TWO TO ONE CONTINUOUS IMAGES OF N*
ALAN DOW AND GETA TECHANIE

ABSTRACT. A function is two-to-one if every point in the image has
exactly two inverse points. We show that every two-to-one continuous
image of N* is homeomorphic to N* when the continuum hypothesis is as-
sumed. We also prove that there is no irreducible two-to-one continuous

function whose domain is N* under the same assumption.

1. INTRODUCTION

A function f: X — Y is two-to-one if for each y € Y, there are ex-
actly two points of X that map to y. All spaces considered are Tychonoff.
For some spaces X, there does not exist a two-to-one continuous function
f: X — Y for any choice of Y. For example, Harrold [Ha39] showed that
there is no two-to-one continuous function f: [0,1] — Y and Mioduszewski
[Mi61] proved that there is no two-to-one continuous function f : R — Y. In
fact, Heath [He86] later showed that every two-to-one continuous function
f: R — Y has infinitely many discontinuities.

Another situation is when there are two-to-one continuous functions f: X —
Y defined on a space X, but given any such function the image space Y is de-
termined up to a homeomorphism. For example, if f: [0,1) — S*, where S*
is the unit circle {p € R?: ||p|]| = 1}, is defined by f(z) = exp(4miz), then

f is a two-to-one continuous function. Mioduszewski [Mi61] proved that if
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f:10,1) — Y is a two-to-one continuous function, then Y is homeomorphic
to St

In this paper we investigate the behavior of two-to-one continuous maps
defined on N*| the remainder SN\ N of the Stone-Cech compactification
of the space N of natural numbers. We give partial answers to questions
recently raised by R. Levy [Le04]. In particular, we show that every two-
to-one continuous image of N* is homeomorphic to N* when the continuum
hypothesis (CH) is assumed.

There are two-to-one continuous functions defined on N*. For example,
the space N* is homeomorphic to N* x 2, so the projection map f: N* x 2 —
N* given by f(z,k) = z is a two-to-one continuous function on N* and
the image is N*. Such an example would be called trivial. A continuous
two-to-one function f : N* — N* is t¢rivial if there is a clopen subset C' of
N* such that the restrictions f [ ¢ and f [(y«\¢) are homeomorphisms. In
[Do04], the first author proved that all maps on N* that are two-to-one are
trivial, in the above sense, under the presence of the Proper Forcing Axiom
(PFA). Eric van Douwen [vD93] has also produced a surprising answer to
a similar question raised by R. Levy. He showed that the space N*, which
is a compact space and very far from being separable, can be mapped onto
a compact separable space by a <two-to-one continuous function. We are
concerned with the question of whether every exactly two-to-one continuous
image of N* is homeomorphic to N*.

It is well known that if a space Y is homeomorphic to N*, then YV is a
Parovicenko space, that is, a compact zero-dimensional F-space of weight

¢ which has no isolated points and with the property that every nonempty
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Gs-set has infinite interior. Therefore, if we are interested in whether or
not two-to-one continuous images of N* are homeomorphic to N*, we should
investigate which of these six properties are satisfied by the spaces which
are two-to-one continuous images of N*.

If Y is a two-to-one continuous image of N* obviously Y is compact
since N* is compact and a continuous image of a compact space is compact,
and Y has no isolated points since two-to-one continuous maps preserve the
property of having no isolated points. Ronnie Levy [Le04] showed that Y
has the property that countable discrete subsets are C*- embedded and Y
contains a copy of N* and so Y has weight ¢. We include his proof for the

reader’s convenience.

Theorem 1 (Levy). Let X be a space such that every countable discrete
subset of X is C*-embedded in X. If f: X — Y is a two-to-one continuous

function, then every countable discrete subset of Y is C*-embedded in Y.

Proof. Let C' be a countable discrete subset of Y. Since f is two-to-one
and C' is countable discrete, f~1(C) is a countable discrete subset of X.
Therefore, f~1(C) is C*-embedded in X. We must show that disjoint subsets
of C have disjoint closures in Y. Let A, B C C such that ANB = (). Assume
that there exists p € Cly A N Cly B.

For each a € Alet f~'({a}) = {ay, a2} and for each b € B, let f~*({b}) =
{b1,b2}. Let Ay = {a; : a € A}, Ay = {ay : a € A}, By = {b; :
be B}, By = {by:be B} These four sets are pairwise disjoint sub-
sets of f71(C) and therefore their closures are also pairwise disjoint since
f~YC) is C*- embedded. By the continuity of f, each of the four sets
Clx Ay, Clx Ay, Clx By, Clx B, contains an element of the fiber f~1({p}).
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Since these sets are pairwise disjoint, |f~'({p})] > 4. This contradicts the

fact that f is two-to-one. O

Then Levy asked in the same paper whether Y has the remaining three
properties. We show that Y actually has these three properties under CH,
that is, Y is a zero-dimensional F-space in which every nonempty Gs-set has
infinite interior. A consequence then is that two-to-one continuous images
of N* are homeomorphic to N* when CH is assumed since N* is the only

Parovicenko space under CH [vM84].

