MAXIMAL REALCOMPACT SPACES AND MEASURABLE CARDINALS

ALAN DOW

ABSTRACT. Comfort and Hager investigate the notion of a maximal real compact space and ask about the relationship to the first measurable cardinal $\mathfrak{m}.$ A space is said to be a $P(\mathfrak{m})$ space if the intersection of fewer than \mathfrak{m} open sets is again open. They ask if each real compact $P(\mathfrak{m})$ space is maximal real compact. We establish that this question is undecidable.

1. Introduction

A (Tychonoff) space X is real compact if there is an index set I so that X can be embedded into the product \mathbb{R}^I as a closed subset. It is immediate that if $A\subseteq X$ is closed in a real compact space X, then A is also real compact. The category theoretic properties of the class of real compact spaces (closed hereditary and closed under arbitrary products) ensure that for each real compact space X (with topology τ), there is a largest topology $\sigma \supseteq \tau$, such that (X,σ) (denoted μX) is still real compact (see [CH]). It is useful to also recall that a space is real compact if every countably complete Z-ultrafilter is fixed (see [GJ76, Ch.8]). For the reader's convenience we formulate the main idea in the following proposition.

Proposition 1.1. Let (X,τ) be realcompact and let S denote the collection of all topologies σ on X which contain τ and satisfy that (X,σ) is realcompact. The topology on X induced by the identity mapping to the diagonal $\Delta X \subseteq \Pi\{(X,\sigma) : \sigma \in S\}$ will be a maximal realcompact topology on X.

Definition 1.2. Let RC denote the class of realcompact spaces and let M(RC) denote the class of maximal realcompact spaces.

It is well known that \mathfrak{m} , the first measurable cardinal, is also the smallest cardinal κ with the property that the discrete space of cardinality κ is not realcompact. A discrete space X is not realcompact precisely when there is a countably complete (set) ultrafilter over X. A filter \mathcal{F} on a set X is said to be κ -complete if the intersection of fewer than κ members of \mathcal{F} is again in \mathcal{F} . Any countably complete (set) ultrafilter over X will be \mathfrak{m} -complete by the minimality of \mathfrak{m} .

Definition 1.3. If (X, τ) is a space and κ is a cardinal, let τ_{κ} denote the topology on X generated by the base $\{\bigcap \mathcal{W} : W \subseteq \tau , |\mathcal{W}| < \kappa\}$. Let $P(\kappa)$ denote the class of spaces (X, τ) such that $\tau_{\kappa} = \tau$.

¹⁹⁹¹ Mathematics Subject Classification. 54D60.

Key words and phrases. realcompact spaces, strongly compact cardinals.

Supported by NSF grant DMS-0103985. This paper benefitted from a very well informed referee.

2 ALAN DOW

The following very interesting result can be found in [CR85] and see [HM]. It shows that $M(RC) \subseteq RC \cap P(\mathfrak{m})$.

Proposition 1.4. If (X, τ) is realcompact, then so is $(X, \tau_{\mathfrak{m}})$.

Of course if $\kappa > \mathfrak{m}$, then (X, τ_{κ}) is realcompact if and only if $|X| < \mathfrak{m}$. In fact, just as in [GJ76, p.120], we have the following stronger result.

Lemma 1.5. If (X, τ) is realcompact and $\mathcal{U} \subseteq \mathcal{P}(X)$ is a countably complete (set) ultrafilter over X, then there is an $x \in X$ which is the \mathcal{U} -limit, i.e. $\{x\} = \bigcap \{\overline{U} : U \in \mathcal{U}\}$.

The converse is false of course; for example, the ordinal space ω_1 is not realcompact but every countably complete (set) ultrafilter on ω_1 is principal (because the cardinal ω_1 is not measurable).

Proof. We may assume that X is a closed subspace of \mathbb{R}^I for some index set I. For each $i \in I$, let π_i denote the projection map from \mathbb{R}^I onto \mathbb{R} . In addition, let \mathcal{U}_i denote the filter of subsets of \mathbb{R} generated by

$$\{\pi_i[U]: U \in \mathcal{U}\}$$
.

Since \mathcal{U} is countably complete, so is \mathcal{U}_i for each $i \in I$. In addition, since \mathcal{U} is an ultrafilter on X, it follows that \mathcal{U}_i is an ultrafilter over \mathbb{R} . By the countable completeness of \mathcal{U}_i , there must be an integer n such that the set $\mathbb{R} \setminus [-n, n]$ is not in \mathcal{U}_i . Therefore the compact set [-n, n] will be a member of \mathcal{U}_i . By the compactness, there is a real $r_i \in \bigcap \{\overline{\pi_i[U]} : U \in \mathcal{U}\}$. Furthermore, for each $\epsilon > 0$, there is a $U \in \mathcal{U}$ such that $\pi_i[U] \subseteq (r_i - \epsilon, r_i + \epsilon)$. It follows then that for each finite $I' \subseteq I$ and $\epsilon > 0$ there is a $U \in \mathcal{U}$, such that $\pi_i[U] \subseteq (r_i - \epsilon, r_i + \epsilon)$ for each $i \in I'$. By the definition of the product topology, we have that the point $\langle r_i : i \in I \rangle \in \mathbb{R}^I$ is in \overline{U} for each $U \in \mathcal{U}$. Since X is closed, this point is the x we seek.

