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Abstract. A tie-point of a compact space is analogous to a cut-
point: the complement of the point falls apart into two relatively
clopen non-compact subsets. Set-theoretically, a tie-point of N∗
is an ultrafilter whose dual maximal ideal can be generated by
the union of two non-principal mod finite orthogonal ideals. We
review some of the many consistency results that have depended
on the construction of tie-points of N∗. One especially important
application, due to Velickovic, was to the existence of non-trivial
involutions on N∗. A tie-point of N∗ has been called symmetric if
it is the unique fixed point of an involution. We define the notion
of an almost clopen set to be the closure of one of the proper rela-
tively clopen subsets of the complement of a tie-point. We explore
asymmetries of almost clopen subsets of N∗ in the sense of how
may an almost clopen set differ from its natural complementary
almost clopen set.

1. Introduction

In this introductory section we review some background to motivate
our interest in further study of tie-points and almost clopen sets. The
Stone-Čech compactification of the integers N, is denoted as βN and,
as a set, is equal to N together with all the free ultrafilters on N. The
remainder N∗ = βN \ N can be topologized as a subspace of the Stone
space of the power set of N as a Boolean algebra and, in particular, for
a subset a of N, the set a∗ of all free ultrafilters with a as an element,
is a basic clopen subset of N∗. Set-theoretically it is sometimes more
convenient to work with the set of ordinals ω in place of the natural
numbers N, and the definitions of ω∗ and a∗ for a ⊂ ω are analogous.
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A point x of a space X is a butterfly point (or b-point [23]) if there
are sets D,E ⊂ X \ {x} such that {x} = D ∩ E. In [5], the authors
introduced the tie-point terminology.

Definition 1.1. A point x is a tie-point of a space X if there are
closed sets A,B of X such that X = A ∪ B, {x} = A ∩ B and x
is a limit point of each of A and B. We picture (and denote) this
as X = A BC

x
B where A,B are the closed sets which have a unique

common accumulation point x and say that x is a tie-point as witnessed
by A,B.

In this note the focus is on the local properties of x with respect to
each of the closed sets A and B such that A BC

x
B in the case when

A,B witness that x is a tie-point. For this reason we introduce the
notion of an almost clopen subset of N∗.

Definition 1.2. A set A ⊂ N∗ is almost clopen if A is the closure of
an open subset of N∗ and has a unique boundary point, which we denote
xA.

Proposition 1.3. If A is an almost clopen subset of N∗, then B =
{xA} ∪ (N∗ \ A) is almost clopen and xB = xA. In addition xA is a
tie-point as witnessed by A,B.

Definition 1.4. [5] A tie-point x is a symmetric tie-point of N∗ if
there is a pair A,B witnessing that x is a tie-point and if there is a
homeomorphism h : A→ B satisfying that h(x) = x.

If A is almost clopen, then we refer to B = {xA} ∪ (N∗ \ A) as
the almost clopen complement of A. A more set-theoretically inclined
reader would surely prefer a staightforward translation of almost clopen
to properties of ideals of subsets of N and the usual mod finite ordering
⊂∗.

Definition 1.5. If A is any subset of N∗, then IA is defined as the set
{a ⊂ N : a∗ ⊂ A}.

For any family A of subsets of N (or ω), we define A⊥ to be the
orthogonal ideal {b ⊂ N : (∀a ∈ A) b ∩ a =∗ ∅}. Let us note that if I
is an ideal that has no ⊂∗-maximal element, then the ideal generated
by I ∪ I⊥ is a proper ideal.

Lemma 1.6. If A is an almost clopen subset of N∗ with almost clopen
complement B, then IA ∩IB is the Frechet ideal [N]<ℵ0, IB = I⊥A , and
xA is the unique ultrafilter that is disjoint from IA ∪ IB.
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Almost clopen sets (and tie-points) first arose implicitly in the work
of Fine and Gillman [11] in the investigation of extending continuous
functions on dense subsets of N∗. A subset Y of a space X is C∗-
embedded if every bounded continuous real-valued function on Y can
be continuously extended to all of X. The character of a point x ∈ N∗
is the minimal cardinality of a filter base for x as an ultrafilter on N.

Proposition 1.7. ([11]) If x is a tie-point of N∗, then N∗ \ {x} is not
C∗-embedded in N∗. Every point of character ℵ1 is a tie-point of N∗.

It was shown [4] to be consistent with ZFC that N∗ \ {x} is C∗-
embedded for all x ∈ N∗. It was also shown by Baumgartner [1] that
their result holds in models of the Proper Forcing Axiom (PFA).

Proposition 1.8. ([1, 4]) The proper forcing axiom implies N∗ \ {x}
is C∗-embedded in N∗ for all x ∈ N∗

Corollary 1.9. PFA implies that there are no almost clopen sets and
no tie-points in N∗.

Almost clopen sets arise in the study of minimal extensions of Boolean
algebras ([16]) and in the application of this method of construction
for building a variety of counterexamples (e.g. [7, 13, 17, 22]). The
next application of almost clopen subsets of N∗ were to the study of
non-trivial automorphisms of P(N)/fin, or non-trivial autohomeomor-
phisms of N∗. Katětov [15] proved that the set of fixed points of an
autohomeomorphism of βN will be a clopen set. It is immediate from
Fine and Gillman’s work in [11] that every P -point of character of ℵ1
is a fixed point of a non-trivial autohomeomorphism of N∗.
Definition 1.10. A point x of N∗ is a P -point if the ultrafilter x is
countably complete mod finite. For a cardinal κ, an ultrafilter x on N
is a simple Pκ-point if x has a base well-ordered by mod finite inclusion
of order type κ.

