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Abstract. Eric van Douwen [5] produced a maximal crowded extremally disconnected
regular space and showed that its Čech-Stone compactification is an at most two-to-one
image of βN. We construct for any n ≥ 3 an example of a compact crowded space Xn

that is an image of βN under a map all of whose fibers have either size n or n − 1. We
also show that under CH this is best possible.

1. Introduction

All spaces are Tychonoff. A function f : X → Y is (≤)n-to-one if for each y ∈ Y , there
are (≤)n points of X that map to y. Levy [15] asked whether there is a separable 2-to-one
image of N∗, the Stone-Čech remainder of the discrete space of natural numbers N. It was
shown recently by Dow and Techanie [11] that a 2-to-one continuous image of N∗ must be
N∗ under CH. And Dow [7] proved that under PFA, all 2-to-one images of N∗ are trivial.

Levy’s question was partially answered by a striking result of van Douwen [5]: there
exists a crowded ≤2-to-one continuous image of βN. The restriction of the van Douwen
map to N∗ is a ≤2-to-one map from N∗ onto a separable crowded space. This result is
highly counter-intuitive since N∗ is big and a ≤2-to-one map should not make a big space
small. The restriction of the van Douwen map to N is a 1-to-one map onto a crowded
space X whose topology is maximal among all crowded topologies on X. Such a space is a
countable van Douwen space. That this is striking, is obvious once one realizes that X is
regular. Additional results on van Douwen spaces were obtained recently by Dow [6]. He
proved among other things that it is consistent that there exist two van Douwen spaces
whose Čech-Stone compactifications are not homeomorphic (in fact one of them, in ZFC,
is the absolute of the Cantor cube 2c and the other one, consistently, is ω-bounded)

In this paper we will present many van Douwen spaces that are dense subsets of the
absolute E(2c) of the Cantor cube 2c. In fact, we will characterize the countable dense
subspaces of 2c that can be ‘lifted’ to a van Douwen space. In the following result, let p2c

denote the ‘unique’ irreducible map E(2c) ³ 2c.

Theorem 1. Let X be a countable dense subset of 2c. Then the following statements are
equivalent:
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(1) There is a van Douwen space X ′ in E(2c) such that p2c(X ′) = X,
(2) X is open-hereditarily irresolvable.

We will use this result to present for every n ≥ 3, an example of a ≤n-to-one map from
βN onto a crowded space. If fact, the fibers of the map have either size n or n−1. We also
show that under CH, this is best possible by proving that if f : βN → X is a ≤n-to-one
continuous surjection onto a crowded space X, then there is a point x ∈ X such that
|f−1(x)| ≤ n− 1.

2. Notation

All maps are continuous. Let f : X → Y be a surjective map between compacta. As
usual, we call f irreducible if for every proper closed subset A of X we have that f(A) is a
proper subset of Y . This is easily seen to be equivalent to the following statement: if U is
any nonempty open subset of X, then there is an open subset V of Y such that f−1(V ) is
dense in U . If f : X → Y is a irreducible, then D ⊆ X is nowhere dense in X if and only
if f(D) is nowhere dense in Y . Let f : X → Y be a surjective map between compacta. An
easy Zorn’s Lemma argument shows that a surjective map between compacta can always
be restricted to a closed subset of its domain on which it is irreducible.

If X is a compact space, then there is an extremally disconnected compact space E(X)
which admits an irreducible map pX : E(X) → X. The space E(X) is called the absolute
of X, and its is known to be the topologically unique extremally disconnected compactum
admitting an irreducible map on X. For details, see e.g., Porter and Woods [17].

A nonempty space is crowded if it has no isolated points. And a space is nodec if all
of its nowhere dense subsets are closed (and hence discrete). A space X is irresolvable
if it is crowded and no dense subset has dense complement. A space is open-hereditarily
irresolvable if it is crowded and every nonempty open subset is irresolvable. Finally, a space
is hereditarily irresolvable if it is crowded and every crowded subspace of it is irresolvable.

