > 0$ then $\omega_1 \leq \mathrm{cf}(\alpha) \leq \mu_{i_{\alpha}}$ and there is a $\beta_{\alpha} < \alpha$ such that

- (1) for $\beta_{\alpha} \leq \xi < \alpha$ of countable cofinality, $i_{\xi} = 0$ and $\mathfrak{D}_{i_{\xi}}^{\xi}$ is a free filter with a countable base that is strictly descending mod finite,
- (2) if $\beta_{\alpha} \leq \eta < \alpha$, $i_{\eta} > 0$ and $\xi = \eta + \omega_{1} \leq \alpha$, then $\dot{L}_{\eta} \in \dot{\mathfrak{D}}_{i_{\xi}}^{\xi}$, and $\mathbb{P}_{i_{\xi},\xi} \Vdash \dot{\mathfrak{D}}_{i_{\xi}}^{\alpha}$ has a descending mod finite base of cardinality ω_{1} ,
- (3) if $\beta_{\alpha} < \dot{\xi} \leq \alpha$, $i_{\xi} > 0$, and $\eta + \omega_{1} < \xi$ for all $\eta < \xi$, then $\{\dot{L}_{\eta} : \beta_{\alpha} \leq \eta < \alpha, \operatorname{cf}(\eta) \geq \omega_{1}\}$ is a base for $\dot{\mathfrak{D}}_{i_{\xi}}^{\xi}$.

5. Producing $\vec{\lambda}$ -thin filter sequences

In this section we prove this main lemma.

Lemma 5.1. Suppose that $\mathbf{P}^{\gamma} \in \mathcal{H}(\vec{\lambda})$ and that \mathcal{Y} is a set of fewer than λ nice \mathbf{P}^{γ} -names of subsets of ω , then there is a $\delta < \gamma + \lambda$ and an extension \mathbf{P}^{δ} of \mathbf{P}^{γ} in $\mathcal{H}(\vec{\lambda})$ that forces that the family \mathcal{Y} is not a splitting family.

The main theorem follows easily.

Proof of Theorem 1.2. Let θ be any regular cardinal so that $\theta^{<\lambda} = \theta$ (for example, $\theta = (2^{\lambda})^+$). Construct $\mathbf{P}^{\theta} \in \mathcal{H}(\vec{\lambda})$ so that for all $\mathcal{Y} \subset \mathbb{B}_{\kappa,\theta}$ with $|\mathcal{Y}| < \lambda$, there is a $\gamma < \delta < \theta$ so that $\mathcal{Y} \subset \mathbb{B}_{\kappa,\gamma}$ and, by applying Lemma 5.1, such that $\mathbf{P}^{\theta} \upharpoonright \delta$ forces that \mathcal{Y} is not a splitting family. \square

We begin by reducing our job to simply finding a $(\mathbf{P}, \vec{\lambda}(i_{\gamma}))$ -thin sequence. For the remainder of the paper, we always assume that

when discussing $p \in \mathbf{P}^{\gamma}$, that for each $\xi \in \text{dom}(p)$ there is a $t_{\xi}^{p} \in \omega^{<\omega}$ such that $p \upharpoonright \xi \Vdash t_{\xi}^{p} = \text{stem}(p(\xi))$.

Definition 5.2. For a (κ, γ) -matrix-iteration $\underline{\mathbf{P}}^{\gamma}$, we say that a subset \mathcal{E} of $\mathbb{B}_{\kappa,\gamma}$ is a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter subbase if, $i_{\gamma} < \kappa$, $|\mathcal{E}| \leq \mu_{i_{\gamma}}$, and the sequence $\langle \langle \mathcal{E} \cap \mathbb{B}_{i,\gamma} \rangle : i < \kappa \rangle$ is a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin sequence of filter bases.

Lemma 5.3. For any $\mathbf{P}^{\gamma} \in \mathcal{H}(\vec{\lambda})$, and any $(\mathbf{P}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter base \mathcal{E} , there is an $\alpha \leq \gamma + \mu_{i_{\gamma}} + 1$ and extensions $\mathbf{P}^{\alpha}, \mathbf{P}^{\alpha+1}$ of \mathbf{P}^{γ} in $\mathcal{H}(\vec{\lambda})$, such that, $\mathbf{P}^{\alpha+1} = \mathbf{P}^{\alpha} * \mathbb{L}(\langle \dot{\mathfrak{D}}_{i}^{\alpha} : i_{\alpha} \leq i < \kappa \rangle)$ and \mathbf{P}^{α} forces that $\mathcal{E} \cap \mathbb{B}_{i,\gamma}$ is a subset of $\dot{\mathfrak{D}}_{i}^{\alpha}$ for all $i < \kappa$.

Proof. The case $i_{\gamma}=0$ is trivial, so we assume $i_{\gamma}>0$. There is no loss of generality to assume that $\mathcal{E}\cap\mathbb{B}_{i_{\gamma},\gamma}$ has character $\mu_{i_{\gamma}}$. Let $\{\dot{E}_{\xi}: \xi<\mu_{i_{\gamma}}\}\subset\mathcal{E}\cap\mathbb{B}_{i_{\gamma},\gamma}$ enumerate a filter base for $\langle\mathcal{E}\rangle\cap\mathbb{B}_{i_{\gamma},\gamma}$. We can assume that this enumeration satisfies that $\dot{E}_{\xi}\setminus\dot{E}_{\xi+1}$ is forced to be infinite for all $\xi<\mu_{i_{\gamma}}$. Let \mathcal{A} be any countably generated free filter on ω that is not principal mod finite. By induction on $\xi<\mu_{i_{\gamma}}$ we define $\mathbf{P}^{\gamma+\xi}$ by simply defining $i_{\gamma+\xi}$ and the sequence $\langle\dot{\mathfrak{D}}_{i_{\gamma}}^{\gamma+\xi}:i_{\gamma+\xi}\leq i\leq\kappa\rangle$. We will also recursively define, for each $\xi<\mu_{i_{\gamma}}$, a $\mathbf{P}^{\gamma+\xi}$ -name \dot{D}_{ξ} such that $\mathbf{P}^{\gamma+\xi}$ forces that $\dot{D}_{\xi}\subset\dot{E}_{\xi}$. An important induction hypothesis is that $\{\dot{D}_{\eta}:\eta<\xi\}\cup\{\dot{E}_{\zeta}:\zeta<\mu_{i_{\gamma}}\}\cup\mathcal{E}$ is forced to have the finite intersection property.

For each $\xi < \gamma + \omega_1$, let $i_{\xi} = 0$ and $\dot{\mathcal{D}}_{i}^{\xi}$ be the $\underline{\mathbf{P}}^{\xi}$ -name $\langle \mathcal{A} \rangle \cap \mathbb{B}_{i,\xi}$ for all $i \leq \kappa$. The definition of \dot{D}_{0} is simply \dot{E}_{0} . By recursion, for each $\eta < \omega_{1}$ and $\xi = \eta + 1$, we define \dot{D}_{ξ} to be the intersection of \dot{D}_{η} and \dot{E}_{ξ} . For limit $\xi < \omega_{1}$, we note that $\mathbb{P}_{i_{\gamma},\xi}$ forces that $\mathbb{L}(\langle \mathcal{A} \rangle)$ is isomorphic to $\mathbb{L}(\langle \{\dot{D}_{\eta} \cap \dot{E}_{\xi} : \eta < \xi\} \rangle)$. Therefore, we can let \dot{D}_{ξ} be a $\underline{\mathbf{P}}^{\xi+1}$ -name for the generic real added by $\mathbb{L}(\langle \{\dot{D}_{\eta} \cap \dot{E}_{\xi} : \eta < \xi\} \rangle)$. A routine density argument shows that this definition satisfies the induction hypothesis.

The definition of $i_{\gamma+\omega_1}$ is i_{γ} and the definition of $\dot{\mathfrak{D}}_{i_{\gamma}}^{\gamma+\omega_1}$ is the filter generated by $\{\dot{D}_{\xi}: \xi < \omega_1\}$. The definition of \dot{D}_{ω_1} is $\dot{L}_{\gamma+\omega_1}$.

