
TWO TO ONE CONTINUOUS IMAGES OF N∗

ALAN DOW AND GETA TECHANIE

Abstract. A function is two-to-one if every point in the image has

exactly two inverse points. We show that every two-to-one continuous

image of N∗ is homeomorphic to N∗ when the continuum hypothesis is as-

sumed. We also prove that there is no irreducible two-to-one continuous

function whose domain is N∗ under the same assumption.

1. Introduction

A function f : X → Y is two-to-one if for each y ∈ Y , there are ex-

actly two points of X that map to y. All spaces considered are Tychonoff.

For some spaces X, there does not exist a two-to-one continuous function

f : X → Y for any choice of Y . For example, Harrold [Ha39] showed that

there is no two-to-one continuous function f : [0, 1] → Y and Mioduszewski

[Mi61] proved that there is no two-to-one continuous function f : R → Y . In

fact, Heath [He86] later showed that every two-to-one continuous function

f : R → Y has infinitely many discontinuities.

Another situation is when there are two-to-one continuous functions f : X →

Y defined on a space X, but given any such function the image space Y is de-

termined up to a homeomorphism. For example, if f : [0, 1) → S1, where S1

is the unit circle {p ∈ R2 : ||p|| = 1}, is defined by f(x) = exp(4πix), then

f is a two-to-one continuous function. Mioduszewski [Mi61] proved that if
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f : [0, 1) → Y is a two-to-one continuous function, then Y is homeomorphic

to S1.

In this paper we investigate the behavior of two-to-one continuous maps

defined on N∗, the remainder βN \ N of the Stone-Čech compactification

of the space N of natural numbers. We give partial answers to questions

recently raised by R. Levy [Le04]. In particular, we show that every two-

to-one continuous image of N∗ is homeomorphic to N∗ when the continuum

hypothesis (CH) is assumed.

There are two-to-one continuous functions defined on N∗. For example,

the space N∗ is homeomorphic to N∗×2, so the projection map f : N∗×2 →

N∗ given by f(x, k) = x is a two-to-one continuous function on N∗ and

the image is N∗. Such an example would be called trivial. A continuous

two-to-one function f : N∗ → N∗ is trivial if there is a clopen subset C of

N∗ such that the restrictions f � C and f �(N∗\C) are homeomorphisms. In

[Do04], the first author proved that all maps on N∗ that are two-to-one are

trivial, in the above sense, under the presence of the Proper Forcing Axiom

(PFA). Eric van Douwen [vD93] has also produced a surprising answer to

a similar question raised by R. Levy. He showed that the space N∗, which

is a compact space and very far from being separable, can be mapped onto

a compact separable space by a ≤two-to-one continuous function. We are

concerned with the question of whether every exactly two-to-one continuous

image of N∗ is homeomorphic to N∗.

It is well known that if a space Y is homeomorphic to N∗, then Y is a

Parovičenko space, that is, a compact zero-dimensional F -space of weight

c which has no isolated points and with the property that every nonempty
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Gδ-set has infinite interior. Therefore, if we are interested in whether or

not two-to-one continuous images of N∗ are homeomorphic to N∗, we should

investigate which of these six properties are satisfied by the spaces which

are two-to-one continuous images of N∗.

If Y is a two-to-one continuous image of N∗, obviously Y is compact

since N∗ is compact and a continuous image of a compact space is compact,

and Y has no isolated points since two-to-one continuous maps preserve the

property of having no isolated points. Ronnie Levy [Le04] showed that Y

has the property that countable discrete subsets are C∗- embedded and Y

contains a copy of N∗ and so Y has weight c. We include his proof for the

reader’s convenience.

Theorem 1 (Levy). Let X be a space such that every countable discrete

subset of X is C∗-embedded in X. If f : X → Y is a two-to-one continuous

function, then every countable discrete subset of Y is C∗-embedded in Y.

Proof. Let C be a countable discrete subset of Y . Since f is two-to-one

and C is countable discrete, f−1(C) is a countable discrete subset of X.

Therefore, f−1(C) is C∗-embedded in X. We must show that disjoint subsets

of C have disjoint closures in Y . Let A, B ⊆ C such that A∩B = ∅. Assume

that there exists p ∈ ClY A ∩ ClY B.

For each a ∈ A let f−1({a}) = {a1, a2} and for each b ∈ B, let f−1({b}) =

{b1, b2}. Let A1 = {a1 : a ∈ A}, A2 = {a2 : a ∈ A}, B1 = {b1 :

b ∈ B}, B2 = {b2 : b ∈ B}. These four sets are pairwise disjoint sub-

sets of f−1(C) and therefore their closures are also pairwise disjoint since

f−1(C) is C∗- embedded. By the continuity of f , each of the four sets

ClXA1, ClXA2, ClXB1, ClXB2 contains an element of the fiber f−1({p}).
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Since these sets are pairwise disjoint, |f−1({p})| ≥ 4. This contradicts the

fact that f is two-to-one. �

Then Levy asked in the same paper whether Y has the remaining three

properties. We show that Y actually has these three properties under CH,

that is, Y is a zero-dimensional F -space in which every nonempty Gδ-set has

infinite interior. A consequence then is that two-to-one continuous images

of N∗ are homeomorphic to N∗ when CH is assumed since N∗ is the only

Parovičenko space under CH [vM84].

2. Irreducible Maps

A mapping f of X onto Y is irreducible if no proper closed subset of

X maps onto Y . Thus, the image of an open set by a closed irreducible

mapping will have interior. It follows easily from Zorn’s lemma [Wa74] that

if X and Y are compact spaces and f is a continuous function from X onto

Y , then there is a closed subspace F of X such that f �F is an irreducible

map from F onto Y . Levy [Le04] asked if there exists an irreducible two-to-

one continuous function whose domain is N∗. Under CH, we will show that

there is no such function.

Notation . For a map f : X → Y and A ⊆ X, let JA = f−1(f [X\A]) ∩ A

and for a point x, x′ will denote a point x′ 6= x such that f(x) = f(x′).