A crowded space X is called van Douwen if its topology is maximal among all crowded
topologies (no separation axioms required on these topologies) on X. (The tricky thing
about van Douwen spaces is of course that their topologies are regular.) The following
result characterizes the van Douwen spaces. It nicely splits the maximality of the topology
in three ‘independent’ pieces. (We remind the reader that all spaces are Tychonoff.)

Theorem 2 (van Douwen [5, Theorem 2.2]). For a crowded space X the following are
equivalent:

(1) X is van Douwen,
(2) X is extremally disconnected, open-hereditarily irresolvable, and nodec.

By using an interesting and nontrivial Zorn’s Lemma argument, van Douwen [5, Example
3.3] proved that there are countable van Douwen spaces. In §3 of the present paper, we will
prove by a different technique that there are ‘many’ van Douwen spaces which are dense
in the absolute of the Cantor cube 2c. It is interesting to note that no dense subspace of
the Cantor cube itself can be extremally disconnected.
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If Y is a space with subspace X, then

N(X) =
⋃
{D : D is a countable discrete subset of X}.

Observe that X ⊆ N(X). We call a point of N(X) a near-point of X. Put F (X) =
Y \N(X). Then F (X) consists of all the far-points of X.

If Y is a space with subspace X, then a point y ∈ Y \ X is said to be remote from X
provided that x 6∈ E for any nowhere dense subset E of X. Observe that if X is countable
and nodec, then remote and far are equivalent notions. Also observe that if x is remote
from X, then x is remote from any subspace of X.

The following triviality is the key to our construction.

Lemma 3. Let X be a space. Suppose that every x ∈ X is remote from X \ {x}. Then X
is nodec.

In the context of Čech-Stone compactifications, near-points and remote points are very
well studied in the literature. Van Douwen [4] and, independently, Chae and Smith [2]
proved that if X is a nonpseudocompact space with countable π-weight, then X∗ = βX \X
contains a point that is remote from X. This result was generalized to products of such
spaces by Dow [8]. There are also many spaces without remote points, but it is not the
place here to go into that.

3. Proof of Theorem 1

We will now present the proof of Theorem 1. It will be convenient to break it up into
several pieces. We first prove the easiest part of the theorem, i.e., the necessity of X being
open-hereditarily irresolvable if X ′ is van Douwen.

Lemma 4. Let X ′ ⊆ E(2c) be such that X = p2c(X ′) is dense in 2c. Then X ′ is open-
hereditarily irresolvable if and only if X is.

Proof. Since p2c is irreducible, X ′ is dense in E(2c), and hence crowded. Assume now first
that X ′ is open-hereditarily irresolvable. Let U be a nonempty open subset of X. If A is
a dense subset of U , then p−1

2c (A)∩X ′ is a dense subset of p−1
2c (U)∩X ′ by irreducibility of

p2c , hence (p−1
2c (U)∩X ′) \ p−1

2c (A) is not dense in X ′, which means that U \A is not dense
in U , again by irreducibility. This proof obviously works both ways. ¤

Corollary 5. Let X ′ ⊆ E(2c) be countable and nodec such that X = p2c(X ′) is dense in
2c. If X is open-hereditarily irresolvable then X ′ is van Douwen.

Proof. Clearly, X ′ is dense, since X is and p2c is irreducible. Therefore X ′ is extremally
disconnected since it is a dense subspace of an extremally disconnected space. So we are
done by Theorem 2 and Lemma 4. ¤

We now prove the other part of our theorem. In fact, we prove a slightly more general
result than strictly needed. However, this will be precisely what we need in §4. To begin
with, we first prove a result that in our opinion is of independent interest.
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Lemma 6. Let S be a closed nowhere dense Gδ-set in 2c. Then for every x ∈ S there is
an element x′ ∈ p−1

2c (x) such that x′ is remote from p−1
2c (2c \ S).

Proof. We will first prove the weaker statement that there are y ∈ S and y′ ∈ p−1
2c (y)

such that y′ is remote from p−1
2c (X), where X = 2c \ S. Indeed, there are a countable set

A ⊆ c and a closed subsets T ⊆ 2A such that S = π−1
A (T ). Here πA : 2c → 2A denotes the

projection. Observe that T is nowhere dense in 2A, and that

(2A \ T )× 2c\A = X.