Proposition 1.11. [11] If A is an almost clopen subset of N∗ and xA
is a simple Pℵ1-point of N∗, then

(1) A is homeomorphic to N∗,
(2) xA is a symmetric tie-point,
(3) there is an autohomeomorphism f on N∗ such that {x} is the

only fixed point of f .

As we have seen above, PFA implies that there are no almost clopen
subsets of N∗, and of course, PFA also implies that all autohomeomor-
phisms of N∗ are trivial [24]. However Velickovic utilized the simple
P -point trick (motivating our definition of symmetric tie-point) in or-
der to prove that this is not a consequence of Martin’s Axiom (MA).
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Proposition 1.12. [27] It is consistent with MA and c = ℵ2 that there
is an almost clopen set A of N∗ such that xA is a simple Pℵ2-point and,

(1) xA is a symmetric tie-point,
(2) there is an autohomeomorphism f on N∗ such that {x} is the

only fixed point of f .

Velickovic’s result and approach was further generalized in [25, 26].
It is very interesting to know if an almost clopen subset of N∗ is itself
homeomorphic to N∗ ([9, 14]). This question also arose in the authors’
work on two-to-one images of N∗ [6]. Velickovic’s method was slightly
modified in [6] to produce a complementary pair of almost clopen sets
so that neither is homeomorphic to N∗, but it is not known if there is
a symmetric tie-point A BC

x
B where A is not a copy of N∗.

Our final mention of recent interest in almost clopen subsets of N∗
is in connection to the question [8, 19] of whether the Banach space
`∞/c0 is necessarily primary. It was noted by Koszmider [20, p577]
that a special almost clopen subset of N∗ could possibly resolve the
problem. For a compact space K, we let C(K) denote the Banach
space of continuous real-valued functions on K with the supremum
norm. It is well-known that C(N∗) is isomorphic (as a Banach space)
to `∞/c0. Naturally if a space A is homeomorphic to N∗, then C(A) is
isomorphic to C(N∗).

Proposition 1.13. [20, p577] Suppose that A is an almost clopen sub-
set of N∗ and that B is its almost clopen complement. If C(N∗) is not
homeomorphic to either of C(A) or C(B), then `∞/c0 is not primary.

2. Asymmetric tie-points

In many of the applications mentioned in the introductory section,
the tie-points utilized were symmetric tie-points. In other applications,
for example the primariness of `∞/c0, it may be useful to find examples
where the witnessing sets A,B for a tie-point are quite different. There
are any number of local topological properties that xA may enjoy as
a point in A that it may not share as a point in B. We make the
following definition in connection with simple Pκ-points.

Definition 2.1. Let κ be a regular cardinal. An almost clopen set A is
simple of type κ if IA has a ⊂∗-cofinal ⊂∗-increasing chain {aα : α ∈ κ}
of type κ.

If {aα : α ∈ κ} is strictly ⊂∗-increasing and ⊂∗-cofinal in IA for an
almost clopen set A, then the family {aα+1 \ aα : α ∈ κ} can not be
reaped . A family A ⊂ [N]ℵ0 is reaped by a set c ⊂ N if |a\c| = |a∩c| for
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all a ∈ A. The reaping number r is the minimum cardinal of a family
that can not be reaped [12]. For any infinite set a ⊂ N, let next(a, ·)
be the function in NN defined by next(a, k) = min(a \ {1, . . . , k}). As
usual, for f, g ∈ NN, we say that f <∗ g if {k : g(k) ≤ f(k)} is finite.

Proposition 2.2. [12] If A ⊂ [N]ℵ0 and if there is some g ∈ NN such
that next(a, ·) <∗ g for all a ∈ A, then A can be reaped. In particular,
b ≤ r.

Again, if {aα : α ∈ κ} is strictly ⊂∗-increasing and ⊂∗-cofinal in IA
for an almost clopen set A, then the family {aα+1 \ aα : α ∈ κ} is an
example of a converging family of infinite sets.

Definition 2.3. Let A be a family of infinite subsets of N. We say that
A converges if there is an ultrafilter x on N such that for each U ∈ x,
the set {a ∈ A : a \ U 6=∗ ∅} has cardinality less than that of A.

We say that A is hereditarily unreapable if each reapable subfamily
of A has cardinality less than that of A.