Let S denote the set of $\eta < \mu_{i_{\gamma}}$ with uncountable cofinality. We now add additional induction hypotheses:

- (1) if $\zeta = \sup(S \cap \xi) < \xi$ and $\xi = \nu + 1$, then $\dot{D}_{\xi} = \dot{D}_{\nu} \cap \dot{E}_{\xi}$, and $i_{\xi} = 0$ and $\dot{\mathfrak{D}}_{i}^{\gamma + \xi} = \langle \mathcal{A} \rangle$ for all $i \leq \kappa$
- (2) if $\zeta = \sup(S \cap \xi) < \xi$ and ξ is a limit of countable cofinality, then $i_{\xi} = 0$ and $\mathfrak{D}_{i}^{\gamma+\xi} = \langle \mathcal{A} \rangle$ for all $i \leq \kappa$, and D_{ξ} is forced by $\mathbf{P}^{\gamma+\xi+1}$ to be the generic real added by $\mathbb{L}(\{\dot{D}_{\eta} \cap \dot{E}_{\xi} : \zeta \leq \eta < \xi\})$,

- (3) if $\zeta = \sup(S \cap \xi)$ and $\xi = \zeta + \omega_1$, then $i_{\xi} = i_{\gamma}$, $\dot{\mathfrak{D}}_{i_{\xi}}^{\gamma + \xi}$ is the filter generated by $\{\dot{E}_{\xi} \cap \dot{D}_{\eta} : \zeta \leq \eta < \xi\}$ and \dot{D}_{ξ} is $\dot{L}_{\gamma + \xi}$,
- (4) if $S \cap \xi$ is cofinal in ξ and $\mathrm{cf}(\xi) > \omega$, then $i_{\xi} = i_{\gamma}$ and $\dot{\mathfrak{D}}_{i_{\xi}}^{\gamma + \xi}$ is the filter generated by $\{\dot{D}_{\gamma + \eta} : \eta \in S \cap \xi\}$ and $\dot{D}_{\xi} = \dot{L}_{\gamma + \xi}$,
- (5) if $S \cap \xi$ is cofinal in ξ and $\operatorname{cf}(\xi) = \omega$, then $i_{\xi} = 0$ and $\dot{\mathfrak{D}}_{i}^{\gamma + \xi} = \langle \mathcal{A} \rangle$ for all $i \leq \kappa$, and $\dot{\mathcal{D}}_{\xi}$ is forced by $\mathbf{P}^{\gamma + \xi + 1}$ to be the generic real added by $\mathbb{L}(\{\dot{\mathcal{D}}_{\eta_{n}} \cap \dot{E}_{\xi} : n \in \omega\})$, where $\{\eta_{n} : n \in \omega\}$ is some increasing cofinal subset of $S \cap (\gamma, \xi)$.

It should be clear that the induction continues to stage $\mu_{i_{\gamma}}$ and that $\mathbf{P}^{\gamma+\xi} \in \mathcal{H}(\vec{\lambda}(i_{\gamma}))$ for all $\xi \leq \mu_{i_{\gamma}}$, with $\beta_{\gamma_{\xi}} = \gamma$ being the witness to Definition 4.10 for all ξ with $\mathrm{cf}(\xi) > \omega$.

The final definition of the sequence $\langle \dot{\mathfrak{D}}_{i}^{\delta} : i_{\delta} = i_{\gamma} \leq i \leq \kappa \rangle$, where $\delta = \gamma + \mu_{i_{\gamma}}$ is that $\dot{\mathfrak{D}}_{i_{\gamma}}^{\delta}$ is the filter generated by $\{\dot{L}_{\gamma+\xi} : \operatorname{cf}(\xi) > \omega\}$, and for $i_{\gamma} < i \leq \kappa$, $\dot{\mathfrak{D}}_{i}^{\delta}$ is the filter generated by $\dot{\mathfrak{D}}_{i_{\gamma}}^{\delta} \cup (\mathcal{E} \cap \mathbb{B}_{i,\gamma})$. \square

Lemma 5.4. Suppose that \mathcal{E} is a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter base. Also assume that $i < \kappa$ and $\alpha \le \gamma$ and $\mathcal{E}_{1} \subset \mathbb{B}_{i,\alpha}$ is a $(\underline{\mathbf{P}}^{\alpha}, \vec{\lambda}(i_{\gamma}))$ -thin filter base satisfying that $\langle \mathcal{E} \rangle \cap \mathbb{B}_{i,\alpha} \subset \langle \mathcal{E}_{1} \rangle$, then there is a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter base \mathcal{E}_{2} such that $\mathcal{E} \cup \mathcal{E}_{1} \subset \mathcal{E}_{2} \subset \langle \mathcal{E} \cup \mathcal{E}_{1} \rangle$.

Proof. The first claim is that if $\alpha = \gamma$, then \mathcal{E}_2 simply equalling $\mathcal{E} \cup \mathcal{E}_1$ will work. To see this, assume that $i_{\gamma} \leq j_1 < j_2$ and that for some p and $\dot{b} \in \mathbb{B}_{j_1,\gamma}$, some $p \Vdash \dot{b} \cap (\dot{E} \cap \dot{E}_1) = \emptyset$ for a pair $\dot{E}, \dot{E}_1 \in \mathbb{B}_{j_2,\gamma}$ with $\dot{E} \in \mathcal{E}$ and $\dot{E}_1 \in \mathcal{E}_1$. If $i \leq j_1$, then $\dot{b} \cap \dot{E}_1 \in \mathbb{B}_{j_1,\gamma}$. So just use that \mathcal{E} is thin. For $j_1 \leq i$, we proceed by induction on j_2 . If $j_1 \leq i < j_2$, then $p \Vdash (\dot{b} \cap \dot{E}_1) \cap \dot{E} = \emptyset$, so again, there is $\dot{E}_2 \in \mathcal{E} \cap \mathbb{B}_{i,\gamma}$ such that $p \Vdash (\dot{b} \cap \dot{E}_1) \cap \dot{E}_2 = \dot{b} \cap (\dot{E}_1 \cap \dot{E}_2)$ is empty. Then, by the induction hypothesis, there is an $\dot{E}_3 \in \langle \mathcal{E} \cup \mathcal{E}_1 \rangle \cap \mathbb{B}_{j_1,\gamma}$ such that $p \Vdash \dot{b} \cap \dot{E}_3$ is empty. Finally, if $j_2 \leq i$, then $\dot{E} \cap \dot{E}_1 \in \langle \mathcal{E}_1 \rangle$, so there is $\dot{E}_3 \in \langle \mathcal{E}_1 \rangle \cap \mathbb{B}_{j_1,\gamma}$ with $p \Vdash \dot{b} \cap \dot{E}_3 = \emptyset$.

Choose any ω -closed elementary submodel M of $H(2^{\lambda \cdot \gamma +})$ containing $\{\mathcal{E}, \mathbf{P}_{\gamma}\}$. We may assume that \mathcal{E} contains all $\dot{y} \in M \cap \mathbb{B}_{i,\gamma}$ such that $1 \Vdash \dot{y} \in \langle \mathcal{E} \cap \mathbb{B}_{i,\gamma} \rangle$. Now we show that \mathcal{E} has the following closure property: if $\dot{E}_0 \in \mathcal{E} \cap \mathbb{B}_{i,\beta}$ and $p \in \mathbb{P}_{i,\gamma}$, there is a $\dot{E}_2 \in \mathbb{B}_{j,\beta}$ such that $p \Vdash \dot{E}_2 = \dot{E}_0$ and $r \Vdash \dot{E}_2 = \omega$ for all $r \perp p$. For each $\ell \in \omega$, choose a maximal antichain $A_{\ell} \subset M \cap \mathbb{P}_{i,\beta}$ such that for each $q \in A_{\ell}$

- (1) either $q \Vdash \ell \in \dot{E}_0$ or $q \Vdash \ell \notin \dot{E}_0$,
- (2) either $q \perp p$ or every extension of q in $\mathbb{P}_{i,\gamma} \cap M$ is compatible with p (i.e. q is an $M \cap \mathbb{P}_{i,\gamma} \cap M$ -reduct of p).

We define \dot{E}_2 to be the set of all pairs (ℓ, q) with $q \in A_{\ell} \cap p^{\perp}$ or with $q \Vdash \ell \in \dot{E}_0$. That is, the only pairs (ℓ, q) from $\{\ell\} \times A_{\ell}$ are those q that are compatible with p and force that q is not in \dot{E}_0 . It is immediate that $1 \Vdash \dot{E}_2 \supset \dot{E}_0$. It should be clear that if $r \perp p$, then $r \Vdash \dot{E}_2 = \omega$. Similarly if r < p and r < q for some $q \in A_{\ell}$, then q is compatible with p and so $q \Vdash \ell \in \dot{E}_0$.

We may similarly assume that \mathcal{E}_1 has this same closure property. We let $q <_j p$ denote the relation that $q \in \mathbb{P}_{j,\gamma}$ and every extension of q in $\mathbb{P}_{j,\gamma}$ is compatible with p (i.e. q is a $\mathbb{P}_{j,\gamma}$ -reduct of p). For any $\dot{y} \in \mathbb{B}_{i,\gamma}$ and j < i, let $\dot{y}_{\mathbb{P}_{j,\gamma}}$ be any nice $\mathbb{P}_{j,\gamma}$ -name that is forced to be equal to $\{(\ell,q): (\exists (\ell,q_\ell) \in \dot{y}) \ q <_j p\}$.