Hence, by Dow [8, Theorem 2.5], there is a point z ∈ βX that is remote from X. Let
f : βX → 2c be the natural map. Observe that f is irreducible, hence E(βX) = E(2c). In
fact, since the composition of two irreducible maps is irreducible, it is clear that

p2c = f ◦ pβX .

Pick an arbitrary point y′ ∈ p−1
βX(z) (in fact, since z is remote from X, it is easily seen that

p−1
βX(z) is a single point). Observe that y′ is remote from p−1

βX(X) = p−1
2c (X) since pβX is

irreducible. So we conclude that if y = f(z), then y ∈ S, y′ ∈ p−1
2c (y) and is remote from

p−1
2c (X).
To end the proof, we first claim that we may assume without loss of generality that

T ≈ 2ω. This can be achieved quite easily by, if necessary, enlarging A with countably
infinitely many elements and by using the trivial fact that the product of any compact
zero-dimensional metrizable space with 2ω is homeomorphic to 2ω.

Next, we claim that for every s ∈ S there is a homeomorphism ξ : 2c → 2c such that
ξ(S) = S and ξ(s) = y. Indeed, let sA = πA(s) and yA = πA(y), respectively. Since T ≈ 2ω,
there is a homeomorphism η : T → T such that η(sA) = yA. Since T is nowhere dense in
2A, by a well-known homeomorphism extension theorem by Knaster and Reichbach [13],
we may extend η to a homeomorphism η̄ : 2A → 2A. Now let B = c \ A, and πB : 2c → 2B

be the projection. If sB = πB(s) and yB = πB(y), then there clearly is a homeomorphism
θ : 2B → 2B such that θ(sB) = yB. Then ξ = η̄ × θ is as required.

Now pick an arbitrary s ∈ S, and let the homeomorphism ξ be as above. Simply observe
that there is a homeomorphism E(ξ) of E(2c) such that the diagram

E(2c)
E(ξ)−−−→ E(2c)

p2c

y
yp2c

2c −−−→
ξ

2c

commutes. Then s′ = E(ξ)−1(x) ∈ p−1
2c (s) and is clearly remote from p−1

2c (X) since E(ξ) is
a homeomorphism. ¤

This leads us to the result we are after.

Corollary 7. Let X be a countable dense subset of 2c. Then there is a dense nodec subspace
X ′ ⊆ E(2c) such that p2c(X ′) = X and p2c¹X ′ is 1-to-one.
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Proof. Let {Sx : x ∈ X} be a pairwise disjoint collection of closed Gδ-subsets of 2c such
that x ∈ Sx for every x ∈ X. Observe that every Sx is evidently nowhere dense. Now for
every x ∈ X, pick, by Lemma 6, a point x′ ∈ p−1

2c (x) such that x′ is remote from p−1
2c (2c\Sx).

We claim that X ′ = {x′ : x ∈ X} is as required. To this end, pick an arbitrary x ∈ X.
Then K = {y′ : y ∈ X \ {x}} is a subset of p−1

2c (2c \Sx), so x′ is remote from K. Hence X ′

is nodec by Lemma 3. That X ′ is dense is obvious from the fact that p2c is irreducible. ¤

To see that the proof of Theorem 1 is indeed complete, let X be a countable open-
hereditarily irresolvable subspace of 2c, and let X ′ be as in Corollary 7 for X. Then X ′

is nodec and open-hereditarily irresolvable by Lemma 4. So X ′ is a van Douwen space by
Corollary 5. On the other hand, if X ′ is van Douwen, then it is open hereditarily-resolvable
by Theorem 2, hence X is, again by Lemma 4.