An ultrafilter x of N∗ is said to be an almost Pκ-point if each set of
fewer than κ many members of x has a pseudointersection (an infinite
set mod finite contained in each of them). Certainly a converging
family is hereditarily unreapable and converges to a point that is an
almost Pκ-point where κ is the cardinality of the family. Clearly the
cardinality of any hereditarily unreapable family will have cofinality less
than the splitting number s. First we recall that a family A ⊂ [N]ℵ0 is
a splitting family if for all infinite b ⊂ N, there is an a ∈ A such that
|b ∩ a| = |b \ a|. We say that b is split by a. The splitting number, s,
is the least cardinality of a splitting family and s ≤ d ([12]). Therefore
if, for example, s = ℵ1 and r = c = ℵ2, there will be no hereditarily
unreapable family. If s = c, then there is a hereditarily unreapable
family of cardinality s. In the Mathias model, of s = c = b = ℵ2,
there is no converging unreapable family because there is no almost
Pℵ2-point. In the Goldstern-Shelah model [12] of r = s = ℵ1 < u, there
is (easily checked) no converging family of cardinality r. It might be
interesting to determine if there is a hereditarily unreapable family in
this model because that would imply there was a stronger preservation
result for the posets used.

If there is a simple almost clopen set of type κ, are there restrictions
on the behavior of its almost clopen complement and can there be sim-
ple almost clopen sets of different types (including the complement)?
These are the types of questions that stimulated this study. The most
compelling of these has been answered.
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Theorem 2.4. If A is a simple almost clopen set of type κ and if the
complementary almost clopen set B is simple, then it also has type κ.

Similarly, there is a restriction on what the type of a simple almost
clopen set can be that is shared by simple Pκ-points (as shown by
Nyikos (unpublished) see [2]).

Theorem 2.5. If A is a simple almost clopen set of type κ, then κ is
one of {b, d}.

Now that we understand the limits on the behavior of a complemen-
tary pair of simple almost clopen sets, we look to the properties of the
complement B when it is not assumed to be simple. The topological
properties of character and tightness of xB in B are natural cardinal
invariants to examine. These correspond to natural properties of IB
as well. An indexed subset {yβ : β < λ} of a space X is said to be a
free sequence if the closure of each initial segment is disjoint from the
closure of its complementary final segment. A λ-sequence {yβ : β < λ}
is converging if there is a point y such that every neighborhood of y
contains a final segment of {yβ : β < λ}. A subset D of N∗ is said to be
strongly discrete [10, 21] if there is a family of pairwise disjoint clopen
subsets of N∗ each containing a single point of D.

Theorem 2.6. If κ < λ are uncountable regular cardinals with c ≤ λ,
then there is a ccc forcing extension in which there is a simple almost
clopen set A of type κ such that the almost clopen complement B con-
tains a free λ-sequence {yβ : β < λ} that converges to xA.

We prove these theorems in the next section. We finish this section by
formulating some open problems about almost clopen sets and possible
asymmetries.

Question 2.1. Can there exist simple almost clopen sets of different
types?

Question 2.2. If there is a simple almost clopen set of type κ is there
a point of N∗ of character κ? Is there a simple Pκ-point?

The next question is simply a special case of the previous.

Question 2.3. Is a simple almost clopen set of type ℵ1 necessarily
homeomorphic to N∗?
Question 2.4. If A is a simple almost clopen set of type κ, is there a
simple almost clopen set B′ contained in the almost clopen complement
B of A such that xA ∈ B′? Is there a family of κ-many members of IB
that converges to xA?

Let us note that Theorem 3.6 is pertinent to this question.
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3. Proofs

Our analysis of simple almost clopen sets depends on the connection
between the type of the clopen set and the ultrafilter ordering of func-
tions from N to N. For an ultrafilter x on N the ordering <x is defined
on NN by the condition that f <x g if {n ∈ N : f(n) < g(n)} ∈ x.
Since x is an ultrafilter, a set F ⊂ NN is cofinal in (NN, <x) if it is not
bounded. Of course a subset of NN that is unbounded with respect
to the <x-ordering is also unbounded with respect to the mod finite
ordering <∗.

Fix a <∗-unbounded family {fξ : ξ < b} ⊂ NN such that each fξ
is strictly increasing and such that fη <

∗ fξ for all η < ξ < b. The
following well-known fact will be useful.

Proposition 3.1. For each infinite b ⊂ N and each unbounded Γ ⊂ b,
the family {fξ�b : ξ ∈ Γ} is <∗-unbounded in Nb.

Proof. For each η < b, there is a ξ ∈ Γ \ η such that fη <
∗ fξ, hence

{fξ : ξ ∈ Γ} is <∗-unbounded. If g ∈ Nb, then g ◦ next(b, ·) ∈ NN.
So there is a ξ ∈ Γ such that fξ 6<∗ g ◦ next(b, ·). Since fξ is strictly
increasing, fξ�b 6<∗ g. �

Lemma 3.2. If a family A ⊂ [N]ℵ0 converges to an ultrafilter x and if
{fξ : ξ ∈ b} is bounded mod <x, then A has cardinality b.

Proof. Choose g ∈ NN so that fξ <x g for all ξ < b. Since A can
not be reaped, Proposition 2.2 implies that b ≤ |A|. For each ξ, let
Uξ = {n ∈ N : fξ(n) < g(n)} ∈ x. If b < |A|, then there is a b ∈ A
such that b ⊂∗ Uξ for all ξ < b (i.e. x is an almost Pb+-point). However
we would then have that fξ�b <∗ g�b for all ξ < b, and by Proposition
3.1, there is no such set b. This completes the proof. �

Lemma 3.3. If a family A ⊂ [N]ℵ0 converges to an ultrafilter x and
if {fξ : ξ ∈ b} is unbounded mod <x, then if A has regular cardinality,
that cardinal is equal to d.