By the $\alpha = \gamma$ case, it is sufficient to prove that

$$\mathcal{E}_2 = \{ (\dot{E}_0 \cap \dot{E}_1)_{\mathbb{P}_{i,\gamma}} : \dot{E}_0 \in \mathcal{E} \cap \mathbb{B}_{i,\gamma}, \ \dot{E}_1 \in \mathcal{E}_1 \}$$

is $(\mathbf{P}_{\gamma}, (\lambda_{i_{\gamma}}))$ -thin. It is clear that $|\mathcal{E}_{2}| \leq \mu_{i_{\gamma}}$. So now suppose that $p \in \mathbb{P}_{i,\gamma}$, $\dot{b} \in \mathbb{B}_{j,\gamma}$ and that $p \Vdash \dot{b} \cap (\dot{E}_{0} \cap \dot{E}_{1}) = \emptyset$ for some $\dot{E}_{0} \in \mathcal{E} \cap \mathbb{B}_{i,\gamma}$ and $\dot{E}_{1} \in \mathcal{E}_{1}$. It suffices to produce $\dot{E}_{2} \in \mathcal{E}$ and $\dot{E}_{3} \in \mathcal{E}_{1}$ so that $p \Vdash \dot{b} \cap (\dot{E}_{0} \cap \dot{E}_{1})_{\mathbb{P}_{j,\gamma}} = \emptyset$.

Choose $\dot{E}_2 \in \mathcal{E} \cap \mathbb{B}_{i,\gamma}$ so that $p \Vdash \dot{E}_2 = \dot{E}_0$ and each $r \perp p$ forces that $E_2 = \omega$. Similarly choose $\dot{E}_3 \in \mathcal{E}_1$ so that $p \Vdash \dot{E}_3 = \dot{E}_1$ and each $r \perp p$ forces that $\dot{E}_3 = \omega$. Suppose that $q <_j p$ and suppose that $q \Vdash \ell \in \dot{b}$. Since $p \Vdash \ell \notin \dot{E}_2 \cap \dot{E}_3$, it follows that $q \perp p$. Therefore, if $q <_j p$ $q \Vdash \dot{b} \cap (\dot{E}_2 \cap \dot{E}_3)_{\mathbb{P}_{j,\gamma}}$ is empty. This in turn implies that p forces that \dot{b} is disjoint from $(\dot{E}_2 \cap \dot{E}_3)_{\mathbb{P}_{j,\gamma}}$.

Let $\underline{\mathbf{P}}^{\gamma} \in \mathcal{H}(\vec{\lambda})$ and let $\dot{y} \in \mathbb{B}_{\kappa,\gamma}$. For a family $\mathcal{E} \subset \mathbb{B}_{\kappa,\gamma}$ and condition $p \in \underline{\mathbf{P}}^{\gamma}$ say that p forces that \mathcal{E} measures \dot{y} if $p \Vdash_{\underline{\mathbf{P}}^{\gamma}} \{\dot{y}, \omega \setminus \dot{y}\} \cap \langle \mathcal{E} \rangle \neq \emptyset$. Naturally we will just say that \mathcal{E} measures \dot{y} if 1 forces that \mathcal{E} measures \dot{y} .

Given Lemma 5.3, it will now suffice to prove.

Lemma 5.5. If $\mathcal{Y} \subset \mathbb{B}_{\kappa,\gamma}$ for some $\underline{\mathbf{P}}^{\gamma} \in \mathcal{H}(\vec{\lambda})$ and $|\mathcal{Y}| \leq \mu_{i_{\gamma}}$ for some $i_{\gamma} < \kappa$, then there is a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter $\mathcal{E} \subset \mathbb{B}_{\kappa,\gamma}$ that measures every element of \mathcal{Y} .

In fact, to prove Lemma 5.5, it is evidently sufficient to prove:

Lemma 5.6. If $\underline{\mathbf{P}}^{\gamma} \in \mathcal{H}(\vec{\lambda})$, $\dot{y} \in \mathbb{B}_{\kappa,\gamma}$, and if \mathcal{E} is a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter, then there is a family $\mathcal{E}_1 \supset \mathcal{E}$ measuring \dot{y} that is also a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter.

Proof. Throughout the proof we suppress mention of $\underline{\mathbf{P}}^{\gamma}$ and refer instead to component member posets $\mathbb{P}_{i,\alpha}, \dot{\mathbb{Q}}_{i,\alpha}$ of $\underline{\mathbf{P}}^{\gamma}$. We proceed by

induction on the lexicographic ordering on $\kappa \times \gamma$. That, we assume that $i < \kappa$ is minimal such that the lemma fails for some $\dot{y} \in \mathbb{B}_{i,\gamma}$, and we also assume that $\alpha \leq \gamma$ is minimal such that the lemma fails for some $\dot{y} \in \mathbb{B}_{i,\alpha}$. Fix a well-ordering \Box of $H((2^{\lambda \cdot \gamma})^+)$ and also assume that \dot{y} is the \Box -minimal element of $\mathbb{B}_{i,\alpha}$ for which the lemma fails. Also assume that, for every $j < i_{\dot{y}}$ and $\beta < \alpha$, every element of $\mathbb{B}_{i,\beta} \cup \mathbb{B}_{j,\alpha}$ is \Box -below \dot{y} . We can free up the variables i, α by using $i_{\dot{y}}$ and $\alpha_{\dot{y}}$ instead. By the minimality of $\alpha_{\dot{y}}$, it is immediate that $\alpha_{\dot{y}}$ has countable cofinality.

Let $\theta = (2^{\lambda \cdot \gamma})^+$ and let \mathcal{M} denote the set of elementary submodels M of $H(\theta^+)$ that contain $\mu_{i_{\gamma}}, \sqsubseteq, \mathbf{P}^{\gamma}, \mathcal{E}, \dot{y}$ and so that M has cardinality equal to $\mu_{i_{\gamma}}$ and, by our cardinal assumptions, $M^{\lambda_j} \subset M$ for all $j < i_{\gamma}$. Naturally this also implies that $M^{\omega} \subset M$. Choose any $M_0 \in \mathcal{M}$ and assume (as in the proof of Lemma 5.4), that $\langle \mathcal{E} \rangle \cap M_0 \cap \mathbb{B}_{i_{\dot{y}}, \alpha_{\dot{y}}}$ is a subset of \mathcal{E} . By Lemma 5.4, it suffices to prove that the lemma holds $\mathbf{P}^{\alpha_{\dot{y}}}$. Thus, we may henceforth assume that $\gamma = \alpha_{\dot{y}}$.

Fact 1. $1 < \gamma$ and $i_{\gamma} < i_{\dot{y}}$.

Proof of Fact 1. The fact that $1 < \gamma$ follows from the fact that $\underline{\mathbf{P}}^1$ is simply Cohen forcing. That is, it is well-known that $\langle \dot{b} \rangle \cap \mathbb{B}_{j,1}$ is countably generated for all $j < \kappa$. This implies that $\langle \dot{b} \cup (\mathcal{E} \cap \mathbb{B}_{\kappa,1}) \rangle$ is $(\underline{\mathbf{P}}^1, \vec{\lambda}(i_{\gamma}))$ -thin for all $\dot{b} \in \mathbb{B}_{\kappa,1}$. Then, by Lemma 5.4, $\langle \dot{b} \cup \mathcal{E} \rangle$ can be extended to a $(\underline{\mathbf{P}}^1, \vec{\lambda}(i_{\gamma}))$ -thin filter. Similarly, if $i_{\dot{y}} \leq i_{\gamma}$, then $\langle \{\dot{y}\} \cup (\mathbb{B}_{i_{\dot{y}},\gamma} \cap \mathcal{E}) \rangle$ is a $(\underline{\mathbf{P}}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter. Therefore, by Lemma 5.4, this contradicts that the lemma fails for \dot{y} .

Working in M_0 use the well-ordering \Box , to perform a transfinite recursion to choose a $(\mathbf{P}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin $\mathcal{E}_0 \subset \mathbb{B}_{i_{\hat{y}},\gamma}$ that extends $\mathcal{E} \cap \mathbb{B}_{i_{\hat{y}},\gamma}$. The induction chooses the \Box -least $(\mathbf{P}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter in M_0 (which will be in $H(\theta)$) that extends the union of the recursively chosen sequence and also measures the \Box -least member of $\mathcal{B}_{i_{\hat{y}},\gamma}$ that is \Box -below \dot{y} and is not yet measured. Suppose that $\dot{x} \in \mathcal{B}_{i_{\hat{y}},\gamma}$ is the \Box -least that is not measured by \mathcal{E}_0 . Since \mathcal{E}_0 is definable from \dot{x} and \Box , it follows that $\mathcal{E}_0 \in M_0$. Since the recursion stopped, it follows that \dot{x} is \dot{y} . Therefore $\mathcal{E}_0 \supset (\mathcal{E} \cap \mathbb{B}_{i_{\hat{y}}})$ is $(\mathbf{P}^{\gamma}, \dot{\lambda}(i_{\gamma}))$ -thin and measures every element of $M_0 \cap \mathbb{B}_{i_{\hat{y}},\gamma}$ that is \Box -below \dot{y} .