Theorem 1 would be useless if there were no open-hereditarily irresolvable dense subsets
of 2c. Fortunately, there are many such subspaces. Indeed, Zorn’s Lemma implies that
an independent family of infinite subsets of N can be extended to a maximal independent
family. It is well-known that an independent family of cardinality c corresponds directly to
a countable dense subset of 2c, which, if the family is maximal, will be irresolvable. Also,
Alas, Sanchis, Tkac̆enko, Tkachuk, and Wilson [1] present in Theorem 2.3 of their paper
an example of a countable dense irresolvable subspace X of 2c. By van Douwen [5, Fact
3.1], X contains a nonempty open hereditarily irresolvable subspace, say U . Let U ′ be an
open subspace of 2c such that U ′ ∩X = U , and let C be a nonempty clopen subset of 2c

contained in U ′. Since C ≈ 2c, we are done since U ∩ C is a countable dense hereditarily
irresolvable subspace of C.

The proof of Corollary 7 would be simpler, if we could pick for every x ∈ 2c a point
x′ ∈ p−1

2c (x) that is remote from p−1
2c (2c \ {x}). But this is unfortunately not possible, as

the next argument shows (alternatively, use the main result in Terada [19]). Fix x ∈ 2c,
and let σ be a maximal cellular family of clopen subsets of 2c \ {x}. Put S = 2c \⋃

σ. We
claim that

p−1
2c (x) ⊆ p−1

2c (S \ {x}),

which is as required since p−1
2c (S \ {x}) is a nowhere dense subset of p−1

2c (2c \ {x}). To
prove this, assume that U is a clopen subset of E(2c) that intersects p−1

2c (x) but misses

p−1
2c (S \ {x}). Then p2c(U) is a regular closed subset of 2c that contains x but misses

S \ {x}. Since σ is countable, S is a Gδ-subset of 2c. And so is p2c(U) being a regular
closed set in 2c. Since S ∩ p2c(U) = {x}, this violates x having uncountable character.

Not every countable space can be ‘lifted’ to a nodec space in the absolute of its own
Čech-Stone compactification, as the following trivial example shows. Let X be a countable
van Douwen space, let Y = ω×X, and fix a point x ∈ X. In the space βY , pick any point
q ∈ Y ∗ that is a limit point of ω × {x}. Then Y ′ = Y ∪ {q} cannot be ‘lifted’ to a nodec
space in E(βY ′). This becomes clear once one realizes that Y ′ is extremally disconnected,
hence the absolute of βY ′ = βY is βY .
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4. The examples

Van Douwen [5] constructed his example by a Zorn’s Lemma argument. We were unable
to get our examples in a similar way. Instead, we use Theorem 1.

Our aim is to construct for every n a space having a family of n dense van Douwen
subspacesA that are ‘far’ from one another, i.e, N(A)∩N(A′) = ∅ for all distinct A.A′ ∈ A.

Let X be any countable dense open-hereditarily irresolvable subspace of 2c, see §3. Let
x0 = 0, the point in 2c having all coordinates equal to 0. Assume that x0, . . . , xi have been
defined. Let xi+1 be any point in 2c \⋃

j≤i(xi + X). Then

X = {xi + X : i < ω}
is a pairwise disjoint collection dense homeomorphic copies of X in 2c (in fact, one can
continue in this way to get 2c dense homeomorphic copies of X in 2c). Now fix n, and for
every i ≤ n− 1, let Xi = xi +X. By Corollary 7, there is a countable nodec subspace Y of
E(2c) such that π2c(Y ) =

⋃
i<n Xi. Pick Yi in Y such that p2c(Yi) = Xi. Then Yi is nodec,

being a subspace of a nodec space. Hence Yi is van Douwen by Corollary 5. To see that
N(Yi) ∩ N(Yj) = ∅ if i 6= j, simply observe that disjoint countable discrete subsets of Y
will have disjoint closures in βY = E(2c) since Y is normal and nodec.

Now let fi : N → Yi be a bijection, and let φi : βN → βY be its Stone extension. Since
βYi = βY , and Yi is van Douwen, it follows by van Douwen [5, Theorem 4.9] that

(I) if x ∈ N(Yi), then |φ−1
i (x)| = 2,

(II) if x ∈ F (Yi), then |φ−1
i (x)| = 1.