Proof. Since we are assuming that {fξ : ξ ∈ b} is <x-unbounded, it
is actually <x-cofinal. We check that the family {fξ ◦ next(a, ·) : ξ <
b, a ∈ A} is a <∗-dominating family. Take any strictly increasing
g ∈ NN and choose ξ < b such that U = {n : g(n) < fξ(n)} ∈ x.
Since A converges to x, there is an a ∈ A such that a ⊂∗ U . Since g is
strictly increasing, it is clear that g < fξ ◦ next(U, ·) <∗ fξ ◦ next(a, ·).
Again, since A can not be reaped, we have b ≤ |A| and this implies
that d ≤ |A|. Assume that {gβ : β < d} ⊂ NN is a <∗-dominating
family. For each a ∈ A, there is a βa < d such that next(a, ·) <∗ gβa .
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Now since A is hereditarily unreapable, Proposition 2.2 implies that
if A has regular cardinality, the mapping a 7→ βa is <|A|-to-1. This
implies that |A| ≤ d. �

Corollary 3.4. Suppose that A is a simple almost clopen subset of N∗
of type κ. If {fξ : ξ < b} is <xA-bounded, then κ = b; otherwise κ = d.

Proof. Let {aα : α ∈ κ} be the family contained in IA witnessing that
A has type κ. Set A equal to the family {aα+1 \ aα : α ∈ κ} which
converges to xA. If {fξ : ξ < b} is <xA-bounded, then by Lemma 3.2,
κ = b. Otherwise, since κ is a regular cardinal, we have by Lemma 3.3,
κ = d. �

Proof of Theorem 2.4. Assume that A and its complementary almost
clopen set B are both simple and let x = xA. If {fξ : ξ < b} is <x-
bounded then, by Corollary 3.4 they both have type b; otherwise they
both have type d. �

Proof of Theorem 2.5. Immediate from Corollary 3.4. �

We can improve Theorem 2.4.

Proposition 3.5. There is no almost Ps+-point in N∗.

Proof. Let A be a splitting family of cardinality s. We may assume
that A is closed under complements. Let x be any point of N∗. It is
easily seen that any pseudointersection of x ∩ A is not split by any
member of A. Since A is splitting, x ∩ A has no pseudointersection,
and so x is not an almost Ps+-point. �

Now we improve Theorem 2.4.

Theorem 3.6. If A is a simple almost clopen set of type κ then xA is
not an almost Pκ+-point.

Proof. We first note that by Proposition 3.5 we must have that κ < d.
Therefore, by Lemma 3.3, {fξ : ξ < b} is <xA-bounded. Choose any
g ∈ NN so that fξ <xA g for all ξ < b. For each ξ, let Uξ = {n ∈
N : fξ(n) < g(n)}. By Proposition 3.1, we have that the collection
{Uξ : ξ < b} ⊂ x has no pseudointersection. By Theorem 2.4, b ≤ κ
and this proves the theorem. �

Now we prove Theorem 2.6. We first prove the easier special case
when κ = ℵ1. An α-length finite support iteration sequence of posets,
denoted (〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉), will mean that 〈Pβ : β ≤ α〉
is an increasing chain of posets, Q̇β is a Pβ-name of a poset for each
β < α, and members p of Pα will be functions with domain a finite
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subset, supp(p), of α satisfying that p�β ∈ Pβ forces that p(β) ∈ Q̇β

for β ∈ supp(p). As usual, p2 < p1 providing p2�β Pβ “ p2(β) < p1(β)”
for all β ∈ supp(p1). Since P0 is the trivial poset, we will allow ourselves
to simply specify a poset Q0 in such an iteration sequence rather than
the P0-name of that poset.

Definition 3.7. Let A = {aβ : β < α} be a ⊂∗-increasing chain of
subsets of ω, and let I be an ideal contained in A⊥. We define the
poset Q = Q(A; I) where q ∈ Q if q = (Fq, σq, bq) where

(1) Fq ∈ [ω]<ℵ0,
(2) bq ∈ I is disjoint from bq,
(3) σq : Hq → ω and Hq ∈ [α]<ℵ0,
(4) for each β ∈ Hq, aβ \ σq(β) is disjoint from bq.

For r, q ∈ Q we define r < q providing Fr ⊃ Fq, σr ⊃ σq, and br ⊃ bq.

Lemma 3.8. If A = {aβ : β < α} is a ⊂∗-increasing chain of subsets
of ω and if I is an ideal contained in A⊥, then Q(A; I) is ccc whenever
cf(α) is not equal to ω1. In addition, Q(A; [ω]<ω) is ccc for any infinite
⊂∗-increasing chain A.

Proof. The proofs are standard. The first statement is basically the
same as Theorem 4.2 of [1]. For the last, Q(A; [ω]<ω) is ccc since
conditions p, q ∈ Q(A; [ω]<ω) are compatible so long as Fp = Fq, bp =
bq, and σp ∪ σq is a function. �

Definition 3.9. If Q is Q(A; I) for some ⊂∗-increasing chain of sub-
sets of ω, and I ⊂ A⊥ is an ideal, then the Q-generic set ȧQ is defined
as the natural name {(F̌q, q) : q ∈ Q}, i.e. for each Q-generic filter G,
valG(ȧQ) is equal to the union of the family {Fq : q ∈ G}.