Let $A_1(M_0, \mathcal{E}_0)$ be the set of all $p \in M_0 \cap \mathbb{P}_{i_y,\gamma}$ that force that \mathcal{E}_1 measures \dot{y} . We may similarly choose $\{M_0, \mathcal{E}_0\} \in M_1 \in \mathcal{M}$ and select $\mathcal{E}_1 \supset \mathcal{E}_0$ just as we did \mathcal{E}_0 . Similarly, let $A_1(M_1, \mathcal{E}_1)$ be the set of all $p \in M_1 \cap \mathbb{P}_{i_y,\gamma}$ that force that \mathcal{E}_1 measures \dot{y} . Note that $A_1(M_0, \mathcal{E}_0) \subset A_1(M_1, \mathcal{E}_1)$. If M_1 can be chosen so that $A_1(M_0, \mathcal{E}_0)$ is not pre-dense

in $A_1(M_1, \mathcal{E}_1)$, then we make such a choice. Suppose that $\rho < \omega_1$ and that we have recursively chosen a sequence $\{M_{\xi}, \mathcal{E}_{\xi} : \xi < \rho\}$ so that for $\xi < \rho$, $\bigcup \{\mathcal{E}_{\eta} : \eta < \xi\} \subset \mathcal{E}_{\xi} \subset M_{\xi}$, $\{\bigcup \{M_{\eta} : \eta < \xi\}, \bigcup \{\mathcal{E}_{\eta} : \eta < \xi\}\} \in M_{\xi}$, and so that \mathcal{E}_{ξ} is $(\mathbf{P}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin and measures every element of $M_{\xi} \cap \mathbb{B}_{j,\gamma}$ that is \sqsubseteq -below \dot{y} . Suppose further that for each $\xi + 1 < \rho$, $A_1(M_{\xi}, \mathcal{E}_{\xi})$ is not pre-dense in $A_1(M_{\xi+1}, \mathcal{E}_{\xi+1})$. If ρ is a limit, then $\bigcup \{\mathcal{E}_{\xi} : \xi < \rho\}$ is a $(\mathbf{P}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin filter base and the properties of \mathcal{M} ensures that there is a suitable $M_{\rho} \in \mathcal{M}$, and the family $\bigcup \{\mathcal{E}_{\xi} : \xi < \rho\}$ can be suitably extended to \mathcal{E}_{ρ} just as \mathcal{E}_0 was chosen to extend \mathcal{E} . If $\rho = \xi + 1$ is a successor, then we extend $(M_{\xi}, \mathcal{E}_{\xi})$ to $(M_{\rho}, \mathcal{E}_{\rho})$ as we did when choosing (M_1, \mathcal{E}_1) to extend (M_0, \mathcal{E}_0) , but only if there is such an extension with $A_1(M_{\xi}, \mathcal{E}_{\xi})$ not being pre-dense in $A_1(M_{\rho}, \mathcal{E}_{\rho})$.

Since $\mathbb{P}_{i_{\eta},\gamma}$ is ccc, there is some $\rho + 1 < \omega_1$ when this recursion must stop and for the reason that $A_1(M_{\rho}, \mathcal{E}_{\rho})$ can not be made larger. Now we work with such an $(M_{\rho}, \mathcal{E}_{\rho})$. Let $A_1 \subset A_1(M_{\rho}, \mathcal{E}_{\rho})$ be an antichain that is pre-dense in $A_1(M_{\rho}, \mathcal{E}_{\rho})$.

We work in the poset $\mathbb{P}_{i_{\dot{y}},\gamma}$. We can replace \dot{y} by any $\dot{x} \in \mathbb{B}_{i_{\dot{y}},\gamma}$ that has the property that $1 \Vdash \dot{x} \in \{\dot{y}, \omega \setminus \dot{y}\}$ since if we measure \dot{x} then we also measure \dot{y} . With this reduction then we can assume that no condition forces that $\omega \setminus \dot{y}$ is in the filter generated by \mathcal{E} .

- Fact 2. There is a maximal antichain $A \subset M_{\rho} \cap \mathbb{P}_{i_{\dot{y}},\gamma}$ extending A_1 such that for each $p \in A \setminus A_1$, there is an $i_p < i_{\dot{y}}$ and an $\dot{E}_p \in \mathcal{E}_{\rho}$ such that
 - (1) there is a $\dot{b}_1 \in \mathbb{B}_{i_p,\gamma} \cap \mathcal{E}_{\rho}^+$, such that $p \Vdash \dot{b}_1 \cap \dot{E}_p \cap \dot{y} = \emptyset$, and
 - (2) there is $\dot{b}_2 \in \mathbb{B}_{i_p,\gamma} \cap \mathcal{E}_{\rho}^+$ such that $p \Vdash \dot{b}_2 \cap \dot{E}_p \cap (\omega \setminus \dot{y}) = \emptyset$.

Proof of Fact 2. Suppose that $p_1 \in \mathbb{P}_{i_y,\gamma} \cap A_1^{\perp}$ has no extension p with a suitable pair $i_p, \dot{b}_1, \dot{E}_1$ as in (1). Define $\dot{E} \in \mathbb{B}_{i_y,\gamma}$ so that p_1 forces $\dot{E} = \dot{y}$ and each $q \in \mathbb{P}_{i_y,\gamma} \cap p_1^{\perp}$ forces that $\dot{E} = \omega$. It is easily checked that $\mathbb{B}_{i_y,\gamma} \cap \langle \mathcal{E}_{\rho} \cup \{\dot{E}\}\rangle$ is then $(\mathbf{P}^{\gamma}, \vec{\lambda}(i_{\gamma}))$ -thin and that p_1 forces that it measures \dot{y} . Therefore we can choose $p_2 < p_1$ so that there are $i_{p_2}, \dot{b}_1, \dot{E}_{p_2}$ as in (1). Similarly, p_2 has an extension p so that there are $i_p, \dot{b}_2, \dot{E}_p$ as in (2). There is no loss to assuming that $i_p \geq i_{p_2}$ and $\Vdash \dot{E}_p \subset \dot{E}_{p_2}$. Then $i_p, \dot{b}_1, \dot{E}_p$ also satisfy (1) for p.

Now we choose any $p \in A \setminus A_1$. It suffices to produce an $\dot{E}_p \in \mathbb{B}_{i_j,\gamma}$ that can be added to \mathcal{E}_p that measures \dot{y} and satisfies that $q \Vdash \dot{E}_p = \omega$ for all $q \in p^{\perp}$. This is because we then have that $\mathcal{E}_1 \cup \{\dot{E}_p : p \in A \setminus A_1\}$ is contained in a $\lambda(i_{\gamma})$ -thin filter that measures \dot{y} . By symmetry, we may assume that $i_p \leq j_p$.

Fact 3. There is an α such that $\gamma = \alpha + 1$.

Proof of Fact 3. Otherwise, let $j=i_p$ and for each r< p in $\mathbb{P}_{i_{\dot{y}},\gamma}$, choose $\beta\in M_{\rho}\cap\gamma$ such that $r\in\mathbb{P}_{i_{\dot{y}},\beta}$, and define a name $\dot{y}[r]$ in $M_{\rho}\cap\mathbb{B}_{j,\gamma}$ according to $(\ell,q)\in\dot{y}[r]$ providing there is a pair $(\ell,p_{\ell})\in\dot{y}$ such that $q<_j p_{\ell}$ and $q\!\upharpoonright\!\beta$ is in the set $M_{\rho}\cap\mathbb{P}_{j,\beta}\setminus(r\wedge p_{\ell}\!\upharpoonright\!\beta)^{\perp}$. This set, namely $\dot{y}[r]$, is in M_{ρ} because $\mathbb{P}_{j,\beta}$ is ccc and $M_{\rho}^{\omega}\subset M_{\rho}$.