The topological sum of n + 1 copies of βN is βN, and consequently maps onto βY by a
map gn having the following properties:

(III) if x ∈ ⋃
i≤n N(Yi), then |g−1

n (x)| = n + 2,

(IV) if x ∈ F (Y ), then |g−1
n (x)| = n + 1.

This completes the construction of the examples.
Note that the construction ensures that F (Y ) is not empty. Therefore, we have actually

proven something stronger.

Theorem 8. For each n ≥ 2, there is a map from βN onto E(2c) such that every fiber has
size either n or n− 1 and each are realized.

5. The nonexistence of n-to-one images

We now prove that, under CH, the examples constructed in the previous section are
optimal.

Theorem 9 (CH). Let f : βN→ K be (≤)n-to-one, where K is crowded. Then there is a
point x ∈ K such that |f−1(x)| ≤ n− 1.

Proof. Put X = f(N). It is clear that f(N∗) = K, hence there is a closed subset E of N∗
on which f is irreducible. Put φ = f¹E, and Q = φ−1(X). Since φ is irreducible, Q is
dense in E. Also observe that E is crowded, hence so is Q.
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Let S be a nonempty closed Gδ-subset of E which is contained in E \ Q. In addition,
let A be a clopen partition of βN into nonempty sets such that |A| = n. Put

N(A) = f−1
( ⋂

A∈A
f(A)

)
.

Claim 1. S 6⊆ N(A).

Pick A ∈ A such that S ∩ A 6= ∅. Replacing S by S ∩ A, we may assume that S ⊆ A.
Since φ is irreducible, there is an open subset V of K such that φ−1(V ) is a dense open
subset of A ∩ E. Observe that A = A ∩ N, hence

(1) V ⊆ f(A) = f(A ∩ N) ⊆ f(A ∩ N).

Let {Ui : i < ω} be a decreasing sequence of clopen subsets of A∩E such that
⋂

i<ω Ui = S.
For every i, the set Ui∩φ−1(V ) is nonempty, hence there is a nonempty open subset U ′

i of V
such that φ−1(U ′

i) ⊆ Ui. By (1), we may pick an element ai ∈ A such that f(ai) ∈ U ′
i . Then

∅ 6= φ−1(f(ai)) ⊆ Ui, hence we may pick a point di ∈ φ−1(f(ai)). Put D = {di : i < ω}.
We make a few observations.

(I) f(di) = f(ai) for every i. This is clear.
(II) D \ D ⊆ S. This is clear since the sequence of Ui’s is decreasing. Hence D is

a closed and discrete subset of Q. Since Q is crowded, this implies that D is a
nowhere dense subset of E.

(III) φ(D) is nowhere dense in K. This is clear by (II) and the fact that φ is irreducible.

Put V = {ai : i < ω}. Then f(V ) = φ(D). We will prove that V ∩E = ∅. Striving for a
contradiction, assume that V ∩E 6= ∅. Since V is clopen in βN, and φ is irreducible, there
is an open subset W of K such that φ−1(W ) is a dense open subset of V ∩ E. But this is
impossible since

∅ 6= W ⊆ f(V ) ⊆ f(V ) = φ(D) ⊆ φ(D),

and φ(D) is nowhere dense in K by (III).
Now to finish the proof of the claim, pick an arbitrary point p ∈ D \ D. Then φ(p) ∈

φ(D) = f(V ). Since V ∩E = ∅, it consequently follows that |f−1(f(p))∩A| ≥ 2. But this
means that p 6∈ N , as required.

Since the weight of βN is c, we may by CH list all nonempty clopen subsets of βN as
{Bα : α < ω1}. We assume without loss of generality that B0 = βN. In addition, we may
list all the clopen partitions of βN into n nonempty sets as {Aα : α < ω1}. Let S0 be any
closed Gδ-subset of E that misses Q. By transfinite induction on α < ω1, we will construct
a nonempty closed Gδ-subset Sα of E having the following properties:

(1) if β < α then Sα ⊆ Sβ,
(2) either Sα ⊆ Bα or Sα ∩Bα = ∅,
(3) Sα ∩N(Aα) = ∅.