2. IRREDUCIBLE MAPS

A mapping f of X onto Y is irreducible if no proper closed subset of
X maps onto Y. Thus, the image of an open set by a closed irreducible
mapping will have interior. It follows easily from Zorn’s lemma [Wa74] that
if X and Y are compact spaces and f is a continuous function from X onto
Y, then there is a closed subspace F' of X such that f [ is an irreducible
map from F onto Y. Levy [Le04] asked if there exists an irreducible two-to-
one continuous function whose domain is N*. Under CH, we will show that

there is no such function.

Notation . Foramap f: X — Y and A C X, let J4 = f71(f[X\4]) N A

and for a point z, ' will denote a point 2’ # x such that f(x) = f(a2').

Lemma 2. Let f: X — Y be an wrreducible continuous closed map. If A

is an open subset of X, then J4 is nowhere dense in X.

Proof. Suppose that J4 is not nowhere dense in X. Then IntJ, is a

nonempty open subset of X. Then clearly f[AN IntJ,] C f[A] and J, C
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FHSIX \ A]) since J4 € f7U(f[X \ A]) and f[X \ 4] is closed. Thus
flJa] € fIX \ A] and in particular f[A N IntJ4] C f[X \ A]. Therefore,
X\ (A N IntJy) is a proper closed subset of X since AN IntJy is a
nonempty open set contained in A, and f[X \ (AN IntJs)] = Y since
fIAN IntJ,] C f[A] and f[AN IntJ4] C f[X \ A]. This is a contradiction

since f is irreducible. O

The following result is the main ingredient in our analysis of the structure

of two-to-one continuous functions.

Theorem 3 (CH). Let X be a compact space of weight ¢ and suppose that
countable discrete subsets of X are C*-embedded. If f: X — K 1is a two-
to-one continuous function and Z is a closed subset of X such that f 7 is
wrreducible and maps Z onto K, then for every nonempty open set W C K
there exists an open set B in X such that BNZ = () and Int(f[B]) N W # 0.

Furthermore, if X is zero-dimensional, then B can be chosen to be clopen.

Proof. Let W be a nonempty open subset of K. Seeking a contradiction,
suppose that f[B] N W is nowhere dense in K for each open set B C X
with closure disjoint from Z . For each open subset B C X \ Z, let
Iz = f~Y(f[BJNnW) N Z. Then Iz is nowhere dense in Z since f is closed
irreducible and f[Ig] € f[B]N'W which is nowhere dense. Since f is con-
tinuous, f~'(W) N Z has nonempty interior in Z. For each open subset
AC f~Y(W)N Z, Ja is nowhere dense in Z by Lemma 2.

We construct, by induction, a family { A, : a < w; } which is a filter base

of cozero subsets of f~1(W)NZ such that (] A, is a singleton {z} so that

a<wi
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F7Y(f(x)) = {x}. This yields a contradiction as f is an exactly two-to-one
function.

Let {B, : a < w;} enumerate all the cozero sets B in X such that
BNZ=0andlet {C° Cl: a < w; } enumerate all pairs of cozero sets in
Z such that Z = C% U CL. We construct { A, : @ < w; } such that for each

a < wy:

(1) ) Ag is nonempty;
BLa

(2) A, CC° or A, CCl:and
(3) If =B +1, then A, C Ag\ (Ja, Ulp,) .

We show how to define the first two cozero sets Ay and A;: Let x €
f~Y(W) N Z. Then choose a cozero set neighborhood Ay of z such that
Ap C f7YW)N Z and either Ay C CY or Ay C C}.

Then Jy4, and I, are nowhere dense in Z, hence Ag\(Ja, UIp,) # 0. Let
x, possibly different from the previous z, be a point in Ag\(Ja,UIp,). Then
choose a cozero set neighborhood A; of x such that A; C Ag\(Ja, U I5,)
and either A; C C? or A; C C’ll. For each n € w we can define A,, in the
same manner.

Suppose that @ > w and we have constructed the family { Ag: 5 <~}
for all v < a. If « =+ 1, then Dﬁ A, # 0 by the induction assumption.

7<

If « is a limit, then the induction hypothesis (1) ensures that G, = [ 4g
B<a

is not empty since Z is compact and Ag C ZgH for each # < « so that
N As2 N Apir.

f<a B<a
If o is a limit and z € G, = (] Ag, we choose a cozero set neighborhood
B<a

A, of z such that A, C C° if x € C° or A, C C} otherwise. If & = 3+ 1

with 8 > w, we must define a cozero set A, so that A, C Ag\ [Ja, Ulp,].
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Let A be the largest limit ordinal less than . We enumerate A U {5} by:
6 = Po, 01, P2, (3, ---. We now consider the cases when G, has nonempty
interior and G, is nowhere dense.