Lemma 2. Let f : X → Y be an irreducible continuous closed map. If A

is an open subset of X, then JA is nowhere dense in X.

Proof. Suppose that JA is not nowhere dense in X. Then IntJ̄A is a

nonempty open subset of X. Then clearly f [A ∩ IntJ̄A] ⊆ f [A] and J̄A ⊆
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f−1(f [X \ A]) since JA ⊆ f−1(f [X \ A]) and f [X \ A] is closed. Thus

f [J̄A] ⊆ f [X \ A] and in particular f [A ∩ IntJ̄A] ⊆ f [X \ A]. Therefore,

X \ (A ∩ IntJ̄A) is a proper closed subset of X since A ∩ IntJ̄A is a

nonempty open set contained in A, and f [X \ (A ∩ IntJ̄A)] = Y since

f [A ∩ IntJ̄A] ⊆ f [A] and f [A ∩ IntJ̄A] ⊆ f [X \ A]. This is a contradiction

since f is irreducible. �

The following result is the main ingredient in our analysis of the structure

of two-to-one continuous functions.

Theorem 3 (CH). Let X be a compact space of weight c and suppose that

countable discrete subsets of X are C∗-embedded. If f : X → K is a two-

to-one continuous function and Z is a closed subset of X such that f �Z is

irreducible and maps Z onto K, then for every nonempty open set W ⊆ K

there exists an open set B in X such that B∩Z = ∅ and Int(f [B]) ∩W 6= ∅.

Furthermore, if X is zero-dimensional, then B can be chosen to be clopen.

Proof. Let W be a nonempty open subset of K. Seeking a contradiction,

suppose that f [B] ∩ W is nowhere dense in K for each open set B ⊆ X

with closure disjoint from Z . For each open subset B ⊆ X \ Z, let

IB = f−1(f [B] ∩W ) ∩ Z. Then IB is nowhere dense in Z since f is closed

irreducible and f [IB] ⊆ f [B] ∩W which is nowhere dense. Since f is con-

tinuous, f−1(W ) ∩ Z has nonempty interior in Z. For each open subset

A ⊆ f−1(W ) ∩ Z, JA is nowhere dense in Z by Lemma 2.

We construct, by induction, a family {Aα : α < ω1 } which is a filter base

of cozero subsets of f−1(W )∩Z such that
⋂

α< ω1

Aα is a singleton {x} so that
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f−1(f(x)) = {x}. This yields a contradiction as f is an exactly two-to-one

function.

Let {Bα : α < ω1} enumerate all the cozero sets B in X such that

B ∩ Z = ∅ and let {C0
α, C1

α : α < ω1 } enumerate all pairs of cozero sets in

Z such that Z = C0
α ∪ C1

α. We construct {Aα : α < ω1 } such that for each

α < ω1:

(1)
⋂

β≤α

Aβ is nonempty;

(2) Aα ⊆ C0
α or Aα ⊆ C1

α; and

(3) If α = β + 1, then Aα ⊆ Aβ \ (JAβ
∪ IBβ

) .

We show how to define the first two cozero sets A0 and A1: Let x ∈

f−1(W ) ∩ Z. Then choose a cozero set neighborhood A0 of x such that

A0 ⊆ f−1(W ) ∩ Z and either A0 ⊆ C0
0 or A0 ⊆ C1

0 .

Then JA0 and IB0 are nowhere dense in Z, hence A0\(JA0 ∪ IB0) 6= ∅. Let

x, possibly different from the previous x, be a point in A0\(JA0∪IB0). Then

choose a cozero set neighborhood A1 of x such that A1 ⊆ A0\(JA0 ∪ IB0)

and either A1 ⊆ C0
1 or A1 ⊆ C1

1 . For each n ∈ ω we can define An in the

same manner.

Suppose that α ≥ ω and we have constructed the family {Aβ : β < γ }

for all γ < α. If α = β + 1, then
⋂

γ≤β

Aγ 6= ∅ by the induction assumption.

If α is a limit, then the induction hypothesis (1) ensures that Gα =
⋂

β<α

Aβ

is not empty since Z is compact and Aβ ⊆ Aβ+1 for each β < α so that⋂
β<α

Aβ ⊇
⋂

β<α

Aβ+1.

If α is a limit and x ∈ Gα =
⋂

β<α

Aβ, we choose a cozero set neighborhood

Aα of x such that Aα ⊆ C0
α if x ∈ C0

α or Aα ⊆ C1
α otherwise. If α = β + 1

with β ≥ ω, we must define a cozero set Aα so that Aα ⊆ Aβ \ [JAβ
∪ IBβ

].
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Let λ be the largest limit ordinal less than α. We enumerate λ ∪ {β} by:

β = β0, β1, β2, β3, · · · . We now consider the cases when Gα has nonempty

interior and Gα is nowhere dense.

If Gα has nonempty interior, then Gα \ [JAβ
∪ IBβ

] 6= ∅ since JAβ
∪ IBβ

is

nowhere dense. Then pick a point x ∈ Gα \ [JAβ
∪ IBβ

] and a cozero set Aα

containing x such that Aα ⊆ Gα and either Aα ⊆ C0
α or Aα ⊆ C1

α.

If Gα is nowhere dense, JAβ
∪ IBβ

∪Gα is nowhere dense and Aβ\[JAβ
∪

IBβ
∪Gα] 6= ∅. Let x0 ∈ Aβ\[JAβ

∪IBβ
∪Gα]. Then choose i1 > 1 large enough

such that x0 /∈ Aβi1
, which we may do since x0 /∈ Gα. Then either x

′
0 ∈ Aβi1

,

x
′
0 ∈ JAβi1

, or x
′
0 /∈ Z. In any case, x

′
0 /∈ Aβi1

+1 since Aβi1
+1 ⊆ Aβi1

\ JAβi1

by construction. So there is an i
′
1 > 1 such that βi

′
1

= βi1 +1 and x
′
0 /∈ Aβ

i
′
1

.