The question from [CH, 2.5(b)] that we wish to address is "Is $M(RC) \supseteq P(\mathfrak{m}) \cap RC$ valid?" The answer seems, to us, quite surprising and relies on a very deep result of Magidor [Mag76] concerning *strongly compact* cardinals. They are also sometimes called simply *compact* although this is now much less common.

Definition 1.6. ([Jec78, §33]) A cardinal $\kappa > \omega$ is a *compact cardinal* if, for every set S, every κ -complete filter over S can be extended to a κ -complete ultrafilter over S.

The interested reader is referred to [Kan03] for a comprehensive treatment of large cardinals.

In the remainder of the paper we will establish the following answer on the Comfort and Hager question.

Theorem 1.7. $M(RC) = P(\mathfrak{m}) \cap RC$ if and only if \mathfrak{m} is a compact cardinal.

It certainly makes this theorem more interesting to know that Magidor has established [Mag76] that it is consistent (from a supercompact cardinal) that \mathfrak{m} is a strongly compact cardinal. It is considerably easier to establish from just a measurable cardinal that it is consistent that \mathfrak{m} is not a strongly compact cardinal (an even stronger result was established by Vopěnka and Hrbáček [VH66] or see [Jec78, Thm. 79]). By results of Mitchell [Mit74], there are models in which \mathfrak{m} is not strongly compact and there is a proper class of measurable cardinals.

The following results are standard facts from Gillman and Jerison [GJ76]. The extension of X, vX introduced in the next result is known as the Hewitt realcompactification (see [GJ76, p.118]).

Lemma 1.8. If (X, τ) is Tychonoff then there is a subset $vX \subseteq \beta X$ such that vX is the minimal realcompact subset of βX which contains X. A point $p \in \beta X$ is a member of vX iff for each continuous $f: \beta X \to \mathbb{R}$, there is an $x \in X$ such that f(x) = f(p) (i.e. $f(p) \in f[X]$).

Lemma 1.9. If X is discrete, then $p \in vX$ iff $\{A \subseteq X : p \in cl_{\beta X}(A)\}$ is a countably complete ultrafilter over X.

Lemma 1.10. If \mathfrak{m} is not a strongly compact cardinal (the most likely case) then there is an $X \in P(\mathfrak{m}) \cap RC$ which is not in M(RC).

Proof. Let S be a set and let \mathcal{F} be an \mathfrak{m} -complete (free) filter over S which does not extend to an \mathfrak{m} -complete ultrafilter over S. We work in βS where S is given the discrete topology. Let K denote the closed set $\bigcap \{cl_{\beta S}(F): F \in \mathcal{F}\}$. Our space X will simply be the quotient space of $vS \cup K$ obtained by collapsing K to a single point. It is easily seen to follow from Lemmas 1.8 and 1.9 that $vS \cup K$ is in RC (and follows from [GJ76, 8.16]). Furthermore, by [GJ76, 8.16], X being the union of the realcompact space vS with the compact space the collapsed point K, is also realcompact. Next we must check that $X \in P(\mathfrak{m})$. By Lemma 1.9, the space vS is itself in $P(\mathfrak{m})$. The fact that X is in $P(\mathfrak{m})$ as well follows from the fact that \mathfrak{F} is \mathfrak{m} -complete. Finally, the fact that X is not in M(RC) follows from the fact that we can enlarge the topology by making the singleton F isolated. To see that the resulting space is RC, we simply have to check that vS is disjoint from K in the original space βS . Of course this is because of the hypothesis that \mathcal{F} does not extend to an \mathfrak{m} -complete ultrafilter.

Remark: It is actually the case that in each model in which $\mathfrak m$ exists and is not strongly compact, there is a very natural example of a space X as in Lemma 1.10. Ketonen [Ket73] (or see [Kan03]) has shown that in each such model there is a regular cardinal $\kappa > \mathfrak m$ such that there is no uniform ultrafilter on κ which is $\mathfrak m$ -complete (a filter on κ is uniform if each element of the filter has cardinality κ). Then the space X is $v(\kappa) \cup \{\infty\}$ where κ has the discrete topology, $v(\kappa)$ is the Hewitt realcompactification of κ (consisting of all the fixed and countably complete ultrafilters on κ) and the single additional point ∞ . The neighborhoods of ∞ are the complements of the closures of bounded subsets of κ . This is a realcompact $P_{\mathfrak m}$ topology on X. There is also a stronger such topology, namely let ∞ now be an isolated point.

Lemma 1.11. If \mathfrak{m} is a strongly compact cardinal, then M(RC) is equal to $P(\mathfrak{m}) \cap RC$.