If G has nonempty interior, then Gy \ [Ja, U Ip,] # 0 since Ja, U Ip, is
nowhere dense. Then pick a point x € G, \ [Ja, U Ip,] and a cozero set A,
containing z such that A, C G, and either A, C C? or A, C CL.

If G, is nowhere dense, Ja, U I, UG, is nowhere dense and Ag\[J4, U
Ip,UG,] # 0. Let zg € Ag\[J4,UIp,UG,]. Then choosei; > 1large enough
such that zy ¢ Ag, , which we may do since zo ¢ G,. Then either Ty € Ag,, s
Ty € Jag, 5 o1 zy & Z. In any case, z, ¢ Zﬂi1+1 since ﬁgilﬂ C Ag, \JAﬁil
by construction. So there is an i; > 1 such that @"1 = B, +1and x, ¢ Zgl_,l.
Thus a:o,x;) ¢ G,.

Similarly, pick 71 € [Ag N Ag, N -+ N Ap, [\[Ja, U Ip, UG, and choose
iy > iy,4, > 1 large enough so that z; ¢ Ap,, . Then T, ¢ Z%H by
construction. So there is an iy > i;,4; > 1 such that ﬁi/z = B, + 1 and
xll ¢ Z’Bi/ . Thus x4, le ¢ G,. Continuing this process, for every integer n,
pick z, 26 [Ag N Ag, NN Ag, |\ [Ja, Ulp, UG,] and choose an integer
lnt1l > z'n,z';l > e > ig,ilz > z'll,il > 1 large enough so that z,, ¢ A@inﬂ.
Then there exists an integer 4, > i, i, such that z, ¢ Eﬁ/ . Thus
T, x; ¢ G,.

Hence, we get a countable set {z,}, U {z,},. We remark that the z,’s

and z’s can be chosen from some dense subset of f~*(W)N Z. From the



8 ALAN DOW AND GETA TECHANIE

. ’
construction of the z,’s and z,,’s

Vi>n a2 € fTH(f[AsNAg NN A, )

Vi<n x]-,:c; ¢ fﬁl(f[zﬁ mZ& - mzﬁinw])

and since f~'(f[AgNAg, N---NAg,]) is closed for all k, the set {x,},U{x, },

is discrete. Therefore {z,}, N {x,}, = 0 since {z,}, N{z,}, =0 and
countable discrete subsets of X are C*-embedded. We have f({z,}n) =
f({«},},) by continuity of f and the fact that f({z,},) = f({z)}). We
also have {z,}n, \{zn}n # 0 and {2/}, \{z,}, # 0 since every infinite
subset of a compact set has a limit point. By the construction of the x,’s
we see that {2, e \{Zn}n C Ga.

If{zcZ:2 eZynfY(W)isdense in f~1(W)N Z, we can choose the
z/’s in f~Y(W) N Z so that we also have {z/ }, \{z/,}n C Ga. In this case

if we choose # € {2}, \{Zn}n, then 2" € {2}, \{2,}, and = # 2’ since

{z,}n N {2}, = 0. Moreover z &€ J4, since x € J4, implies z° ¢ Ag which
contradicts z° € G, C Az. We also have = ¢ Ip,, that is, x' ¢ By since
x,, & Bg for all n and Bg is a cozero set. Thus we have found an = € G,
such that x ¢ Jag Ulg,.

If{zec Z:2 € Zyn f~Y(W) is nowhere dense in f~*(W)N Z, find a
cozero set A C Ag C f~1(W) N Z such that f [z is one-to-one on all points
of A, that is, f~1(f[A]) meets Z in A. In this case we can choose the z,,’s 50
that {z,,}, C A and hence {z/}, € X\ Z. Then {z,}, \{Zn}n € A. Choose
an z € {z,}n \{Zn}n. Then z € A and so 2’ ¢ Z; in particular 2’ ¢ Z \ Ag
and so & &€ J4,. It is also true that x ¢ Ip,, that is, &' ¢ Bg since x, & Bg

for all n and Bg is a cozero set. Therefore x € G, and = ¢ Ja, Ulgp,.



TWO TO ONE CONTINUOUS IMAGES OF N* 9
We choose a cozero set A, containing z such that A, C Ag\[J 4,Ulp,] and
either A, C C% or A, C C. Then A, satisfies all the induction assumptions

and this completes the inductive construction.

But now (] A, # 0 since () 43 2 () Apyi and X is compact.

a<wi B<wy B<wi
Moreover the fact that () A, is a singleton is easily seen by the induction
a<wi
hypothesis (2). Let () A, = {z}.
a<wi

Claim 1. f~'(f(x)) = {z}.