Thus x0, x
′
0 /∈ Gα.

Similarly, pick x1 ∈ [Aβ ∩ Aβ1 ∩ · · · ∩ Aβi1
]\[JAβ

∪ IBβ
∪ Gα] and choose

i2 > i
′
1, i1 > 1 large enough so that x1 /∈ Aβi2

. Then x
′
1 /∈ Aβi2

+1 by

construction. So there is an i
′
2 > i

′
1, i1 > 1 such that βi

′
2

= βi2 + 1 and

x
′
1 /∈ Aβ

i
′
2

. Thus x1, x
′
1 /∈ Gα. Continuing this process, for every integer n,

pick xn ∈ [Aβ ∩ Aβ1 ∩ · · · ∩ Aβin
] \ [JAβ

∪ IBβ
∪ Gα] and choose an integer

in+1 > in, i
′
n > · · · > i2, i

′
2 > i

′
1, i1 > 1 large enough so that xn /∈ Aβin+1

.

Then there exists an integer i
′
n+1 > i

′
n, in such that x

′
n /∈ Aβ

i
′
n

. Thus

xn, x
′
n /∈ Gα.

Hence, we get a countable set {xn}n ∪ {x
′
n}n. We remark that the xn’s

and x
′
n’s can be chosen from some dense subset of f−1(W ) ∩ Z. From the
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construction of the xn’s and x
′
n’s

∀i > n xi, x
′

i ∈ f−1(f [Aβ ∩ Aβ1 ∩ · · · ∩ Aβin
])

∀j ≤ n xj, x
′

j 6∈ f−1(f [Aβ ∩ Aβ1 ∩ · · · ∩ Aβin+2
])

and since f−1(f [Aβ∩Aβ1∩· · ·∩Aβk
]) is closed for all k, the set {xn}n∪{x

′
n}n

is discrete. Therefore {xn}n ∩ {x′
n}n = ∅ since {xn}n ∩ {x

′
n}n = ∅ and

countable discrete subsets of X are C∗-embedded. We have f({xn}n) =

f({x′
n}n) by continuity of f and the fact that f({xn}n) = f({x′

n}n). We

also have {xn}n \{xn}n 6= ∅ and {x′
n}n \{x′

n}n 6= ∅ since every infinite

subset of a compact set has a limit point. By the construction of the xn’s

we see that {xn}n \{xn}n ⊆ Gα.

If {z ∈ Z : z
′ ∈ Z} ∩ f−1(W ) is dense in f−1(W ) ∩ Z, we can choose the

x
′
n’s in f−1(W ) ∩ Z so that we also have {x′

n}n \{x
′
n}n ⊆ Gα. In this case

if we choose x ∈ {xn}n \{xn}n, then x
′ ∈ {x′

n}n \{x′
n}n and x 6= x

′
since

{xn}n ∩ {x′
n}n = ∅. Moreover x 6∈ JAβ

since x ∈ JAβ
implies x

′ 6∈ Aβ which

contradicts x
′ ∈ Gα ⊆ Aβ. We also have x 6∈ IBβ

, that is, x
′ 6∈ Bβ since

x
′
n 6∈ Bβ for all n and Bβ is a cozero set. Thus we have found an x ∈ Gα

such that x 6∈ JAβ
∪ IBβ

.

If {z ∈ Z : z
′ ∈ Z} ∩ f−1(W ) is nowhere dense in f−1(W ) ∩ Z, find a

cozero set A ⊆ Aβ ⊆ f−1(W ) ∩ Z such that f �Z is one-to-one on all points

of A, that is, f−1(f [A]) meets Z in A. In this case we can choose the xn’s so

that {xn}n ⊆ A and hence {x′
n}n ⊆ X\Z. Then {xn}n \{xn}n ⊆ A. Choose

an x ∈ {xn}n \{xn}n. Then x ∈ A and so x
′ 6∈ Z; in particular x

′ 6∈ Z \Aβ

and so x 6∈ JAβ
. It is also true that x 6∈ IBβ

, that is, x
′ 6∈ Bβ since x

′
n 6∈ Bβ

for all n and Bβ is a cozero set. Therefore x ∈ Gα and x 6∈ JAβ
∪ IBβ

.
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We choose a cozero set Aα containing x such that Aα ⊆ Aβ\[JAβ
∪IBβ

] and

either Aα ⊆ C0
α or Aα ⊆ C1

α. Then Aα satisfies all the induction assumptions

and this completes the inductive construction.

But now
⋂

α<ω1

Aα 6= ∅ since
⋂

β<ω1

Aβ ⊇
⋂

β<ω1

Aβ+1 and X is compact.

Moreover the fact that
⋂

α<ω1

Aα is a singleton is easily seen by the induction

hypothesis (2). Let
⋂

α<ω1

Aα = {x}.

Claim 1. f−1(f(x)) = {x}.

Proof of Claim. Suppose that for some x′ 6= x, we have f(x) = f(x′). If

x′ ∈ Z, then x′ /∈ Aα for some α < ω1. This implies x ∈ JAα and so

x /∈ Aα+1. This is a contradiction. If x′ /∈ Z, then x′ ∈ Bα for some

α < ω1. This implies x ∈ IBα and so x /∈ Aα+1. This is also a contradiction.

Therefore f−1(f(x)) = {x}. �

This contradicts f being exactly two-to-one function. Moreover the zero-

dimensional case follows immediately from the general case. If X is zero-

dimensional, and B is an open set such that B ∩ Z = ∅, then there is a

clopen set disjoint from Z containing B. �

Corollary 4 (CH). Let X∗ be the Stone-Čech remainder of a locally compact

separable metric space X. If f : X∗→ K is a two-to-one continuous func-

tion, then f is not irreducible. In particular, if f : N∗ → K or f : R∗ → K

is two-to-one and continuous, then f is not irreducible.

Proof. Suppose that f is irreducible. Taking X = Z = X∗ and W = K in

Theorem 3 we get a nonempty subset B of the empty set X∗ \ Z. �
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Corollary 5 (CH). If f : N∗ → K is a two-to-one continuous function,

then K is not ccc.