Lemma 3.10. If λ is a regular cardinal with c ≤ λ, then there is a ccc
forcing extension in which there is a simple almost clopen set A of type
ω1 such that there is a strongly discrete free λ-sequence converging to
xA.

Proof. There are ccc posets of cardinality λ that add a strictly ⊂∗-
increasing sequence {bζ : ζ < λ} of infinite subset of ω (e.g. [18, II Ex.
22]). Alternatively, by Definition 3.7 and Lemma 3.8, we could let Q0

be a λ-length finite support sequence of posets of the form Q({bβ : β <
ζ}; [ω]<ω) and recursively let bζ be the resulting ȧQ as in Definition 3.9.

For convenience we now work in such a ccc forcing extension and we
construct a finite support ccc iteration sequence of cardinality λ and
length ω1 that will add a strictly ⊂∗-increasing sequence {aα : α ∈ ω1}
of infinite subsets of ω so that the closure, A, of

⋃
{a∗α : α ∈ ω1} is



10 A. DOW AND S. SHELAH

almost clopen. Suppose that we do this in such a way that {bζ : ζ < λ}
is contained in {aα : α ∈ ω1}⊥ and, for all U ∈ xA, and all ζ < λ,
there is an η < λ such that U ∩ (bη \ bζ) is infinite. We check that
there is then a strongly discrete free λ-sequence converging to xA. Let
{Uζ : ζ < λ} enumerate the members of xA. There is a cub C ⊂ λ
satisfying that for each δ ∈ C, the family {Uξ : ξ < δ} is closed under
finite intersections. Recursively define a strictly increasing function g
from C into λ satisfying that Uζ∩(bg(δ)\bδ) is infinite for all ζ < δ ∈ C.
Now, for each δ ∈ C, let xδ be an ultrafilter extending the family
{Uζ ∩ (bg(δ) \ bδ) : ζ < δ}. Pass to a cub subset C1 ⊂ C satisfying
that g(η) < δ for all δ ∈ C and η ∈ δ ∩ C. It follows immediately
that {xδ : δ ∈ C1} is strongly discrete and free. Similarly, the sequence
converges to xA since Uζ ∈ xδ for all ζ < δ ∈ C1.

Now we construct the iteration sequence to define the ⊂∗-increasing
chain {aα : α ∈ ω1} that will be cofinal in IA. We will use iterands of
the form Q̇α = Q({ȧβ : β < α}; İα) for 0 < α < ω1, and will recursively
let ȧα be the standard Pα+1-name for aQ̇α (as in Definition 3.9). Clearly
the only choices we have for the construction are the definition of a0
and, by recursion, the definition of İα. We will recursively ensure
that Pα “ {ȧβ : β < α} ⊂ {bζ : ζ < λ}⊥” simply by ensuring that

Pα “ {bζ : ζ < λ} ⊂ İα”.
To start the process, we let I1 be any maximal ideal extending the

ideal generated by {bζ : ζ < λ} ∪ {bζ : ζ < λ}⊥. Very likely {bζ :
ζ < λ}⊥ is simply [ω]<ω, so we let a0 be exceptional and equal the
emptyset. We now have our definition (working in the extension by
Q0) of Q1 = Q({a0}; I1) and the generic set ȧ1 = ȧQ1 is forced to
be almost disjoint from every member of I1 (it is a pseudointersection
of the ultrafilter dual to I1). Now assume that α < ω1 and that we
have defined İβ for all β < α. We recursively also ensure that, for

β < γ < α, the Pβ-name İβ+1 is a subset of the Pγ-name İγ, and that

Pγ forces İγ is contained in {ȧβ : β < γ}⊥. For the definition of İα
we break into three cases. If α is a limit ordinal, then we define İα to
be the Pα-name of the ideal {ȧβ : β < α}⊥. By induction, we have,

for γ < α, that Pα “ İγ+1 ⊂ {ȧβ : β < α}⊥ = İα”, as required. In
the case that α = β + 1 for a successor β, we note that Pβ+1 forces

that (by the genericity of ȧβ) the family {ȧβ} ∪ İβ generates a proper

ideal J̇α. In the case that β is a limit and α = β + 1, we note that
Pβ+1 forces that the family {ȧβ} ∪

⋃
{İγ+1 : γ < β} also generates

a proper ideal J̇α. Then, in either case where α = β + 1, we let J̇ ′α
be the Pα-name of any maximal ideal that contains J̇α ∪ (J̇α)⊥. The
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definition of İα is then the Pα-name of J̇ ′α ∩ {ȧβ}⊥. For convenience,
let ẏβ+1 denote the Pβ+1-name of this ultrafilter, and let us notice that

{ω\(ȧβ∪b) : b ∈ İβ+1} is forced to be a base for ẏβ+1. The set ȧβ+1\ ȧβ
will be a pseudointersection of ẏβ+1.

This completes the definition of the poset Pω1 . Now we establish
some properties. Let Ȧ denote Pω1-name of the closure in ω∗ of the
open set

⋃
{ȧ∗α : α ∈ ω1}.

Claim 1. For each β < α < ω1, Pα+1 forces that ȧα \ ȧβ is a pseudoin-
tersection of the filter ẏβ+1.