Proof of Claim. Suppose that for some 2’ # z, we have f(z) = f(2/). If
¥ € Z, then o' ¢ A, for some o« < w;. This implies x € J,, and so
x ¢ Aap1. This is a contradiction. If 2/ ¢ Z, then 2’/ € B, for some

a < wy. This implies « € I, and so @ ¢ A,41. This is also a contradiction.

Therefore f~(f(x)) = {z}. O

This contradicts f being exactly two-to-one function. Moreover the zero-
dimensional case follows immediately from the general case. If X is zero-
dimensional, and B is an open set such that BN Z = (), then there is a

clopen set disjoint from Z containing B. 0

Corollary 4 (CH). Let X* be the Stone-Cech remainder of a locally compact
separable metric space X. If f: X*— K is a two-to-one continuous func-
tion, then f is not irreducible. In particular, if f: N* — K or f: R* - K

s two-to-one and continuous, then f is not irreducible.

Proof. Suppose that f is irreducible. Taking X = 7 = X* and W = K in

Theorem 3 we get a nonempty subset B of the empty set X*\ Z. 0
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Corollary 5 (CH). If f: N* — K is a two-to-one continuous function,

then K is not ccc.

Proof. Let W be a nonempty open subset of K. By Zorn’s Lemma [WaT74],
there is a closed subset Z of N* such that f | z: Z — K is irreducible.
Then, by Theorem 3, there exists a nonempty clopen set B C N*\ Z such
that Int(f[B]) N W # 0 since N* is zero-dimensional. Then f [p is a closed
one-to-one function and so B is homeomorphic to f[B]. Thus, f[B] has
no open ccc subset since N* has no open ccc subset. Therefore, K is not

ccc. O

3. EXAMPLES OF NONTRIVIAL TwO-TO-ONE MAPS

A two-to-one function f: X — Y will be called trivial if there exist
disjoint clopen sets A and B such that X = A U B and f[A] = f[B] =Y.
In [Do04] the first author proved that all functions defined on N* that are
two-to-one continuous are trivial under PFA. In this section we will give
some nontrivial examples of two-to-one continuous functions defined on N*
when CH is assumed.

A point is called a P-point if the family of its neighborhoods is closed
under countable intersections. A subset of a space is a P-set if the family
of its neighborhoods is closed under countable intersections. CH implies
that N* has P-points and contains a nowhere dense closed P-set which is

homeomorphic to N* [vM84].
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Example 1 (CH): We give an example of a nontrivial two-to-one continuous
function f: N* — N* such that f is locally one-to-one at every point of N*
except for two P-points.

Consider two copies of N*: NT, N3. Let p; € Nj and p, € N be P-points.
There is a homeomorphism ¢ : Nj — N} such that g(p;) = p» under CH
[vM84]. Then ¢! : N§ — NI is also a homeomorphism and g~!(p;) = p;.
The free union of the two copies of N*: NjUN} is homeomorphic to N*. Let
hy:N*UN; — NYUN;  be defined by hy; = gUg~". Then hi®> = id. In
a similar manner define  hy : NjUN; — NjUN;  sothat hy=guUg*
and ho® = id, where N3 and N} are other copies of N* with corresponding
P-points p3 and py and § : Ni — Nj is a homeomorphism with g(p3) = pa.

The quotient spaces
(NTUN)/pr=p2 (N3UNJ)/ps=ps (NJUN})/p1r=pa

identifying p; and py, p3 and ps, p; and py, as single P-points in their
respective spaces, are homeomorphic to N* [vM84]. The free union (Nj U
N5)/pr =p2s & (NJUN])/ps = py s also homeomorphic to N*. Now define

f on this space by

fo (NUN)/pr=p2 & (NJUN})/ps = pa] — (NJUN)/p1 = py

(

hi(z) if e N\{pa}
ha(x) if oz eN3\{ps}
x if z € NJ\{p1} U Nj\{ps}

P1 = P4 if  x€{pi=p2, p3s=ps}




12 ALAN DOW AND GETA TECHANIE
Then f is a continuous and exactly two-to-one function. Moreover, the
image of f is homeomorphic to N*.

We now introduce some notation that will be used in our future discus-

sions about this kind of two-to-one continuous maps. Let

Xo=(NJUN])/p1 =p2 ® (N3UN})/ps = p4

i

Iy={AC Xy: A= AUA,, Ay, Ay — clopen, f[Aq] = flA,]}

So I is a family of clopen sets A in X, such that A = f~1(f[A]), ie.,
saturated, and f is locally one-to-one on A. Let U, denote the union of all

the A’s in I,

u0=UA

A€l

and in this example Uy = Xo \ {p1 = p2,ps = ps}. Thus [ is locally one-
to-one except at the two P-points p; = py and ps = py. Let X7 = Xo\Uy

which is again for this example given by

X1 ={p1 = p2,p3s = pa}

Then [ is the analogous set in X but the points in X; are not in U, because
as can be seen above f is not locally one-to-one at the points p; = ps and
D3 = pa-

Using a similar construction to Velickovi¢’s poset [Ve93], Example 1 can
be done consistent with M A+—-CH. But M A+—-C'H is not by itself enough

to do the construction because of the first author’s PFA result [Do04].
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Example 2 (CH): We give an example of a nontrivial two-to-one continuous
function f : N* — N* such that f is locally one-to-one at every point of N*
except for two P-sets. We extend the first example by considering nowhere
dense closed P-sets instead of P-points.