Proof. Let W be a nonempty open subset of K. By Zorn’s Lemma [Wa74],

there is a closed subset Z of N∗ such that f � Z : Z → K is irreducible.

Then, by Theorem 3, there exists a nonempty clopen set B ⊆ N∗\Z such

that Int(f [B]) ∩W 6= ∅ since N∗ is zero-dimensional. Then f �B is a closed

one-to-one function and so B is homeomorphic to f [B]. Thus, f [B] has

no open ccc subset since N∗ has no open ccc subset. Therefore, K is not

ccc. �

3. Examples of Nontrivial Two-to-One Maps

A two-to-one function f : X → Y will be called trivial if there exist

disjoint clopen sets A and B such that X = A ∪ B and f [A] = f [B] = Y .

In [Do04] the first author proved that all functions defined on N∗ that are

two-to-one continuous are trivial under PFA. In this section we will give

some nontrivial examples of two-to-one continuous functions defined on N∗

when CH is assumed.

A point is called a P -point if the family of its neighborhoods is closed

under countable intersections. A subset of a space is a P -set if the family

of its neighborhoods is closed under countable intersections. CH implies

that N∗ has P -points and contains a nowhere dense closed P -set which is

homeomorphic to N∗ [vM84].
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Example 1 (CH): We give an example of a nontrivial two-to-one continuous

function f : N∗ → N∗ such that f is locally one-to-one at every point of N∗

except for two P -points.

Consider two copies of N∗: N∗
1, N∗

2. Let p1 ∈ N∗
1 and p2 ∈ N∗

2 be P -points.

There is a homeomorphism g : N∗
1 → N∗

2 such that g(p1) = p2 under CH

[vM84]. Then g−1 : N∗
2 → N∗

1 is also a homeomorphism and g−1(p2) = p1.

The free union of the two copies of N∗: N∗
1∪N∗

2 is homeomorphic to N∗. Let

h1 : N∗
1 ∪ N∗

2 → N∗
1 ∪ N∗

2 be defined by h1 = g ∪ g−1. Then h1
2 = id. In

a similar manner define h2 : N∗
3 ∪N∗

4 → N∗
3 ∪N∗

4 so that h2 = g̃ ∪ g̃−1

and h2
2 = id, where N∗

3 and N∗
4 are other copies of N∗ with corresponding

P -points p3 and p4 and g̃ : N∗
3 → N∗

4 is a homeomorphism with g̃(p3) = p4.

The quotient spaces

(N∗
1 ∪ N∗

2)/p1 ≡ p2 (N∗
3 ∪ N∗

4)/p3 ≡ p4 (N∗
1 ∪ N∗

4)/p1 ≡ p4

identifying p1 and p2, p3 and p4, p1 and p4, as single P -points in their

respective spaces, are homeomorphic to N∗ [vM84]. The free union (N∗
1 ∪

N∗
2)/p1 ≡ p2 ⊕ (N∗

3∪N∗
4)/p3 ≡ p4 is also homeomorphic to N∗. Now define

f on this space by

f : [(N∗
1 ∪ N∗

2)/p1 ≡ p2 ⊕ (N∗
3 ∪ N∗

4)/p3 ≡ p4] → (N∗
1 ∪ N∗

4)/p1 ≡ p4

f(x) =



h1(x)

h2(x)

x

p1 ≡ p4

if

if

if

if

x ∈ N∗
2\{p2}

x ∈ N∗
3\{p3}

x ∈ N∗
1\{p1} ∪ N∗

4\{p4}

x ∈ {p1 ≡ p2, p3 ≡ p4}
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Then f is a continuous and exactly two-to-one function. Moreover, the

image of f is homeomorphic to N∗.

We now introduce some notation that will be used in our future discus-

sions about this kind of two-to-one continuous maps. Let

X0 = (N∗
1 ∪ N∗

2)/p1 ≡ p2 ⊕ (N∗
3 ∪ N∗

4)/p3 ≡ p4

I0 = {A ⊆ X0 : A = A0∪̇A
′

0, A0, A
′

0 − clopen, f [A0] = f [A
′

0]}

So I0 is a family of clopen sets A in X0 such that A = f−1(f [A]), i.e.,

saturated, and f is locally one-to-one on A. Let U0 denote the union of all

the A′s in I0,

U0 =
⋃

A∈I0

A

and in this example U0 = X0 \ {p1 ≡ p2, p3 ≡ p4}. Thus f is locally one-

to-one except at the two P -points p1 ≡ p2 and p3 ≡ p4. Let X1 = X0\U0

which is again for this example given by

X1 = {p1 ≡ p2, p3 ≡ p4}

Then I1 is the analogous set in X1 but the points in X1 are not in U0 because

as can be seen above f is not locally one-to-one at the points p1 ≡ p2 and

p3 ≡ p4.

Using a similar construction to Veličković’s poset [Ve93], Example 1 can

be done consistent with MA+¬CH. But MA+¬CH is not by itself enough

to do the construction because of the first author’s PFA result [Do04].
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Example 2 (CH): We give an example of a nontrivial two-to-one continuous

function f : N∗ → N∗ such that f is locally one-to-one at every point of N∗

except for two P -sets. We extend the first example by considering nowhere

dense closed P -sets instead of P -points.

Consider two copies of N∗: N∗
1, N∗

2. Let P1 ⊆ N∗
1 and P2 ⊆ N∗

2 be two

different closed P -sets such that P1 is homeomorphic to P2. There is a

homeomorphism g12 : N∗
1 → N∗

2 such that g12(P1) = P2 under CH [vM84].