Proof of Claim: We proceed by induction on α ≥ β+1. For α = β+1,
ȧα is almost disjoint from each member of İα, and so ȧα \ ȧβ is almost

disjoint from every member of J̇ ′α. Thus ȧα\ȧβ is forced to be mod finite
contained in every member of the dual filter, namely ẏβ+1. Similarly,
for α > β + 1, ȧα is forced to be almost disjoint from each member of
İα. This means that ȧα is almost disjoint from each member of İβ+1,

and so ȧα \ ȧβ+1 is also almost disjoint from every member of J̇ ′β+1. �

Claim 2. The family {ẏβ+1 : β < ω1} is a family of Pω1-names and the
union is forced to generate an ultrafilter ẋȦ that is indeed the unique

boundary point of Ȧ.

Proof of Claim: Since İβ+1 is contained in İα+1, and Pω1 forces that
ȧβ ⊂∗ ȧγ, we have that Pω1 forces that

⋃
{ẏβ+1 : β < ω1} is a filter.

Furthermore, since Pω1 is ccc, every Pω1-name of a subset of ω is equal
to a Pβ-name for some β < ω1. The fact that, for each β < ω1, Pβ+1

forces that ẏβ+1 is an ultrafilter implies that Pω1 forces that ẋȦ is an
ultrafilter. Finally, it follows immediately from the previous claim that
ẋȦ is the unique boundary point of Ȧ. �

Claim 3. For each 0 < α < ω1, Pα+1 forces that {bζ : ζ < λ} is

⊂∗-unbounded in İα+1.

Proof of Claim: We prove this by induction on α. We know that Pα+1

forces that ȧα is almost disjoint from every member of {bζ : ζ < λ}.
Therefore, if Pβ+1 forces that {bζ : ζ < λ} is ⊂∗-unbounded in İβ+1 for
each β < α, it follows that {bζ : ζ < λ} is ⊂∗-unbounded in what we

called J̇α+1 above. In addition, we have that J̇ ⊥α+1 ⊂ {bζ : ζ < λ}⊥,
so we have that Pα+1 forces that {bζ : ζ < λ} is ⊂∗-unbounded in

İα+1. �

To finish the proof of the Lemma, we have to verify that Pω1 forces
that for all U ∈ ẋȦ, and all ζ < λ, there is an η < λ such that
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U ∩ (bη \ bζ) is infinite. Let ζ < λ be given and suppose that U̇ is a
Pα-name of a member of ẋȦ for some α < ω1. Of course this means

that U̇ is a member of ẏα+1. Now consider the Pα+1-name, ḃ, of the set

bζ ∪
(
ω \ (U̇ ∪ ȧα+1)

)
. Evidently, ḃ is forced to be disjoint from ȧα+1

and also is forced to not be in ẏα+2. It follows that ḃ is an element of
İα+2. By Claim 3, there is an η and a condition p ∈ Pα+2 such that p
forces that bη\ ḃ is infinite. Since bη\ ḃ is mod finite equal to (bη\bζ)∩U̇ ,
this completes the proof. �

To prove Theorem 2.6, we want to continue the recursive construc-
tion of Lemma 3.10 to a κ-length iteration of posets of the same form,
namely Q({ȧβ : β < α}; İα). It turns out that with the exact construc-
tion of Lemma 3.10, Pω1 forces that Q({ȧβ : β < ω1}; {ȧβ : β < ω1}⊥)
is not ccc. For limit ordinals α of uncountable cofinality, it is likely
that we have to use {ȧβ : β < α}⊥ as our choice for İα. However,
we do have more flexibility at limits of countable cofinality and this is
critical for extending the construction to any length κ.

Definition 3.11. We say that A is a pre-ccc sequence if

(1) A = {aβ : β < α} for some increasing ⊂∗-chain of subsets of ω
with cf(α) = ω1,

(2) for each increasing sequence {γξ : ξ ∈ ω1} cofinal in α, and
each sequence {bξ : ξ ∈ ω1} ⊂ A⊥, such that aγξ ∩ bξ = ∅ for all
ξ, there are ξ < η such that aγξ ⊂ aγη and bξ ∩ aγη is empty.

Lemma 3.12. If A is a pre-ccc sequence, then Q(A; I) is ccc for any
ideal I ⊂ A⊥.

Proof. Let A = {aβ : β < α}. Let {qξ : ξ ∈ ω1} ⊂ Q = Q(A; I). By
passing to a subcollection we can suppose there is a single F ∈ [ω]<ℵ0

such that Fqξ = F for all ξ. For each ξ, let bξ = bqξ , σξ = σqξ , and
Hξ = dom(σξ). By the standard ∆-system lemma argument, we may
assume that σξ ∪ ση is a function for all ξ, η ∈ ω1.

For each ξ, let γξ be the maximum element of Hξ. By a trivial density
argument we can assume that {γξ : ξ ∈ ω1} is a strictly increasing
sequence that is cofinal in α.