We prove that r forces that $\dot{y}[r]$ contains \dot{y} . Suppose that $r_1 < r$ and there is a pair $(\ell, p_\ell) \in \dot{y}$ with $r_1 < p_\ell$. Choose an $r_2 \in \mathbb{P}_{j,\gamma}$ so that $r_2 <_j r_1$. It suffices to show $r_2 \Vdash \ell \in \dot{y}[r]$. Let $q <_j p_\ell$ with $q \in M_\rho$. Then $r_2 \not\perp p_\ell$ implies $r_2 \not\perp q$. Since r_2 was any $<_j$ -projection of r_1 we can assume that $r_2 < q$. Since $r_2 \upharpoonright \beta$ is in $(\mathbb{P}_{j,\beta} \cap (r \land p_\ell \upharpoonright \beta)^{\perp})^{\perp}$, it follows that $q \upharpoonright \beta \notin (r \land p_\ell \upharpoonright \beta)^{\perp}$. This implies that $(\ell, q) \in \dot{y}[r]$ and completes the proof that $r_2 \Vdash \ell \in \dot{y}[r]$.

Now assume that $\beta < \gamma$ and $r \Vdash \dot{b} \cap \dot{E} \cap \dot{y}$ is empty for some r < p in $\mathbb{P}_{i_j,\beta}$, $\dot{b} \in \mathbb{B}_{j,\gamma}$, and $\dot{E} \in \mathcal{E}_{\rho} \cap \mathbb{B}_{i_j,\gamma}$. Let $\dot{x} = (\dot{E} \cap \dot{y})[r]$ (defined as above for $\dot{y}[r]$). We complete the proof of Fact 3 by proving that $r \Vdash \dot{b} \cap \dot{x}$ is empty. Since each are in $\mathbb{B}_{j,\gamma}$, we may choose any $r_1 <_j r$, and assume that $r_1 \Vdash \ell \in \dot{b} \cap \dot{x}$. In addition we can suppose that there is a pair $(\ell,q) \in \dot{x}$ such that $r_1 < q$. The fact that $(\ell,q) \in \dot{x}$ means there is a p_ℓ with (ℓ,p_ℓ) in the name $\dot{E} \cap \dot{y}$ such that $q <_j p_\ell$. Since $r_1 \in \mathbb{P}_{j,\gamma}$ and $r_1 < q$, it follows that $r_1 \not\perp p_\ell$. Now it follows that r_1 has an extension forcing that $\ell \in \dot{b} \cap (\dot{E} \cap \dot{y})$ which is a contradiction.

Fact 4. $i_{\dot{y}} = i_{\alpha}$ and so also $i_p < i_{\alpha}$.

Proof of Fact 4. Since $\mathbb{P}_{i,\alpha+1} = \mathbb{P}_{i,\alpha}$ for $i < i_{\alpha}$, we have that $i_{\alpha} \leq i_{\dot{y}}$. Now assume that $i_{\alpha} < i_{\dot{y}}$ and we proceed much as we did in Fact 3 to prove that i_p does not exist. Assume that r < p (in $\mathbb{P}_{i_{\dot{y}},\alpha+1}$) and $r \Vdash \dot{b} \cap (\dot{E} \cap \dot{y})$ is empty for some $\dot{E} \in M_{\rho} \cap \langle \mathcal{E}_{\rho} \rangle \cap \mathbb{B}_{i_{\dot{y}},\gamma}$ and $\dot{b} \in \mathbb{B}_{i_p,\gamma}$. Let \dot{T}_{α} be the $\mathbb{P}_{i_{\dot{y}},\alpha}$ -name such that $r \upharpoonright \alpha \Vdash r(\alpha) = \dot{T}_{\alpha} \in \mathbb{L}(\mathfrak{D}_{i_{\dot{y}}}^{\alpha})$.

Choose any $M_{\rho} \cap \mathbb{P}_{i_{\alpha},\alpha}$ -generic filter \bar{G} such that $r \upharpoonright \alpha \in \bar{G}^+$. Since $\mathbb{P}_{i_{\alpha},\alpha}$ is ccc and $M_{\rho}^{\omega} \subset M_{\rho}$, it follows that $M_{\rho}[\bar{G}]$ is closed under ω -sequences in the model $H(\theta^+)[\bar{G}]$.

In this model, define an $\mathbb{L}(\mathfrak{D}_{i_{\alpha}}^{\alpha})$ -name \dot{x} . A pair $(\ell, T_{\ell}) \in \dot{x}$ if $t_{\alpha}^{r} \leq \text{stem}(T_{\ell}) \in T_{\ell} \in \mathbb{L}(\mathfrak{D}_{i_{\alpha}}^{\alpha})$ and for each $\text{stem}(T_{\ell}) \leq t \in T_{\ell}$, there is $q_{\ell,t} \in M_{\rho}$ such that $t_{\alpha}^{q_{\ell}} = t$, $q_{\ell,t} \Vdash \ell \in (\dot{y} \cap \dot{E})$, and $q_{\ell,t} \wedge r$ is in \tilde{G}^{+} . We will show that r forces over the poset \bar{G}^{+} that \dot{x} contains $\dot{E} \cap \dot{y}$ and that $\dot{x} \cap \dot{b}$ is empty. This will complete the proof since it contradicts the assumption on i_{p} .

To prove that r forces that \dot{x} contains $\dot{y} \cap \dot{E}$, we consider any $r_{\ell} < r$ in \tilde{G}^+ that forces over \bar{G}^+ that $\ell \in \dot{y} \cap \dot{E}$ We may choose $p_{\ell} \in M_{\rho}$

such that $r_{\ell} < p_{\ell}$ and $p_{\ell} \Vdash \ell \in \dot{E} \cap \dot{y}$). Since $r_{\ell} \in \tilde{G}^+$, it follows that $p_{\ell} \wedge r$ is in \tilde{G}^+ . We may assume that $t_{\alpha}^{r_{\ell}} = t_{\alpha}^{p_{\ell}}$. To show that r forces that $\ell \in \dot{x}$ we have to show there is a $T_{\ell} \in \mathbb{L}(\mathfrak{D}_{i_{\alpha}}^{\alpha})$ with $t_{\alpha}^{p_{\ell}} = \text{stem}(T_{\ell})$. Starting with $t = t_{\alpha}^{p_{\ell}}$, assume that $t \in T_{\ell}$ with $q_{\ell,t}$ as the witness. Let $L^- = \{k : t \cap k \notin T_{\ell}\}$; it suffices to show that $L^- \notin (\mathfrak{D}_{i_{\alpha}}^{\alpha})^+$. By assumption that $q_{t,\ell}$ is the witness, there is an $r_t < (q_{\ell,t} \upharpoonright \alpha \wedge r \upharpoonright \alpha)$ in $\mathbb{P}_{i_j,\alpha}$, such that $r_t \Vdash t \in \dot{T}_{\alpha}$ and $t = t_{\alpha}^{r_t}$. By strengthening r_t we can assume that r_t forces a value $\dot{D} \in \dot{\mathfrak{D}}_{i_j}^{\alpha}$ on $\{k : t \cap k \in \dot{T}_{\alpha} \cap q_{\ell,t}(\alpha)\}$. But now, it follows that r_t forces that \dot{D} is disjoint from L^- since if $r_{t,k} \Vdash k \in \dot{D}$ for some $r_{t,k} < r_t$, $r_{t,k}$ is the witness to $t \cap k$ is in T_{ℓ} . Since some condition forces that L^- is not in $(\dot{\mathfrak{D}}_{i_j}^{\alpha})^+$ it follows that L^- is not in $(\dot{\mathfrak{D}}_{i_j}^{\alpha})^+$

Finally we must show that r forces over \bar{G}^+ that \dot{b} is disjoint from \dot{x} . Suppose that $\bar{r} \Vdash \ell \in \dot{b} \cap \dot{x}$ where $\bar{r} <_{i_p} r$ and $\bar{r} \in \bar{G}^+$. We obtain a contradiction by showing that $r \not\Vdash \ell \notin \dot{E} \cap \dot{y}$. We may assume, by possibly strengthening $\bar{r} \upharpoonright \alpha$, that $t = t^{\bar{r}}_{\alpha}$ is a branching node of T_{ℓ} . This means that there is some $q_{\ell,t} \in M_{\rho}$ such that $q_{\ell,t} \Vdash \ell \in \dot{E} \cap \dot{y}$ and $q_{\ell,t} \wedge r \in \tilde{G}^+$. Let $\bar{p} = \bar{r} \wedge q_{\ell,t} \wedge r$. Notice that $\bar{p} \Vdash t^r_{\alpha} \subset t \in \dot{T}_{\alpha}$. Since $\bar{p} \in \tilde{G}^+$, we have that \tilde{G} is disjoint from $\mathbb{P}_{i_p,\alpha} \cap \bar{r}^{\perp}$. Since \tilde{G} is $\mathbb{P}_{i_p,\alpha}$ -generic, there is a $\bar{q} \in \tilde{G}$ satisfying that $\bar{q} <_{i_p} \bar{p}$. In particular, $\bar{q} < \bar{r}$. But also, it follows that \bar{q} has an extension in $\mathbb{P}_{i_p,\alpha}$ that is below $q_{\ell,t} \wedge r$, which forces that $\ell \in (\dot{E} \cap \dot{y})$.