Therefore g−1
12 : N∗

2 → N∗
1 is also a homeomorphism and g−1

12 (P2) = P1. The

free union of the two copies of N∗: N∗
1 ∪ N∗

2 is homeomorphic to N∗. Let

h1 : N∗
1 ∪ N∗

2 → N∗
1 ∪ N∗

2 be defined by h1 = g12 ∪ g−1
12

Then h1(x) 6= x for each x and h1
2 = id. In a similar manner define

h2 : N∗
3 ∪N∗

4 → N∗
3 ∪N∗

4 so that h2 = g34 ∪ g−1
34 and h2

2 = id, where N∗
3 and

N∗
4 are other copies of N∗ with corresponding homeomorphic P -sets P3 and

P4. The adjunction spaces

N∗
1 ∪g1 N∗

2 N∗
3 ∪g2 N∗

4 N∗
1 ∪g3 N∗

4

where we identify the P -sets P1 with P2, P3 with P4, and P1 with P4 are

homeomorphic to N∗ [vM84]. The free union

(N∗
1 ∪g1 N∗

2) ⊕ (N∗
3 ∪g2 N∗

4)

is also homeomorphic to N∗.

Let ϕ : P2 → P4 be a homeomorphism. Now let us define

f : [(N∗
1 ∪g1 N∗

2) ⊕ (N∗
3 ∪g2 N∗

4)] → N∗
1 ∪g3 N∗

4
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by

f(x) =



h1(x)

h2(x)

x

ϕ(x)

if

if

if

if

x ∈ N∗
2\P2

x ∈ N∗
3\P3

x ∈ N∗
1\P1 ∪ N∗

4

x ∈ P2

Then f is a continuous and exactly two-to-one function and the image is

homeomorphic to N∗. Let us find the sets I0, U0, X1, I1, U1, and X2 for this

example which are introduced in Example 1.

X0 = N∗
1 ∪g1 N∗

2 ⊕ N∗
3 ∪g2 N∗

4

I0 = {A ⊆ X0 : A = A0∪̇A
′

0, A0, A
′

0 − clopen, f [A0] = f [A
′

0]}

U0 =
⋃

A∈I0

A = X0 \ (P2 ∪ P4)

X1 = X0\U0 = P2 ∪ P4

The function f is not locally one-to-one in the nowhere dense closed sets P2

and P4. But f �X1 is a continuous two-to-one function. I1 is the analogous

set in X1, U1 =
⋃

A∈ I1

A = X1, and X2 = X1\U1 = ∅.

Example 3 (CH): We give an example of a nontrivial two-to-one continuous

function f : N∗ → N∗ which is locally one-to-one at every point of N∗ except

for two P -sets and with the property that X2 6= ∅ and X3 = ∅. We know that

N∗ can be embedded as a nowhere dense P -set in N∗ assuming CH [vM84].

Consider two copies of N∗: N∗
5, N∗

6. Embed N∗
1∪g1 N∗

2 and N∗
3∪g2 N∗

4 in

Example 2 as nowhere dense P -sets P5 and P6 in N∗
5 and N∗

6, respectively:

N∗
1 ∪g1 N∗

2 ↪→ N∗
5 and N∗

3 ∪g2 N∗
4 ↪→ N∗

6
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In a similar fashion to Example 1, let g : N∗
5 → N∗

6 be a homeomorphism

such that g(P5) = P6. Therefore g−1 : N∗
6 → N∗

5 is also a homeomorphism

and g−1(P6) = P5. Let

h1 : N∗
5 ∪ N∗

6 → N∗
5 ∪ N∗

6 be defined by h1 = g ∪ g−1

Then h1
2 = id. Let N∗

7 ∪N∗
8 be another copy of N∗

5 ∪N∗
6. Suppose that

h2 : N∗
7 ∪ N∗

8 → N∗
7 ∪ N∗

6 is defined similarly so that h2
2 = id.

The adjunction spaces N∗
5∪g5 N∗

6, N∗
7∪g6 N∗

8, N∗
5∪g7 N∗

8 where we iden-

tify the P -sets P5 with P6, P7 with P8, and P5 with P8 are homeomorphic to

N∗ [vM84]. The free union (N∗
5 ∪g5 N∗

6) ⊕ (N∗
7 ∪g6 N∗

8) is also homeomorphic

to N∗. Let ϕ : P6 → P8 be the two-to-one function defined in Example 2.

Define f

f : [(N∗
5 ∪g5 N∗

6) ⊕ (N∗
7 ∪g6 N∗

8)] → N∗
5 ∪g7 N∗

8

by

f(x) =



h1(x)

h2(x)

x

ϕ(x)

if

if

if

if

x ∈ N∗
6 \P6

x ∈ N∗
7\P7

x ∈ N∗
5 \P5 ∪ N∗

8\P8

x ∈ P6 ∪ P8

Let us find the sets I0, U0, X1, I1, U1, X2, I2, U2, X3 in this example.

X0 = (N∗
5 ∪g5 N∗

6) ⊕ (N∗
7 ∪g6 N∗

8)

I0 = {A ⊆ X0 : A = A0∪̇A
′

0, A0, A
′

0 − clopen, f [A0] = f [A
′

0]}

U0 =
⋃

A∈I0

A = X0 \ (P6 ∪ P8)

X1 = X0\U0 = P6 ∪ P8
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The function f is not locally one-to-one in the nowhere dense closed sets

P6 and P8. Now f �X1 is an exactly two-to-one continuous function which is

the same as the function in Example 2. Therefore,

I1 = {A ⊆ X1 : A = A1∪̇A
′

1, A1, A
′

1 − clopen, f [A1] = f [A
′

1]}

U1 =
⋃

A∈I1

A = X1 \ (P2 ∪ P4)

X2 = X1\U1 = P2 ∪ P4

I2 = {A ⊆ X2 : A = A2∪̇A
′

1, A2, A
′

2 − clopen, f [A2] = f [A
′

2]}

U2 =
⋃

A∈I2

A = X2

X3 = X2\U2 = ∅.

It is clear that we can continue this process for any finite number of steps

in the following sense: If f : N∗ → K is a two-to-one continuous function

and X0 = N∗, then for each integer n

In = {A ⊆ Xn : A = An∪̇A
′

n, An, A
′

n − clopen, f [An] = f [A
′

n]}

Un =
⋃

A∈In

A

Xn+1 = Xn\Un.