Consider two copies of N*: Nj, Nj. Let P, € Nj and P» C Nj be two
different closed P-sets such that P; is homeomorphic to P,. There is a
homeomorphism g2 : Ni — Nj such that gi12(P) = P> under CH [vM84].
Therefore g;, : Nj — N7 is also a homeomorphism and g, (P) = P;. The

free union of the two copies of N*: N} UNj is homeomorphic to N*. Let
hy : NJUN; — NfUN; be defined by h; = g2 U g15

Then hy(z) # x for each x and h;*> = id. In a similar manner define
he : N;UN) — N3 UN} so that hy = g34 Ugg;ll and hy? = id, where N3 and
N} are other copies of N* with corresponding homeomorphic P-sets P; and

P4. The adjunction spaces
N7 Ug, N N3 Ug, N N7 Ug, N

where we identify the P-sets P, with P, Py with P,, and P, with P, are

homeomorphic to N* [vM84]. The free union
(N7 Ug, N3) @ (N3 U, NJ)

is also homeomorphic to N*.

Let ¢: P, — P, be a homeomorphism. Now let us define

i [(NT Ug NS) D (Ni‘; Ugs ND] - Nik Ugs NZ
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;

hy(z) if r € N3\ Ps

ho(z) if xe Nj\Ps

- if zeNA\P U N;
() if  xeP

Then f is a continuous and exactly two-to-one function and the image is

\

homeomorphic to N*. Let us find the sets Iy, Uy, X1, 11, Ui, and X5 for this

example which are introduced in Example 1.

XO = NT Ugl N; D N:k% U!JZ NZ

/

Iy = {A CXp: A= AOUA;)’ A(J,A;) — clopen, f[Ao] = f[Ao]}

Z/{(): U A:XQ\(PQUP4>

A€l

X1 =Xo\Uy=P,UP,

The function f is not locally one-to-one in the nowhere dense closed sets P,
and P,. But f]x, is a continuous two-to-one function. /; is the analogous
set in Xq, Uy = |J A= Xy, and Xy = X3\Uy = 0.
Ael

Example 3 (CH): We give an example of a nontrivial two-to-one continuous
function f: N* — N* which is locally one-to-one at every point of N* except
for two P-sets and with the property that X5 # () and X3 = (). We know that
N* can be embedded as a nowhere dense P-set in N* assuming CH [vM84].
Consider two copies of N*: Nf, Ng. Embed NjU, N; and N;U,Nj in

Example 2 as nowhere dense P-sets P5 and Fs in N and N, respectively:

N U, Nj — N; and N3 Uy, N} — N
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In a similar fashion to Example 1, let g : N} — N§ be a homeomorphism

such that g(P5) = Ps. Therefore g=! : N} — N is also a homeomorphism

and g1 (Ps) = P5. Let
hi:NfUN; — N UN? be defined by hy=gUg™!

Then h,* = id. Let N:UN; be another copy of NfUN;. Suppose that
hy : Nt UN; — N:UN;  is defined similarly so that hy® = id.

The adjunction spaces N; U, Ng,  NrU, Nz, NiU, Ng where we iden-
tify the P-sets Ps with Py, P; with Fs, and P5 with Py are homeomorphic to
N* [vM84]. The free union (N} Uy, N§) & (N3 U, N§) is also homeomorphic
to N*. Let ¢ : P; — Ps be the two-to-one function defined in Example 2.
Define f

£l U Np) @ (N3 U, N3] — N; Uy, N

by
y
hl (ZE) ’Lf S NZ \PG
hQ(ZL’) ’Lf S N;\P7

x if @ eN;\Ps U N;\Ps

fz) =

o(x) if x€PUPRPg

\

Let us find the sets Iy, Uy, X1, I, Uy, Xo, I3, Uy, X3 in this example.