Fact 5. The character of $\mathfrak{D}_{i_{\alpha}}^{\alpha}$ is greater than $\mu_{i_{\gamma}}$.

Proof of Fact 5. Since $i_{\alpha} = i_{\dot{y}} > 0$ and $\mathbf{P}^{\gamma} \in \mathcal{H}(\vec{\lambda})$, the cofinality of α is uncountable. It also means that $\mathfrak{D}^{\alpha}_{i_{\alpha}}$ is forced to have a descending mod finite base with cofinality equal to the cofinality of α . As usual, we proceed by contradiction and assume that the character of $\mathfrak{D}^{\alpha}_{i_{\alpha}}$, and therefore the cofinality of α , is less than $\mu_{i_{\gamma}}$. Choose $\beta_{\alpha} < \alpha$ as per the definition of $\mathbf{P}^{\gamma} \in \mathcal{H}(\vec{\lambda})$. Choose $\dot{b}_1, \dot{b}_2 \in \mathcal{E}^+_{\rho} \cap \mathbb{B}_{i_p,\alpha+1} = \mathcal{E}^+_{\rho} \cap \mathbb{B}_{i_p,\alpha}$ and $\dot{E}_p \in \mathcal{E}_{\rho}$ as in Fact 2. That is, $p \Vdash \dot{b}_1 \cap \dot{E}_{\rho} \cap \dot{y} = \dot{b}_2 \cap \dot{E}_{\rho} \setminus \dot{y} = \emptyset$.

Let T_{α} be a $\mathbb{P}_{i_{\alpha},\alpha}$ -name such that $p \upharpoonright \alpha \Vdash p(\alpha) = T_{\alpha}$. There is no loss of generality to assume that $\operatorname{stem}(\dot{T}_{\alpha})$ is forced to be the empty sequence. Since $\mathfrak{D}_{i_{\alpha}}^{\alpha}$ has a descending mod finite base (contained in M) with uncountable cofinality, there is a $\dot{D}_{0} \in M \cap \mathbb{B}_{i_{\alpha},\alpha}$ such that $p \upharpoonright \alpha$ forces that $\dot{D}_{0} \in M \cap \mathfrak{D}_{i_{\alpha}}^{\alpha}$ and for each $t \in \dot{T}_{\alpha}$, $(\dot{T}_{\alpha})_{t}$ is almost \dot{D}_{0} -branching in the sense that $\{k \in \dot{D}_{0} : t \cap k \in \dot{T}_{\alpha}\}$ contains a cofinite subset of \dot{D}_{0} . Choose also a sequence $\{\dot{D}_{n} : 0 < n \in \omega\} \subset M_{\rho} \cap \mathfrak{D}_{i_{\alpha}}^{\alpha}$

so that it is forced (by $\mathbf{1}_{\mathbb{P}_{i_{\alpha},\alpha}}$) that $\{\dot{D}_n : n \in \omega\}$ is strictly descending mod finite.

Choose $\beta \in M \cap \alpha$ large enough so that

- (1) $\beta_{\alpha} < \beta$ and $\{\dot{D}_n : n \in \omega\} \subset \mathbb{B}_{i_{\alpha},\beta}$
- (2) $p \upharpoonright \alpha \in \mathbb{P}_{i_{\alpha},\beta}$ and \dot{T}_{α} is a $\mathbb{P}_{i_{\alpha},\beta}$ -name, and,
- (3) for all $(\ell, q) \in \dot{E}_r \cap \dot{y}$, $q \upharpoonright \alpha \in \mathbb{P}_{i_\alpha, \beta}$, and $q(\alpha)$ is a $\mathbb{P}_{i_\alpha, \beta}$ -name.

If the cofinality of α is greater than \aleph_1 , then choose $\beta \leq \eta \in M \cap \alpha$ with uncountable cofinality and let \dot{Q} denote $\mathbb{L}(\mathcal{D}_{i_{\alpha}}^{\eta})$. If the cofinality of α is \aleph_1 , then set $\eta = \beta$. Recall that $i_{\eta} \leq i_{\alpha}$ and that $\mathfrak{D}_{i_{\alpha}}^{\eta}$ is free and has a countable strictly descending mod finite base. Choose a $\mathbb{P}_{i_{\alpha},\eta}$ -name \dot{f} of a bijection on ω so that $\mathbb{L}(\mathfrak{D}_{i_{\alpha}}^{\eta})$ is equal to $\mathbb{L}(\{\dot{f}(\dot{D}_n): n \in \omega\}\})$. In this case we let \dot{Q} be the $\mathbb{P}_{i_{\alpha},\eta}$ -name of $\mathbb{L}(\{\dot{D}_n: n \in \omega\})$. Regardless of our definition of \dot{Q} , we have that $q_p = p \upharpoonright \eta \cup \{(\eta, \dot{T}_{\alpha})\}$ is an element of $\mathbb{P}_{i_{\alpha},\eta} * \dot{Q}$.

Now construct the name $\dot{y}_{\eta} \in \mathbb{B}_{i_{\alpha},\eta+1}$ where, for each $(\ell,q) \in (\dot{E} \cap \dot{y})$, $(\ell,q \upharpoonright \eta \cup \{(\eta,q(\alpha))\}) \in \dot{y}_{\eta}$. It is routine to check that q_p forces, over the poset $\mathbb{P}_{i_{\alpha},\eta} * \dot{Q}$ that $\dot{b}_1 \cap \dot{y}_{\eta}$ is empty. Next, let \dot{x}_{η} be the name where, for each $(\ell,q) \in \dot{E}_p \setminus \dot{y}$, $(\ell,q \upharpoonright \eta \cup \{(\eta,q(\alpha))\}) \in \dot{x}_{\eta}$, and it also follows that q_p forces, over the poset $\mathbb{P}_{i_{\alpha},\eta} * \dot{Q}$, that $\dot{b}_2 \cap \dot{y}_{\eta}$ is empty.

Let φ denote the canonical isomorphism from $\mathbb{P}_{i_{\alpha},\eta} * \dot{Q}$ to $\mathbb{P}_{i_{\alpha},\eta+1}$ and let $\bar{p} = \varphi(q_p)$. Let $\varphi(\dot{y}_{\eta})$ denote the name $\{(\ell, \varphi(q)) : (\ell, q) \in \dot{y}_{\eta}\}$ and similarly define $\varphi(\dot{x}_{\eta})$.

Consider any $(\ell, q) \in (\dot{E}_p \cap \dot{y}) \cup (\dot{E}_p \setminus \dot{y})$ and any $r < \bar{p} \wedge p = \bar{p} \cup \{(\alpha, \dot{T}_{\alpha})\}$ such that r < q. Let $t = t_{\eta}^r$ and choose $r_2 < r \mid \eta \cup \{(\alpha, (\dot{T}_{\alpha})_t)\}$, If $r_2 \Vdash \ell \in \dot{E}_p$, we can assume that $r_2 < q_\ell$ for some $(\ell, q_\ell) \in (\dot{E}_p \cap \dot{y}) \cup (\dot{E}_p \setminus \dot{y})$. Therefore $(\ell, q_\ell \mid \eta \cup \{(\eta, q_\ell(\alpha))\})$ is an element of $\dot{y}_{\eta} \cup \dot{x}_{\eta}$. This, in turn, implies that $(\eta, \varphi(q_\ell(\alpha))) \in \varphi(y_{\eta}) \cup \varphi(x_{\eta})$ and proves that $\bar{p} \wedge p$ forces that $\varphi(\dot{y}_{\eta}) \cup \varphi(\dot{x}_{\eta})$ contains \dot{E}_p . By the minimality of $\alpha_{\dot{y}}$, $\bar{p} \wedge p$ forces that $\mathcal{E}_p \cap \{\varphi(y_{\eta}), \varphi(x_{\eta})\}$ is not empty. However this then implies that $\bar{p} \wedge p$ forces that one of \dot{b}_1, \dot{b}_2 is not in \mathcal{E}_p^+ , and this contradiction completes the proof.

Definition 5.7. For each $t \in \omega^{<\omega}$, define the $\mathbb{P}_{i_{\alpha},\alpha}$ -name \dot{E}^{α}_{t} according to the rule that $r \Vdash \ell \in \dot{E}^{\alpha}_{t}$ providing $r \in \mathbb{P}_{i_{\alpha},\alpha}$ forces that there is a \dot{T} with $r \Vdash \dot{T} \in \mathbb{L}(\mathfrak{D}^{\alpha}_{i_{\nu}})$, $r \Vdash t = \operatorname{stem}(\dot{T})$, and $r \cup \{(\alpha, \dot{T})\} \Vdash \ell \notin \dot{y}$.