Then for each integer n there is an f so that Xn 6= ∅ while Xn+1 = ∅.
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4. Zero-dimensional Spaces

A space X is called zero-dimensional if it has a base consisting of clopen

sets, that is, if for every point x ∈ X and for every neighborhood U of

x there exists a clopen subset C ⊆ X such that x ∈ C ⊆ U . N∗ is a

zero-dimensional space and in this section we show that every two-to-one

continuous image of N∗ is zero-dimensional under CH.

Suppose that f : N∗ → K is a two-to-one continuous function. As in the

examples given in section 3, let

X0 = N∗, K0 = K,

I0 = {A ⊆ X0 : A = A0 ∪̇A
′

0, A0, A
′

0 − clopen, f [A0] = f [A
′

0]}, and

U0 =
⋃

A∈I0

A.

Claim 2. I0 6= ∅

Proof of claim. By Theorem 3, there is a clopen set B ⊆ N∗ such that f �B

is one-to-one and Intf [B] 6= ∅. Therefore, f [B] is homeomorphic to B and

hence there is a clopen set B′ ⊆ Intf [B] and f−1[B′] is clopen since f �B

is one-to-one and it can be written as a union of two disjoint clopen sets

f−1[B′] = A0 ∪̇A
′
0 such that f [A0] = f [A

′
0]. Therefore, f−1[B′] ∈ I0. This

shows I0 is nonempty and f [U0] is dense in K0.

�

Now let X1 = X0\U0 and K1 = K0\f(U0). Then X1 is a closed subset of

X0. If X1 6= ∅, then f �X1 : X1 → K1 is an exactly two-to-one continuous
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function. In a similar way as before let

I1 = {A ⊆ X1 : A = A1∪̇A
′

1, A1, A
′

1 − clopen, f [A1] = f [A
′

1]}

U1 =
⋃

A∈I1

A X2 = X1\U1 K2 = K1\f(U1)

If X1 6= ∅, then I1 6= ∅ by Theorem 3. If X2 6= ∅, then f �X2 : X2 → K2 is

an exactly two-to-one continuous function. Continuing in a similar fashion,

for each n we define

In = {A ⊆ Xn : A = An∪̇A
′

n, An, A
′

n − clopen, f [An] = f [A
′

n]}

Un =
⋃

A∈In

A Xn+1 = Xn \ Un Kn+1 = Kn \ f(Un)

Then Xω =
⋂
n

Xn and Kω =
⋂
n

Kn. Recall that we showed in section

3 that Xn may be nonempty for any given natural number n. Therefore,

the next result is quite a surprise.

Theorem 6 (CH). Xω = ∅ and Kω = ∅.

Proof. Suppose Xω 6= ∅. Then Iω 6= ∅ where

Iω = {A ⊆ Xω : A = Aω ∪̇A
′

ω, Aω, A
′

ω − clopen, f [Aω] = f [A
′

ω]}

Therefore, there exist two nonempty disjoint clopen sets Aω, A
′
ω ⊆ Xω such

that f [Aω ] = f [A
′
ω]. Since Xω is compact and X0 is zero-dimensional there

are disjoint clopen sets B0, B
′
0 ⊆ X0 such that B0∩Xω = Aω and B

′
0∩Xω =

A
′
ω. Thus X0 − (B0 ∪B

′
0) is clopen in X0 and

(Aω ∪ A
′

ω) ∩ f−1
(
f(X0 − (B0 ∪B

′

0))
)

= ∅
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by the definition of Aω and A
′
ω. But

Aω ∪ A
′

ω =
(
B0 ∪B

′

0

)
∩Xω

=
(
B0 ∪B

′

0

)
∩

(⋂
n

Xn

)

=
⋂
n

(
B0 ∪B

′

0

)
∩Xn

Therefore f−1
(
f [X0 \ (B0 ∪B

′
0)]
)
∩
(
(B0 ∪B

′
0) ∩Xm

)
= ∅ for some m.

Claim 3. ∃n0 > m such that ∀n > n0 f−1 (f [B0]) ⊇ Xn ∩B
′
0.

Proof of claim. Otherwise ∀n > n0 ∃ xn, x
′
n ∈

(
Xn ∩B

′
0

)
\f−1 (f [B0]) such

that f(xn) = f(x
′
n). Then {xn} ∪ {x

′
n} is a discrete subset of N∗ and there-

fore {xn} ∩ {x′
n} = ∅. Moreover {xn}\{xn} ∪ {x′

n}\{x
′
n} ⊆ Xω ∩ B

′
0 = A

′
ω

and {xn}\{xn} ∪ {x′
n}\{x

′
n} is nonempty since every infinite discrete set in

a compact space has a limit point.

But then, there are elements x ∈ {xn}\{xn} and x′ ∈ {x′
n}\{x

′
n} such that

f(x) = f(x′). This is a contradiction since f �A′
ω

is one-to-one. Therefore

∃n0 > m such that ∀n > n0 f−1 (f [B0]) ⊇ Xn ∩B
′
0. �

By symmetry ∃k0 > m such that ∀n > k0 f−1 (f [B0]) ⊇ Xn ∩B
′
0.

Let k = max{k0, n0}. Then f(B0 ∩ Xk+1) = f(B
′
0 ∩ Xk+1). This implies

Aω ⊆ Uk+1 and A
′
ω ⊆ Uk+1. This is a contradiction since Aω, A

′
ω ⊆ Xω ⊆

Xk+1 \ Uk+1. Hence Xω = ∅ and Kω = ∅. �

Lemma 7. If A ⊆ X1 is clopen with f−1(f [A]) = A and U ⊆ X0 is open

with A ⊆ U , then there is a clopen set A′ ⊆ U in X0 such that A′ ∩X1 = A

and f−1(f [A′]) = A′.
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Proof. Since A is clopen in X1 and X1 is a subspace of X0, there is a clopen

set B ⊆ X0 such that B ∩X1 = A and B ⊆ U . Then f [X0 \B] ∩ f [A] = ∅.