XO = (N; Ugs NZ) D (N; U!JG Ng)

/

In={AC Xy: A= AUA,, Ay, Ay — clopen, f[A)] = f[Ay]}

Z/{(): U A:Xo\(P6UP8>

A€l

Xy = Xo\Up = B U P
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The function f is not locally one-to-one in the nowhere dense closed sets
Ps and Ps. Now f [x, is an exactly two-to-one continuous function which is

the same as the function in Example 2. Therefore,

/

L={ACX,: A= AUA|, A, A, — clopen, f[Ai] = fIA]]}

Z/{lz U A:X1\<P2UP4>
Aelh

Xo = X,\Uh = P, UP,

/

I ={AC Xy: A= AUA|, Ay, A, — clopen, f[As] = f[A,]}

Z/{Q - U A - X2
A€l
X3 = XQ\Z/{Q - @

It is clear that we can continue this process for any finite number of steps
in the following sense: If f:N* — K is a two-to-one continuous function

and Xy = N*, then for each integer n

I

]n = {A g Xn A= AnUAlru AnuA/n - Clopen, f[An} = f[An]}

zg:UA

Ael,

Xn+1 = Xn\un

Then for each integer n there is an f so that X, #( while X, =0.
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4. ZERO-DIMENSIONAL SPACES

A space X is called zero-dimensional if it has a base consisting of clopen
sets, that is, if for every point x € X and for every neighborhood U of
x there exists a clopen subset C' C X such that x € C C U. N* is a
zero-dimensional space and in this section we show that every two-to-one
continuous image of N* is zero-dimensional under CH.

Suppose that f : N* — K is a two-to-one continuous function. As in the

examples given in section 3, let

X(]:N*a K():Ka

In={ACXy: A=AgUA,, Ay, Ay — clopen, f[Ag] = f[Ay]},and

Uy = UA.

A€l

Claim 2. Iy # ()

Proof of claim. By Theorem 3, there is a clopen set B C N* such that f[g
is one-to-one and Int f[B] # (). Therefore, f[B] is homeomorphic to B and
hence there is a clopen set B’ C Intf[B] and f~![B'] is clopen since f [p
is one-to-one and it can be written as a union of two disjoint clopen sets
7Bl = AgUA, such that f[Ag] = f[A,]. Therefore, f~'[B'] € I,. This

shows Iy is nonempty and f[Up] is dense in K.

Now let X; = Xo\Up and K; = Ko\ f(Upy). Then X; is a closed subset of

Xo. If X7 # 0, then f [x,: X; — K; is an exactly two-to-one continuous
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function. In a similar way as before let

’

L={ACX,: A= AUA], Ay, A, — clopen, f[A)] = f]A}]}

Z/{l - U A XQ - Xl\L{l KQ - Kl\f(ul)
Ael

If Xy # 0, then I; # () by Theorem 3. If X5 # ), then f[x,: Xo — K> is
an exactly two-to-one continuous function. Continuing in a similar fashion,

for each n we define

!

I, ={ACX,: A=AUA, A, A, — clopen, f[A,] = f[A]}

Ael,

Then X,=(X, and K, =[)K,. Recall that we showed in section
3 that X,, may be nonempty for any given natural number n. Therefore,

the next result is quite a surprise.
Theorem 6 (CH). X,=0 and K,=70.

Proof. Suppose X, # (. Then I,# 0 where

L, ={ACX,:A=A,UA, A, A, —clopen, flA]= flA]}
Therefore, there exist two nonempty disjoint clopen sets A,, A, C X,, such
that f[A,] = f[A]. Since X,, is compact and X, is zero-dimensional there
are disjoint clopen sets By, B(/) C Xy such that BynX, = A, and B(/) nNX, =
Al Thus Xy — (ByUBy) is clopen in X, and

(A, VAN (F(Xo — (ByU By))) =0
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by the definition of A, and A . But

Therefore f~ (f[Xo \ (BoU By)]) N ((Bo U By) N X,) = 0 for some m.
Claim 3. 3ng > m such that Yn >ny ' (f[By]) 2 X, N By,

Proof of claim. Otherwise Vn >ny 3 x,,z, € (X, N By) \f~! (f[By]) such
that f(x,) = f(x,). Then {z,} U {z,} is a discrete subset of N* and there-
fore {z,} N {z,} = 0. Moreover {z,}\{z,} U{z,\{z,} C X, NB, = A,
and {z, }\{z,,} U {z/ }\{z},} is nonempty since every infinite discrete set in
a compact space has a limit point.

But then, there are elements € {z,, }\{z,} and 2’ € {z] }\{z,} such that
f(xz) = f(«). This is a contradiction since f [, is one-to-one. Therefore

dng > m such that Vn >ny [~ (f[Bo]) QXnﬂB(/). O

By symmetry 3k > m such that Vn > ko f~(f[Bo]) 2 X, N B,.
Let k = max{ko,n9}. Then f(ByN Xj11) = f(By N Xp11). This implies
A, C Uyr and A; C Ugy1. This is a contradiction since AW,A; Cc X, C

Xpi1 \ Upy1. Hence X, =0 and K, =0. O

Lemma 7. If A C X is clopen with f~Y(f[A]) = A and U C X, is open
with A C U, then there is a clopen set A' C U in Xy such that ANX, =A
and f~H(f[A]) = A"
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Proof. Since A is clopen in X; and X is a subspace of X, there is a clopen
set B C X, such that BNX; = A and B C U. Then f[X,\ B] N f[A] = 0.