Next, we choose an integer m̄ sufficiently large so that there is again
an countable I ⊂ ω1 and a subset b̄ of m̄ such that, for all ξ ∈ I and
all β ∈ Hξ

(1) σξ(β) < m̄,
(2) aβ \ m̄ ⊂ aγξ ,

(3) bξ ∩ m̄ = b̄,
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Now we apply the pre-ccc property for the family {γξ : ξ ∈ I} and
the sequence {bξ \ m̄ : ξ ∈ I}. Thus, we may choose ξ < η from
I so that aγξ ⊂ aγη and bξ \ m̄ is disjoint from aγη . We claim that
r = (F, σξ ∪ ση, bξ ∪ bη) is in Q and is an extension of each of qξ and
qη. It suffices to prove that for β ∈ Hξ, aβ \ σξ(β) is disjoint from bη,
and similarly, that aβ \ ση(β) is disjoint from bξ for β ∈ Hη. Since
bξ ∩ m̄ = bη ∩ m̄ = b̄, it suffices to consider aβ \ m̄ in each case. For
β ∈ Hξ, we have aβ \ m̄ ⊂ aγξ ⊂ aγη , and aγη is disjoint from bη \ m̄.
For β ∈ Hη, we have aβ \ m̄ ⊂ aγη and aγη is disjoint from bξ \ m̄. �

Definition 3.13. A is the class of triples (P,A, I) such that, there is
an ordinal α, and the following holds for each β < α:

(1) P = (〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉) is a finite support iteration
sequence of ccc posets,

(2) A is an α-sequence {ȧβ : β < α}, and Pβ+1
“ ȧβ ⊂ ω”,

(3) I is an α-sequence {İβ : β < α},
(4) Pβ “ İβ ⊂ {ȧξ : ξ < β}⊥ is an ideal”

(5) for β < γ < α, Pγ+1 “ ȧβ ⊂∗ ȧγ” and Pγ “ İβ ⊂ İγ”

(6) Pβ “ Q̇β = Q({ȧξ : ξ < β}; İβ)”,
(7) ȧβ is the Pβ+1-name for ȧQ({ȧξ:ξ<β};İβ)

(8) if cf(β) = ω, then there is a sequence {İβ,ξ : ξ < β} such that

İβ,ξ is a Pξ-name and Pβ “ İβ =
⋃
{İβ,ξ : ξ < β}”.

Lemma 3.14. If α is an ordinal with cofinality ω1, and if (〈Pβ : β ≤
α〉, 〈Q̇β : β < α〉), {ȧβ : β < α}, {İβ : β < α}) is in A then Pα “ {ȧβ :
β < α} is a pre-ccc sequence”.

Proof. Let Ȧ denote the Pα-name of the sequence {ȧβ : β < α}. Let

{γ̇ξ : ξ ∈ ω1} and {ḃξ : ξ ∈ ω1} be sequences of Pα-names such that

there is some p0 ∈ Pα forcing that, for each ξ < ω1, γ̇ξ ∈ α, ḃξ ∈ Ȧ⊥
and ḃξ ∩ ȧγξ is empty. Suppose also that p0 forces that {γ̇ξ : ξ ∈ ω1}
is strictly increasing and cofinal in α. We may assume that p0 decides
the value, γ0, of γ̇0. For each ξ < ω1, choose any pξ < p0 that decides

a value, γξ, of γ̇ξ and that ḃξ is a Pβ-name for some β ∈ supp(pξ).
Let g be a continuous strictly increasing function from ω1 into α

with cofinal range. Since Pα is ccc we have, for each δ ∈ ω1, the set
{ξ : γξ < g(δ)} is countable. Therefore there is a cub C ⊂ ω1 such that
g(δ) ≤ γδ for all δ ∈ C. We may also arrange that, for each δ ∈ C and
ξ < δ, supp(pξ) ⊂ g(δ).

For each δ ∈ C, we may extend pδ so as to ensure that each of g(δ)
and γδ are in supp(pδ), and such that there is a β ∈ supp(pξ) such

that ḃξ is a Pβ-name. We also extend each pδ so that we can arrange a
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list of special properties (referred to as “determined” in many similar
constructions). Specifically, for each β ∈ supp(pδ),

(1) there are F δ
β ∈ [ω]<ℵ0 , Hδ

β ∈ [β]<ℵ0 , σδβ : Hδ
β → ω, and a Pβ-

name ḃδβ such that pδ�β Pβ “ pδ(β) = (F δ
β , σ

δ
β, ḃ

δ
β)”,

(2) if g(δ) < γδ, then g(δ) ∈ Hδ
γδ

,

(3) Hδ
β ⊂ supp(pδ),

(4) if β is a limit with countable cofinality, then there is a µδβ < β

such that ḃδβ is a Pµδβ -name and supp(pδ) ∩ β ⊂ µδβ,

(5) if ι < β is in supp(pδ), then Hδ
ι ⊃ Hδ

β ∩ ι,
By the pressing down lemma, there is a stationary set S ⊂ C and a

µ < α such that µδg(δ) < µ for all δ ∈ S. Now let Gµ+1 be Pµ+1-generic
filter satisfying that, in the extension, there is a stationary set S1 ⊂ S
so that pξ�µ ∈ Gµ+1 for all ξ ∈ S1. We may also arrange that the values

of the pair {F ξ
g(ξ), F

ξ
γξ
} is the same for all ξ ∈ S1. For all β ∈ µ+ 1, we

let aβ denote the valuation of ȧβ by Gµ+1. By further shrinking S1 we
may suppose there is an m̄ ∈ ω and a b̄ ⊂ m̄, satisfying that, for all
δ ∈ S1,

(1) for all β ∈ supp(pδ) F
δ
β ⊂ m̄, and, for all ι ∈ Hδ

β, σδβ(ι) < m̄,
(2) for all β ∈ supp(pδ) ∩ µ, aι \ aµ ⊂ m̄

(3) b̄ = m̄ ∩ bδg(δ), where bδg(δ) is the valuation of ḃδg(δ) by Gµ+1,

(4) bδg(δ) ∩ aµ ⊂ m̄.