Let A′ = B\f−1(f [X0 \ B]). We now show that A′ is the clopen subset

of X0 we are looking for. Clearly A′ is open in X0, A′ ⊆ U , A′ ∩ X1 = A,

and f−1(f [A′]) = A′. It remains to show that A′ is closed in X0. This is

equivalent to showing that B ∩ f−1(f [X0 \B]) is open.

Let x ∈ B ∩ f−1(f [X0 \B]) and let x′ ∈ X0 such that f(x) = f(x′). This

implies x, x′ ∈ U0 = X0 \ X1. Therefore, by the definition of U0, there

are disjoint clopen sets A0, A
′
0 ⊆ U0 in X0 such that x ∈ A0, x′ ∈ A

′
0, and

f [A0] = f [A
′
0]. Now shrink A0 and A

′
0 to clopen sets B0 and B

′
0, respectively,

so that x ∈ B0 ⊆ B, x′ ∈ B
′
0 ⊆ f−1(f [X0 \ B]), and f [B0] = f [B

′
0]. Then

x ∈ B0 ⊆ B ∩ f−1(f [X0 \B]).

Therefore, B ∩ f−1(f [X0 \B]) is open and A′ is closed in X0. �

Lemma 8. If A ⊆ Xn+1 is clopen with f−1(f [A]) = A and U ⊆ Xn is open

with A ⊆ U , then there is a clopen set A′ ⊆ U in Xn such that A′∩Xn+1 = A

and f−1(f [A′]) = A′.

Proof. The proof is similar to the proof of Lemma 7 with Xn+1 and Xn

playing the roles of X1 and X0, respectively. �

Lemma 9. If A ⊆ Xn is clopen with f−1(f [A]) = A and U ⊆ X0 is open

with A ⊆ U , then there is a clopen set A′ ⊆ U in X0 such that A′ ∩Xn = A

and f−1(f [A′]) = A′.

Proof. This follows from Lemma 7 and Lemma 8 by induction. �

Theorem 10 (CH). If f : N∗ → K is a two-to-one continuous function,

then K is zero-dimensional.
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Proof. Let y ∈ V where V is an open subset of K. Then y ∈ Kn\Kn+1 since

Kω = ∅ by Theorem 6. This implies y ∈ f(Un) = Kn \ Kn+1. Therefore,

y ∈ f [An] ⊆ f(Un) = Kn \ Kn+1 for some clopen set An ⊆ Xn such that

f [An] is clopen and f �An is one-to-one. This is by the definition of Un. Then

f [An] is homeomorphic to An and so there is a clopen set B ⊆ Int f [An]

containing y. Shrink B so that y ∈ B ⊆ V ∩Kn.

Let A = f−1(B) and U = f−1(V ). Then A ⊆ Xn is clopen with

f−1(f [A]) = A and U ⊆ X0 is open with A ⊆ U . By Lemma 7, ∃ A′ ⊆ U

clopen in X0 such that A′ ∩ Xn = A and f−1(f [A′]) = A′. Then y ∈

f [A′] ⊆ V and f [A′] is clopen in K since f−1(f [A′]) = A′. Hence K is

zero-dimensional.

�

5. F -spaces

A space is called an F-space if every pair of disjoint cozero subsets are

completely separated. It is well known that N∗ is an F -space [Wa74] and in

this section we show that every two-to-one continuous image of N∗ is also

an F -space under CH.

Theorem 11 (CH). If f : N∗ → K is a two-to-one continuous function,

K is an F-space.

Proof. Let C1 and C2 be two disjoint cozero sets in K. Then f−1(C1) and

f−1(C2) are disjoint cozero sets in N∗. Since N∗ is an F -space we have

f−1(C1) ∩ f−1(C2) = ∅. We must show that C1 ∩ C2 = ∅. It is sufficient

to show that for any y ∈ C1 there are two elements x, x′ ∈ f−1(C1) such

that f(x) = y = f(x′). This shows that y /∈ C2. Otherwise, if y ∈
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C2 ⊆ f
[
f−1(C2)

]
, there exists an x′′ ∈ f−1(C2) such that f(x′′) = y and

x′′ 6= x, x′ since f−1(C1) ∩ f−1(C2) = ∅ and x, x′ ∈ f−1(C1). So three

different points x, x′, x′′ mapped to y. This is a contradiction to the fact

that the function f is exactly two-to-one.

Let y ∈ C1. Then y ∈ C1 ⊆ f [f−1(C1)] since C1 = f [f−1(C1)] ⊆

f [f−1(C1)]. This implies there exists an x ∈ f−1(C1) such that f(x) = y.

By Theorem 6 Kω = ∅ and so y ∈ Kn \ Kn+1 for some integer n. Let

m ≤ n be maximal such that y ∈ C1 ∩Km. Then y /∈ C1 ∩Km+1 and so

there is a cozero set Cy ⊆ Km such that y ∈ Cy and Cy ∩ C1 ∩Km+1 = ∅.

Thus Cy ∩ C1 ∩Km+1 = ∅.

Therefore, without loss of generality, we can assume that C1 ∩ Km+1 = ∅

and C1 is a cozero set in Km since we can take C1 to be the cozero set

Cy ∩C1. Then f−1(C1) is a cozero set in Xm and f−1(C1)∩Xm+1 = ∅, that

is, f−1(C1) ⊆ Um where Um is defined as in section 4 by

Um =
⋃

A∈Im

A and

Im = {A ⊆ Xm : A = Am∪̇A
′
m, Am, A

′
m − clopen, f [Am] = f [A

′
m]}

Since f−1(C1) is a cozero set in Xm and Xm is compact zero-dimensional

F -space, it can be written as a countable union of disjoint clopen sets in such

a way that f−1(C1) =
∞⋃

n=0

[
An ∪ A

′
n

]
where each An and A

′
n are disjoint

clopen sets in Xm and f [An] = f [A
′
n]. Therefore, f−1(C1) can be written as

a union of two disjoint sets

f−1(C1) =

(
∞⋃

n=0

An

)
∪

(
∞⋃

n=0

A
′

n

)
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and by the definition of An and A
′
n we get

f

[
∞⋃

n=0

An

]
= f

[
∞⋃

n=0

A
′

n

]
.