Let A" = B\f~'(f[Xo \ B]). We now show that A’ is the clopen subset
of Xy we are looking for. Clearly A’ is open in Xy, A’ C U, A’ N X; = A,
and f~!1(f[A']) = A’. Tt remains to show that A’ is closed in X,. This is
equivalent to showing that BN f~'(f[X, \ B]) is open.

Let x € BN f~'(f[Xo \ B]) and let 2’ € X, such that f(z) = f(a’). This
implies z, @' € Uy = Xy \ X;. Therefore, by the definition of Uy, there
are disjoint clopen sets Ay, A;J C Uy in Xj such that x € Ag, 2’ € AE), and
f[Ao] = f[Ay). Now shrink A and Aj to clopen sets By and By, respectively,
sothat * € By C B, 2/ € By C f~'(f[Xo \ B]), and f[By] = f[B,]. Then
r € ByC BN f(f[Xo\ B)).

Therefore, BN f~(f[X, \ B]) is open and A’ is closed in Xj. O

Lemma 8. If A C X,y is clopen with f~'(f[A]) = A and U C X, is open
with A C U, then there is a clopen set A" C U in X,, such that ANX,, .1 = A
and f1(f[A]) = A".

Proof. The proof is similar to the proof of Lemma 7 with X, ; and X,

playing the roles of X; and X, respectively. 0

Lemma 9. If A C X, is clopen with f~'(f[A]) = A and U C X, is open
with A C U, then there is a clopen set A C U in Xq such that ANX, =A
and f(fIA)) = A

Proof. This follows from Lemma 7 and Lemma 8 by induction. 0

Theorem 10 (CH). If f:N*— K is a two-to-one continuous function,

then K is zero-dimensional.
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Proof. Let y € V where V is an open subset of K. Then y € K,,\ K41 since
K, = 0 by Theorem 6. This implies y € f(U,) = K,, \ K,11. Therefore,
y € flA,] C f(U,) = K, \ K41 for some clopen set A, C X,, such that
f[Ay] is clopen and f [ 4, is one-to-one. This is by the definition of U,,. Then
f[A,] is homeomorphic to A, and so there is a clopen set B C Int f[A,]
containing y. Shrink B so that y € B C V N K,.

Let A = f7Y(B) and U = f~ (V). Then A C X, is clopen with
7Y f[A]) = Aand U C Xj is open with A C U. By Lemma 7,3 A’ CU
clopen in Xy such that A’ N X, = A and f~'(f[4]) = A. Then y €
fIA] C V and f[A] is clopen in K since f~!'(f[A']) = A’. Hence K is

zero-dimensional.

5. I'-SPACES

A space is called an F-space if every pair of disjoint cozero subsets are
completely separated. It is well known that N* is an F-space [Wa74] and in
this section we show that every two-to-one continuous image of N* is also

an F-space under CH.

Theorem 11 (CH). If f:N*— K is a two-to-one continuous function,

K is an F-space.

Proof. Let Cy and Cy be two disjoint cozero sets in K. Then f~(C}) and
F7HCy) are disjoint cozero sets in N*. Since N* is an F-space we have

f~HC1) N f~1(Cy) = 0. We must show that C; N Cy = 0. It is sufficient

to show that for any y € C) there are two elements z,2’ € f~1(C;) such

that f(x) = y = f(2'). This shows that y ¢ C,. Otherwise, if y €
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Gy Cf |:f_1(02)i| , there exists an " € f~1(Cy) such that f(z"”) =y and

' # x,2 since f~1(Cy) N f~HCy) = 0 and z, 2’ € f~1(C}). So three

different points z,2’, x” mapped to y. This is a contradiction to the fact
that the function f is exactly two-to-one.

Let y € C;. Then y € C; C f[f~1(C})] since C, = f[f~(Cy)] <
f[f~1(C})]. This implies there exists an 2 € f~1(C}) such that f(z) =y.
By Theorem 6 K, =0 andso y € K, \ K,;1 for some integer n. Let
m < n be maximal such that y € C; N K,,. Then y ¢ C; N K,,; and so
there is a cozero set C, C K, such that y € C;, and C, N CiNK,q =0
Thus C, NCy N Ky = 0.