Fact 6. There is a $\dot{T}_{\alpha} \in \mathbb{L}(\dot{\mathfrak{D}}_{i_{\alpha}}^{\alpha}) \cap M_{\rho}$ such that $p \upharpoonright \alpha$ forces the statement: $\dot{T}_{\alpha} < p(\alpha)$ and $\dot{E}_{t} \in \mathcal{E}_{\rho}$ for all t such that stem $(\dot{T}) \leq t \in \dot{T}_{\alpha}$.

Proof of Fact 6. By elementarity, there is a maximal antichain of $\mathbb{P}_{i_{\alpha},\alpha}$ each element of which decides if there is a \dot{T} with $\dot{E}_t \in \mathcal{E}_{\rho}$ for all $t \in \dot{T}$ above stem(\dot{T}). Since $p \in A \setminus A_1$ it follows that there is an $i_p < i_{\alpha}$ as in condition (2) of Fact 2. Let $t_0 \in \omega^{<\omega}$ so that $p \upharpoonright \alpha \Vdash t_0 = \text{stem}(p(\alpha))$. By the maximum principle, there is a $\dot{b} \in \mathbb{B}_{i_p,\gamma}$ and a $\dot{E}_0 \in \mathcal{E}_{\rho}$ satisfying that $p \Vdash \dot{b} \cap \dot{E}_0 \cap \dot{y}$ is empty, while $p \Vdash \dot{b} \cap \dot{E}$ is infinite for all $\dot{E} \in \langle \mathcal{E}_{\rho} \rangle$. This means that p forces that $\dot{b} \cap \dot{E}_0$ is an element of $\langle \mathcal{E}_{\rho} \rangle^+$ that is contained in $\omega \setminus \dot{y}$. As in the proof of Lemma 5.4, there is an $\dot{E}_2 \in \langle \mathcal{E}_{\rho} \rangle \cap \mathbb{B}_{i_p,\gamma}$ such that p forces that $\dot{b} \cap \dot{E}_2$ is contained in \dot{E}_0 . We also have that $(\dot{b} \cap \dot{E}_2) \upharpoonright \alpha$ is forced to be contained in $\omega \setminus \dot{y}$. It now follows that $p \upharpoonright \alpha$ forces that for all $t_0 \leq t \in p(\alpha)$, $p \upharpoonright \alpha$ forces that \dot{E}_t contains $(\dot{b} \cap \dot{E}_2) \upharpoonright \alpha$ and so is in $\langle \mathcal{E}_{\rho} \rangle^+$. Since \dot{E}_t is also measured by \mathcal{E}_{ρ} , we have that $p \upharpoonright \alpha$ forces that such \dot{E}_t are in \mathcal{E}_{ρ} . This completes the proof. \square

Now we show how to extend $\mathcal{E}_{\rho} \cap \mathbb{B}_{i_{\alpha},\gamma}$ so as to measure \dot{y} . Choose a $\mathbb{P}_{i_{\alpha},\alpha}$ -name, \dot{T}_{α} as in Fact 6. Let $\beta = \sup(M_{\rho} \cap \alpha)$. By Fact 5, $\beta < \alpha$ and by the definition of $\mathcal{H}(\vec{\lambda})$, $\dot{L}_{\beta} \in \dot{\mathfrak{D}}_{i_{\alpha}}^{\alpha}$, $i_{\beta} = i_{\alpha}$, and $M_{\rho} \cap \dot{\mathfrak{D}}_{i_{\alpha}}^{\alpha}$ is a subset of $\langle \dot{\mathfrak{D}}_{i_{\beta}}^{\beta} \rangle$. We also have that the family $\{\dot{L}_{\xi} : \mathrm{cf}(\xi) \geq \omega_1 \text{ and } \beta_{\alpha} \leq \xi \in M_{\rho} \cap \beta\}$ is a base for $\dot{\mathfrak{D}}_{i_{\beta}}^{\beta}$. For convenience let $q <_{M_{\rho}} p$ denote the relation that q is an $M_{\rho} \cap \mathbb{P}_{i_{\alpha},\alpha+1}$ -reduct of p. Let \bar{p} be any condition in $\mathbb{P}_{i_{\beta},\beta+1}$ satisfying that $\bar{p} \upharpoonright \beta = p \upharpoonright \alpha$ and $\bar{p} \upharpoonright \beta \Vdash \mathrm{stem}(\bar{p}(\beta)) = t_{\alpha}$ (recall that $p \upharpoonright \alpha \Vdash t_{\alpha} = \mathrm{stem}(p(\alpha))$.

Let us note that for each $q \in M_{\rho} \cap \mathbb{P}_{\alpha,i_{\alpha}+1}$, $q \upharpoonright \alpha = q \upharpoonright \beta$ and $q \upharpoonright \beta \Vdash q(\alpha)$ is also a $\mathbb{P}_{\beta,i_{\beta}}$ -name of an element of $\mathbb{L}(\dot{\mathcal{D}}_{i_{\beta}}^{\beta})$. Let \dot{x} be the following $\mathbb{P}_{i_{\beta},\beta+1}$ -name

$$\dot{x} = \{(\ell, q \upharpoonright \beta \cup \{(\beta, q(\alpha))\}) : (\ell, q) \in \dot{y} \cap M_{\rho} \text{ and } q <_{M_{\rho}} p\}$$
.

We will complete the proof by showing that there is an extension of p that forces that $\mathcal{E}_{\rho} \cup \{\omega \setminus (\dot{x}[\dot{L}_{\beta}])\}$ measures \dot{y} and that 1 forces that $\langle \mathcal{E}_{\rho} \cup \{\omega \setminus (\dot{x}[\dot{L}_{\beta}])\} \rangle \cap \mathbb{B}_{i_{\dot{y}},\beta+1}$ is $\vec{\lambda}(i_{\gamma})$ -thin. Here $\dot{x}[\dot{L}_{\beta}]$ abbreviates the $\mathbb{P}_{i_{\beta},\beta+1}$ -name

$$\{(\ell,r): (\exists q)\ (\ell,q) \in \dot{x},\ q \upharpoonright \beta = r \upharpoonright \beta, \text{ and } r \Vdash \operatorname{stem}(q(\beta)) \in \dot{L}_{\beta}^{<\omega} \}.$$

The way to think of $\dot{x}[\dot{L}_{\beta}]$ is that if \bar{p} is in some $\mathbb{P}_{i_{\alpha},\alpha}$ -generic filter G, then $\dot{y}[G]$ is now an $\mathbb{L}(\mathcal{D}_{i_{\alpha}}^{\alpha})$ -name, $L_{\beta}^{<\omega} = (\dot{L}_{\beta}[G])^{<\omega}$ is in $\mathbb{L}(\mathcal{D}_{i_{\alpha}}^{\alpha})$, and $(\dot{x}[\dot{L}_{\beta}])[G]$ is equal to $\{\ell: L_{\beta}^{<\omega} \mid \not\vdash \ell \notin \dot{y}\}$. We will use the properties of \dot{x} to help show that $\mathcal{E}_{\rho} \cup \{\omega \setminus (\dot{x}[\dot{L}_{\beta}])\}$ is $\vec{\lambda}(i_{\gamma})$ -thin. This semantic description of $\dot{x}[\dot{L}_{\beta}]$ makes clear that $\bar{p} \cup \{(\alpha, (\dot{L}_{\beta})^{<\omega})\} \in \mathbb{P}_{i_{\alpha},\alpha+1}$ forces that $\dot{x}[\dot{L}_{\beta}]$ contains \dot{y} . This implies that $\mathcal{E}_{\rho} \cup \{\omega \setminus (\dot{x}[\dot{L}_{\beta}])\}$ measures \dot{y} .

Each element of \mathcal{E}_{ρ} is in M_{ρ} and simple elementarity will show that for any condition in q in M_{ρ} that forces $\dot{E} \cap (\omega \setminus \dot{y})$ is infinite, the corresponding $\bar{q} = q \upharpoonright \alpha \cup \{(\beta, q(\alpha))\}$ will also force that $\dot{E} \cap (\omega \setminus \dot{x})$ is infinite. Therefore, it is forced by \bar{p} that $\omega \setminus \dot{x}$ is not measured by \mathcal{E}_{ρ} .