Thus

f−1(C1) =
∞⋃

n=0

An ∪
∞⋃

n=0

A′
n.

The sets
∞⋃

n=0

An and
∞⋃

n=0

A
′
n are cozero sets since a countable union of

clopen sets is a cozero set and they are disjoint by construction. Therefore,

since Xm is an F -space we get

∞⋃
n=0

An ∩
∞⋃

n=0

A′
n = ∅.

Now since

x ∈ f−1(C1) =
∞⋃

n=0

An ∪
∞⋃

n=0

A′
n

we assume, without loss of generality, that

x ∈
∞⋃

n=0

An and x /∈
∞⋃

n=0

A′
n.

By continuity of f and the fact that

f

[
∞⋃

n=0

An

]
= f

[
∞⋃

n=0

A
′

n

]

we get

f

[
∞⋃

n=0

An

]
= f

[
∞⋃

n=0

A′
n

]
and

y ∈ C1 ⊆ f
[
f−1(C1)

]
= f

[
∞⋃

n=0

An

]
= f

[
∞⋃

n=0

A′
n

]
.
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Therefore, there exists an x′ ∈
∞⋃

n=0

A′
n such that f(x′) = y.

Now x′ 6= x because x′ ∈
∞⋃

n=0

A′
n , x ∈

∞⋃
n=0

An, and

∞⋃
n=0

An ∩
∞⋃

n=0

A′
n = ∅.

Thus, there are two different points x, x′ ∈ f−1(C1) such that

f(x) = y = f(x′)

Hence K is an F -space. �

6. Nonempty Gδ-sets

The intersection of countably many open sets is called a Gδ-set. Nonempty

Gδ-sets on N∗ have nonempty interiors. In this section we prove that two-

to-one continuous images of N∗ have the same property.

Theorem 12 (CH). If f : N∗ → K is a two-to-one continuous function,

then nonempty Gδ-sets in K have nonempty interior.

Proof. Suppose that {bn : n ∈ ω} is a descending sequence of clopen subsets

of K with b0 = K. It suffices to deal with clopen sets since we have shown

that K is zero-dimensional. Assume to the contrary that
⋂
n

bn is nowhere

dense. Let Z ⊆ N∗ be such that f �Z is irreducible. This is possible by

Zorn’s Lemma.
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For each n let an = f−1(bn) ∩ Z. Then {an : n ∈ ω} is a descending

sequence of clopen subsets of Z and a0 = Z. Therefore, by Theorem 3,

for each n pick clopen sets en ⊆ an \ an+1 and e
′
n ⊆ N∗ \ Z such that

f [en] = f [e
′
n]. Then, in Z,

⋃
n

(an \ (en ∪ an+1) ∩
⋃
n

en = ∅ since Z is an

F -space.

Since we assumed
⋂
n

bn is nowhere dense in K, f−1(
⋂
n

bn )∩Z is nowhere

dense and so

Z =
⋃
n

(an \ (en ∪ an+1) ∪
⋃
n

en.

Thus
⋃
n

en is clopen in Z. Clearly
⋃
n

(an \ an+1) ∩
⋃
n

e
′
n = ∅ since Z is closed

and e
′
n ⊆ N∗\Z.

Let us show that
⋃
n

(an\an+1)∩
⋃
n

e′
n = ∅. For each n, f−1(K\bn) is clopen

in N∗ since bn is clopen and f is continuous. By construction
⋃

m≥n

e
′
m ∩

f−1(K \ bn) = ∅ and
⋃

m∈ω

e
′
m ∩ f−1(K − bn) is clopen in N∗ since it is a

finite intersection of clopen sets. Because

an \ an+1 ⊆ f−1(K \ bn+1) and [an \ (an+1 ∪ en)] ∩
⋃

n∈ω

e
′

n = ∅

we have
⋃
n

(an \ an+1) ∩
⋃
n

e′
n = ∅. Thus

⋃
n

(an \ an+1) ∩
⋃
n

e′
n = ∅ since

N∗ is an F -space. Therefore
⋃
n

en ∩
⋃
n

e′
n = ∅ and hence f is a two-to-one

function on
⋃
n

en ∪
⋃
n

e′
n.

Now since f

[⋃
n

en

]
= f

[⋃
n

e′
n

]
we have K = f

[⋃
n

en

]
∪ f

[
Z \

⋃
n

en

]
and f

[⋃
n

en

]
∩ f

[
Z \

⋃
n

en

]
= ∅. Therefore f

[⋃
n

en

]
⊆ K is clopen in K.

But then

f−1

(
f

[⋃
n

e′
n

])
=
⋃
n

en ∪
⋃
n

e′
n
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is clopen. This is a contradiction since
⋃
n

en ∪
⋃
n

e′
n is not clopen by the

fact that in N∗ nonempty Gδ-sets have nonempty interior. �

If f : N∗ → K is a two-to-one continuous function, Levy [Le04] proved

that countable discrete subsets of K are C∗-embedded and the weight of K is

c. This completes everything needed to prove that a two-to-one continuous

image of N∗ is N∗ up to a homeomorphism.

Corollary 13 (CH). If f : N∗ → K is a two-to-one continuous function,

then K is homeomorphic to N∗.

Proof. Follows from Theorem 1, 10, 11, and 12. �

Open Problems

Our results are all under the set theoretic assumption CH. Is it possible

to eliminate CH? In particular, if f : N∗ → K is a two-to-one continuous

function:

(1) Is it true that f is not irreducible?

(2) Is K homeomorphic to N∗ ?

(3) Is every countable subset of K C∗-embedded ?

(4) Can K be separable or ccc ? (Levy question [vD93])

(5) If f is n-to-one continuous with n > 2, is K homeomorphic to N∗

under CH or ZFC?
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