Proof. Let (X,τ) be a member of $P(\mathfrak{m}) \cap RC$, i.e. a real compact space for which $\tau_{\mathfrak{m}} = \tau$. We show that (X,τ) is maximal real compact. Assume that $\sigma \supseteq \tau$ is a topology and that $A \subseteq X$ is a closed set in (X,σ) which is not closed in (X,τ) . Let x be a point of X which is in the τ -closure of X but which is not in X. Let X denote the collection of members of X which contain X (the neighborhood base of X in X, X). Since X, X is in the closure of X, it follows that X, X is a real complete filter over X. Let X be an 4 ALAN DOW

m-complete ultrafilter over X which extends $\mathcal{U}_{x,A}$. By Lemma 1.5, there is a point $z \in X$ such that $\{z\} = \bigcap \{\overline{U} : U \in \mathcal{U}\}$ where the closure is taken in (X, σ) . Since (X, τ) is Hausdorff and $\sigma \supseteq \tau$, it of course follows that z must actually be x. This contradicts the assumption that x is not in the closure of A in (X, σ) .

For the author's interest we have assembled the following related facts about the cardinal m which show that it can be very far from being strongly compact. If κ is any measurable cardinal and \mathcal{U} is a κ -complete ultrafilter on κ , then using the concept of relative constructibility, there is a smallest model $L[\mathcal{U}]$ (all sets constructible from \mathcal{U}) in which κ is measurable. In $L[\mathcal{U}]$, κ is \mathfrak{m} because not only is κ the smallest measurable cardinal, Solovay showed it is the only measurable cardinal (see [Kun70, 5.11]). Silver [Sil71] showed that GCH holds if $V = L[\mathcal{U}]$. Now, suppose \mathcal{V} is any uniform countably complete ultrafilter on a cardinal λ , hence $\lambda > \mathfrak{m}$. But then λ must be \mathfrak{m} , since $\lambda > \mathfrak{m}$ would yield a contradiction by the method of [VH66] (or, see [Kun70, §10]). In particular, there is no uniform m-complete ultrafilter on m⁺ as in the remark following Lemma 1.10. Also, by [Kun70, 7.6], \mathcal{V} is equivalent via a bijection to some finite power \mathcal{U}^n of \mathcal{U} on the set \mathfrak{m}^n . Therefore, in $L[\mathcal{U}]$, there are only \mathfrak{m}^+ many \mathfrak{m} -complete ultrafilters on \mathfrak{m} , since there are only that many bijections. Consider the usual Tychonoff product $2^{(2^m)}$ with topology τ . Since \mathfrak{m} is strongly inaccessible, this space with the $\tau_{\mathfrak{m}}$ topology has a dense set of cardinality m. Then, analogous to the proof that there are $2^{\mathfrak{c}}$ ultrafilters on N, it is follows that there are $2^{2^{\mathfrak{m}}}$ \mathfrak{m} -complete filters on \mathfrak{m} that pairwise do not extend to a common ultrafilter. It immediately follows that there are \mathfrak{m} -complete filters on \mathfrak{m} itself which do not extend to \mathfrak{m} -complete ultrafilters.

Most of the above facts about $L[\mathcal{U}]$ are also in Kanamori's text [Kan03].

References

- [CH] W. Comfort and A. Hager. Maximal realcompact (and other) topologies. preprint 2003.
- [CR85] W. Wistar Comfort and Teklehaimanot Retta. Generalized perfect maps and a theorem of I. Juhász. In Rings of continuous functions (Cincinnati, Ohio, 1982), volume 95 of Lecture Notes in Pure and Appl. Math., pages 79–102. Dekker, New York, 1985.
- [GJ76] Leonard Gillman and Meyer Jerison. Rings of continuous functions. Springer-Verlag, New York, 1976. Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43.
- [HM] A. W. Hager and R. MacKenzie. A measurable cardinal associated with an epireflective subcategory of hausdorff spaces. in preparation 2003.
- [Jec78] Thomas Jech. Set theory. Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1978. Pure and Applied Mathematics.
- [Kan03] Akihiro Kanamori, The higher infinite, second ed., Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003, Large cardinals in set theory from their beginnings. MR MR1994835 (2004f:03092)
- [Ket73] Jussi Ketonen, Strong compactness and other cardinal sins, Ann. Math. Logic 5 (1972/73), 47–76. MR MR0469768 (57 #9549)
- [Kun70] Kenneth Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179–227. MR MR0277346 (43 #3080)
- [Mag76] Menachem Magidor. How large is the first strongly compact cardinal? or A study on identity crises. Ann. Math. Logic, 10(1):33–57, 1976.
- [Mit74] William J. Mitchell, Sets constructible from sequences of ultrafilters, J. Symbolic Logic 39 (1974), 57–66. MR MR0344123 (49 #8863)
- [Sil71] Jack Silver, The consistency of the GCH with the existence of a measurable cardinal, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence, R.I., 1971, pp. 391–395. MR MR0278937 (43 #4663)

[VH66] P. Vopěnka and K. Hrbáček, On strongly measurable cardinals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. **14** (1966), 587–591. MR MR0211872 (35 #2747)