Recall that $q \Vdash \dot{x} = \emptyset$ for all $q \perp \bar{p}$. Additionally, $\mathcal{E}_{\rho} \cap \mathbb{B}_{i_{\beta},\beta+1}$ equals $\mathcal{E}_{\rho} \cap \mathbb{B}_{i_{\beta},\beta}$. It thus follows from Fact 5 and the minimality of $\alpha_{\dot{y}}$, that $(\mathcal{E}_{\rho} \cap \mathbb{B}_{i_{\beta},\beta+1}) \cup \{\omega \setminus \dot{x}\}$ is $(\mathbb{P}_{i_{\beta},\beta+1}, \vec{\lambda}(i_{\gamma}))$ -thin.

Claim 1. If $\dot{b} \in \mathbb{B}_{i,\beta}$ $(i < i_{\beta})$ and there is an $\dot{E} \in \mathcal{E}_{\rho} \cap \mathbb{B}_{i_{\alpha},\beta}$ and $q \Vdash \dot{b} \cap (\dot{E} \setminus \dot{x}) = \emptyset$, then $q \upharpoonright \beta \Vdash (\exists \dot{E} \in \mathcal{E}_{\rho}) \dot{b} \cap \dot{E} = \emptyset$.

Proof of Claim: Let q and \dot{b} be as in the hypothesis of the Claim. Since $\mathcal{E}_{\rho} \cup \{\omega \setminus \dot{x}\}$ is $(\mathbb{P}_{i_{\alpha},\beta+1}, \vec{\lambda}(i_{\gamma}))$ -thin, there is an $\dot{E}_{1} \in \mathcal{E}_{\rho} \cap \mathbb{B}_{i,\beta}$ such that q forces that $\dot{b} \cap \dot{E}_{1} = \emptyset$. Since each of \dot{b} and \dot{E}_{1} are in $\mathbb{B}_{i,\beta}$, $q \upharpoonright \beta$ forces that $\dot{b} \cap \dot{E}_{1} = \emptyset$. This proves the claim.

Now to prove that $\mathcal{E}_{\rho} \cup \{\omega \setminus (\dot{x}[\dot{L}_{\beta}])\}$ is also $(\mathbb{P}_{i_{\alpha},\beta+1}, \vec{\lambda}(i_{\gamma}))$ -thin, we prove that

$$\langle \mathcal{E}_{\rho} \cup \{ \omega \setminus (\dot{x}[\dot{L}_{\beta}]) \} \rangle \cap \mathbb{B}_{i,\beta} = \langle \mathcal{E}_{\rho} \cup \{ \omega \setminus \dot{x} \} \rangle \cap \mathbb{B}_{i,\beta}$$

for all $i < i_{\alpha}$. Assume that $\dot{b} \in \mathbb{B}_{i_{\beta},\beta}$ and $q \Vdash \dot{b} \cap \dot{E} \cap (\omega \setminus (\dot{x}[\dot{L}_{\beta}])) = \emptyset$ for some $q \in \mathbb{P}_{i_{\beta},\beta+1}$ and $\dot{E} \in \mathcal{E}_{\rho} \cap \mathbb{B}_{i_{\beta},\beta}$. If $q \perp \bar{p}$, then $q \Vdash \omega \setminus \dot{x} = \omega$ so we can assume that $q < \bar{p}$. We want to prove that there is some $\dot{E}_{1} \in \mathcal{E}_{\rho}$ such that $q \Vdash \dot{b} \cap (\dot{E}_{1} \cap (\omega \setminus \dot{x}))$ is finite. Let $t = t_{\beta}^{q}$ and let H be the range of t.

Let \dot{E}_1 be the $\mathbb{P}_{i_{\beta},\beta}$ -name for $\dot{E} \cap \bigcap \{\dot{E}_s : s \in H^{<\omega}\}$. By Fact 6, $p \upharpoonright \alpha \Vdash \dot{E}_1 \in \mathcal{E}_{\rho}$, and by definition of β , $_1 \in \mathbb{B}_{i_{\beta},\beta}$. Therefore $\dot{b} \cap \dot{E}_1 \cap (\omega \setminus \dot{x}[\dot{L}_{\beta}])$ is a $\mathbb{P}_{i_{\beta},\beta}$ -name. Now suppose that $r < \bar{p} \upharpoonright \beta$ and $r \Vdash \ell \in \dot{b} \cap \dot{E}_1$. It then follows that $r \Vdash \ell \in \dot{x}[\dot{L}_{\beta}]$. Let r be an element of any $\mathbb{P}_{i_{\beta},\beta}$ -generic filter G_{β} . We just have to prove that $\ell \in \operatorname{val}_{G_{\beta}}(\dot{x})$. For each $s \in H^{<\omega}$, we have that $\ell \in \operatorname{val}_{G_{\beta}}(\dot{E}_s)$ and so we may choose $T_s \in \mathbb{L}[\mathfrak{D}_{i_{\alpha}}^{\alpha}] \cap M_{\rho}$ so that $s = \operatorname{stem}(T_s)$ and $T_s \Vdash \ell \notin \dot{y}$. Choose any $D \in \mathfrak{D}_{i_{\alpha}}^{\alpha} \cap M_{\rho}$ so that each T_s ($s \in H^{<\omega}$) is almost D-branching. For $s \in H^{<\omega}$ and $\bar{t} \in \omega^{<\omega}$, let $s * \bar{t}$ denote the function extending s so that $s * \bar{t}(k + |s|) = \bar{t}(k)$ for $k < |\bar{t}|$. For each $s \in H^{<\omega}$ choose $g_s : \omega^{<\omega} \mapsto \omega$ so that for all $\bar{t} \in \omega^{<\omega}$ and $k \in D \setminus g_s(\bar{t})$, $s * (\bar{t} \cap \langle k \rangle)$ is in T_s . Now define $T_{\beta} \in \mathbb{L}(\mathfrak{D}_{i_{\beta}}^{\beta})$ according to the recursive rule that $t_{\beta}^q = \operatorname{stem}(T_{\beta})$ and for all $(t_{\beta}^q) * \bar{t} \in T_{\beta}$, $\{k : (t_{\beta}^q) * \bar{t} \cap k \in T_{\beta}\}$ is equal to $D \setminus \max\{g_s(\bar{t}) : s \in H^{<\omega}\}$. It is easily checked that if $G_{\beta+1}$ is a generic filter for $\mathbb{P}_{i_{\beta},\beta+1}$ such that $G_{\beta} \subset G_{\beta+1}$ and the condition $\{(\beta,T_{\beta})\}$ is in $G_{\beta+1}$, then $L_{\beta} = \operatorname{val}_{G_{\beta+1}}(\dot{L}_{\beta})$ has the property that, for each $s \in H^{<\omega}$, $(L_{\beta}^{<\omega})_s \subset T_s$. To prove that

 $\ell \in \operatorname{val}_{G_{\beta}}(\dot{x})$, it suffices to prove that $L_{\beta}^{<\omega} \not\models \ell \notin \dot{y}$. Let T be any extension of $L_{\beta}^{<\omega}$ and let $s \in H^{<\omega}$ be maximal so that $s \subset \operatorname{stem}(T)$. Since $T < T_s$, it follows that $T \Vdash \ell \notin \dot{y}$. This completes the proof. \square

References

- [1] Andreas Blass and Saharon Shelah, *Ultrafilters with small generating sets*, Israel J. Math. **65** (1989), no. 3, 259–271, DOI 10.1007/BF02764864. MR1005010 (90e:03057)
- [2] Jörg Brendle, The almost-disjointness number may have countable cofinality, Trans. Amer. Math. Soc. **355** (2003), no. 7, 2633–2649 (electronic), DOI 10.1090/S0002-9947-03-03271-9. MR1975392 (2004c:03062)
- Jörg Brendle and Vera Fischer, Mad families, splitting families and large continuum, J. Symbolic Logic 76 (2011), no. 1, 198–208, DOI 10.2178/jsl/1294170995.
 MR2791343 (2012d:03113)
- [4] Jörg Brendle and Saharon Shelah, Ultrafilters on ω —their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. **351** (1999), no. 7, 2643–2674, DOI 10.1090/S0002-9947-99-02257-6. MR1686797 (2000m:03111)
- [5] Kenneth Kunen and Jerry E. Vaughan (eds.), *Handbook of set-theoretic topology*, North-Holland Publishing Co., Amsterdam, 1984. MR776619 (85k:54001)
- [6] Saharon Shelah, The character spectrum of $\beta(\mathbb{N})$, Topology Appl. 158 (2011), no. 18, 2535–2555, DOI 10.1016/j.topol.2011.08.014. MR2847327

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE, CHARLOTTE, NC 28223

E-mail address: adow@uncc.edu

Department of Mathematics, Rutgers University, Hill Center, Piscataway, New Jersey, U.S.A. 08854-8019

Current address: Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel

E-mail address: shelah@math.rutgers.edu