Therefore, without loss of generality, we can assume that C; N K, 11 = 0
and C] is a cozero set in K, since we can take C; to be the cozero set
C,NCy. Then f~1(Cy) is a cozero set in X,, and f~1(Cy) N X1 = 0, that
is, f71(C}) C U, where U, is defined as in section 4 by
U,= U A and

A€l
In={AC X, : A=A, UA . A, A —clopen, f[A,] = f[A, ]}

Since f~1(C}) is a cozero set in X, and X, is compact zero-dimensional
F-space, it can be written as a countable union of disjoint clopen sets in such
a way that f~1(Cy) = Ejo [A, U A,] where each A4, and A, are disjoint

clopen sets in X,, and f[A,] = f[A,]. Therefore, f~'(C}) can be written as

a union of two disjoint sets

) = (U An> U (U A;>
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and by the definition of A, and A we get

FlUA| =f{UA
n=0 n=>0
Thus
en=U4a v Ya.
n=0 n=0

oo oo

/ . .

The sets |J A, and |J A, are cozero sets since a countable union of
n=0 n=0

clopen sets is a cozero set and they are disjoint by construction. Therefore,

since X,, is an F'-space we get

GAn N GA;L:(Z).
n=0 n=0

Now since

(N GAn U GA;
n=0 n=0

we assume, without loss of generality, that

T € GA" and z ¢ GA;Z
n=0 n=0

By continuity of f and the fact that

FlU4. =r1UA4,
n=0 i | n=0
we get i )
flUa | =r] U4
n=0 i L n=0
and

yetic [T @] =1 .

U

= f

U
n=0
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Therefore, there exists an @’ € |J A, such that f(2') = y.
n=0

oo
Ly xe |J A, and

G A, N G Al =10.
n=0 n=0

o0
Now 2’ # x because 2z’ € |J A,

Thus, there are two different points z,2" € f~1(Cy) such that

fl@) =y = f(a)

Hence K is an F-space. O

6. NONEMPTY (G5-SETS

The intersection of countably many open sets is called a Gs-set. Nonempty
Gs-sets on N* have nonempty interiors. In this section we prove that two-

to-one continuous images of N* have the same property.

Theorem 12 (CH). If f : N* — K is a two-to-one continuous function,

then nonempty Gs-sets in K have nonempty interior.

Proof. Suppose that {b, : n € w} is a descending sequence of clopen subsets
of K with by = K. It suffices to deal with clopen sets since we have shown
that K is zero-dimensional. Assume to the contrary that (b, is nowhere
dense. Let Z C N* be such that f [; is irreducible. Thig is possible by

Zorn’s Lemma.
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For each n let a, = f~'(b,) N Z. Then {a, : n € w} is a descending
sequence of clopen subsets of Z and aqg = Z. Therefore, by Theorem 3,
for each n pick clopen sets e, C a, \ a,41 and e;l C N*\ Z such that
flen] = fle,]. Then, in Z, U (an \ (enUansi) N Uen =0 since Z is an

F-space.

Since we assumed (b, is nowhere dense in K, f~'((\b,) N Z is nowhere

dense and so

Z:U(an\(enUanH) U Uen.

Thus U en is clopen in Z. Clearly U (an \ Gpy1) N U e,, = 0 since Z is closed
and e, C N*\Z.
Let us show that | J (a,\ans1)NU e, = 0. For each n, f~'(K\b,) is clopen

in N* since b, is clopen and f is continuous. By construction |J e, N
m>n
“YK\b,)=0 and | e, Nf (K —b,) is clopen in N* since it is a

mew
finite intersection of clopen sets. Because

an \ n1 C fTHE \ bpyr) and [ay \ (Gpgp1 Uey)] U =1
new

we have |J (an \ ant1) N Ue, = 0. Thus [ (a, \ ans1) N Ue,, = 0 since

n
N* is an F-space. Therefore (Je, N Je, = 0 and hence f is a two-to-one
n n

function on (Je, U e,
n n

Now since f{%} = f{%} we have K = f{ }Uf[Z\%}

and f {m] Nnf {Z\m} = (). Therefore f {U en] C K is clopen in K.
But then

) e U

n
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is clopen. This is a contradiction since |Je, U [Je, is not clopen by the
n n

fact that in N* nonempty Gs-sets have nonempty interior. OJ

If f:N*— K is a two-to-one continuous function, Levy [Le04] proved
that countable discrete subsets of K are C*-embedded and the weight of K is
¢. This completes everything needed to prove that a two-to-one continuous

image of N* is N* up to a homeomorphism.

Corollary 13 (CH). If f:N*— K s a two-to-one continuous function,

then K is homeomorphic to N*.

Proof. Follows from Theorem 1, 10, 11, and 12. ([l

Open Problems

Our results are all under the set theoretic assumption CH. Is it possible
to eliminate CH? In particular, if f : N* — K is a two-to-one continuous
function:

1) Is it true that f is not irreducible?
2) Is K homeomorphic to N* ?

(1)

(2)

(3) Is every countable subset of K C*-embedded ?

(4) Can K be separable or ccc ? (Levy question [vD93])
(5)

5) If f is n-to-one continuous with n > 2, is K homeomorphic to N*

under CH or ZFC?
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