Fix any ξ < η from S1. Define qξ so that supp(qξ) = supp(pξ) \ µ + 1,
and, for β ∈ supp(qξ),

qξ(β) =

{
(F ξ

g(ξ), σ
ξ
g(ξ) ∪ {(µ, m̄)}, ḃξg(ξ) ∪ ḃ

η
g(η)) if β = g(ξ)

(F ξ
β , σ

ξ
β, ḃ

ξ
β ∪ b

η
g(η) \ m̄) if g(ξ) < β .

We prove by induction on β ∈ supp(qξ), that there is a condition

rξβ ∈ Gµ+1 such that rξβ ∪ (qξ�(β + 1)) ≤ pξ�(β + 1). Evidently, for

the case β = g(ξ), F ξ
g(ξ) and m̄ ∩ aι are disjoint from b̄ and so there is

some condition in Gµ+1 that forces that, they are disjoint from ḃηg(η).

Similarly, for ι ∈ Hξ
g(ξ), aι \ m̄ ⊂ aµ, and since aµ \ m̄ ∩ (bξg(ξ) ∪ b

η
g(η)) is

empty, there is a condition r in Gµ+1 that forces that qξ(g(ξ)) ∈ Q̇g(ξ)

and that qξ(g(ξ)) < pξ(g(ξ)). In addition, r ∪ qξ�(g(ξ) + 1) forces that
ȧg(ξ) is disjoint from bηg(η) \ m̄. Now, suppose that g(ξ) < β ∈ supp(pξ),

and that r∪ q�β is a condition in Pβ that is below pξ�β. We recall that

Hξ
β ⊂ supp(pξ), and so it follows that r ∪ qξ�β forces that ȧι is disjoint
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from bηg(η) \m̄ for all ι ∈ Hξ
β. This is the only thing that needs verifying

when checking that r ∪ qξ�(β + 1) < pξ�(β + 1).
Now that we have that r∪qξ forces that ȧγξ is disjoint from bηg(η) \m̄,

we can add {(γξ, m̄)} to σηg(η) and still have a condition. Similarly, for

all ι ∈ supp(pη) ∩ µ, aι \ m̄ is contained in aµ, and r ∪ qξ forces that

aµ \ m̄, being a subset of ȧγξ , is disjoint from ḃξ. This implies that

r ∪ qξ forces that (F η
g(η), σ

η
g(η) ∪ {(γξ, m̄)}, bηg(η) ∪ (ḃξ \ m̄)) is a condition

in Q̇g(η) and is less than pη(g(η)). Now we define a condition qη so that
supp(qη) = supp(pη) \ µ+ 1, and, for β ∈ supp(qη),

qη(β) =

{
(F η

g(η), σ
η
g(η) ∪ {(γξ, m̄)}, ḃηg(η) ∪ ḃγξ) if β = g(ξ)

(F η
β , σ

η
β, ḃ

η
β ∪ (ḃγξ \ m̄)) if g(η) < β .

It again follows, by induction on β ∈ supp(qη), that r ∪ qξ forces that
r∪qξ∪(qη�(β+1)) is a condition in Pβ+1 and is below pη�(β+1). Finally,
we observe that r ∪ qξ ∪ qη forces that ȧγξ ⊂ ȧγη because it forces that
ȧγξ∩m̄ = ȧγη∩m̄ and that ȧγξ \m̄ ⊂ ȧg(η)\m̄ ⊂ ȧγη . Similarly r∪qξ∪qη
forces that ȧγη is disjoint from ḃξ because ḃξ ∩ m̄ = b̄ and ȧγη is disjoint

from ḃξ \ m̄. �

Corollary 3.15. If (〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉), {ȧβ : β < α}, {İβ :

β < α}) is in A, then Pα “Q({ȧβ : β < α}; İ) is ccc” for each Pα-

name İ satisfying that Pα “ İ ⊂ {ȧβ : β < α}⊥ is an ideal”.

Proof of Theorem 2.6. We simply adapt the proof of Lemma 3.10 so
as to ensure that, for each α < κ,

(〈Pβ : β ≤ α〉, 〈Q̇β : β < α〉), {ȧβ : β < α}, {İβ : β < α}) is in A .

The only change to the proof is that when β < κ is a limit with
countable cofinality, the definition of İβ is equal to the union of the

sequence {İξ+1 : ξ < β}. With this change, we recursively have ensured
that our iterations remain in A, and by Corollary 3.15, our iteration is
ccc. All the details showing that the closure, Ȧ, of the union of the chain
{ȧ∗α : α < κ} is forced to be almost clopen go through as in Lemma 3.10.
Similarly, it follows by recursion that the initial family {bζ : ζ < λ} is
a ⊂∗-unbounded subfamily of the ideal {ȧα : α < κ}⊥. �
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