The construction is a triviality. Assume that Sβ has been defined for all β < α. Put
S =

⋂
β<α Sβ. Then S is a nonempty closed Gδ-subset of E. By Claim 1, there is an

element p ∈ S \ N(Aα). Since N(Aα) is closed, there is a clopen neighborhood of p that
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misses N(Aα) and has the property that it either misses Bα or is contained in it. Put
Sα = C ∩ S. It is clear that Sα satisfies our inductive hypotheses.

By (1) and (2), there is a unique point x ∈ ⋂
α<ω1

Sα. We claim that |f−1(f(x))| ≤ n−1.
If not, then there exists α < ω1, such that x ∈ N(Aα). But this contradicts (3) since
x ∈ Sα. ¤

6. Remarks

Reversing the order. The order in which the van Douwen’s space is created by Zorn’s
Lemma is quite interesting. First a maximal regular space is constructed, and then some
points are removed to get a maximal space (that is obviously regular being a subspace of
a regular space). By doing things in opposite order, one can get into serious troubles, as
the next example shows.

Let Seq = N<ω be the set of finite sequences of elements of N, and let p ∈ N∗. Then
a set U ⊆ Seq is open if for every t ∈ U the set {n ∈ N : tan ∈ U} belongs to p. Let τ
denote the topology on Seq. Then τ is regular, extremally disconnected, and crowded, see
for example [9] for more information. There are a few statements about τ that are very
useful. First, if t ∈ N<m, then the neighborhood trace of t on Nm is an ultrafilter. Second,
if Y ⊆ Seq and t ∈ Seq, then t is in the τ -closure of A if and only if there is an n such that
t is in the τ -closure of Nn ∩ Y .

Now we strengthen τ by also declaring, for each A 6∈ p, the set
⋃

n∈ANn to be closed. Let
ρ denote the resulting topology. Then ρ is crowded, and evidently satisfies the following:

Lemma 10. If Y ⊆ Seq and t ∈ Seq, then t is in ρ-closure Y if and only if {n : t is in
τ -closure of Nn ∩ Y } ∈ p.

Therefore, no t ∈ Seq is in the ρ-closure of two disjoint subsets of Seq, i.e., ρ is maximal.
But ρ cannot be used to construct a maximal topology that is regular.

Lemma 11. No crowded subset of Seq is regular.

Proof. Let A ⊆ Seq be crowded. Then A is open by maximality. Pick an arbitrary element
t ∈ A. We may assume without loss of generality that t = ∅. Then A′ = A \ N1 is a
neighborhood of ∅. Let B be a neighborhood of ∅ that is contained in A′. We may assume
that B has the form

C \
⋃
n∈D

Nn,

where C is a τ -open neighborhood of ∅ and D 6∈ p. There is an element E ∈ p such that

{∅an : n ∈ E} ⊆ C.

Now take any n ∈ E. Then, clearly, n = ∅an belongs to the τ -closure of C ∩Nm, for every
m > 1. Hence n belongs to the τ -closure of C ∩Nm for every m ∈ N \ (D ∪ {1}) ∈ p. But
this implies by lemma 10 that n belongs to the ρ-closure of B. ¤
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Idempotents in βN. Van Douwen spaces have surfaced at an unexpected place. It was
shown by Protasov, that there is an ultrafilter p ∈ N∗ such that, among other things, p is
an idempotent such that the set {p + n : n ∈ N} is a van Douwen space. This is easily
deduced (and known) from the comments immediately following Theorem 3.9 of Hindman
and Strauss [12]. So there is an example of a homogeneous van Douwen space in ZFC.

Homogeneous van Douwen spaces. We do not know whether we can pick X in Corol-
lary 7 in such a way that X ′ can be homogeneous. The first naive and obvious thing one
thinks of is the following. Let X be a subgroup of 2c, pick a point in E(2c) remote in the
sense of Lemma 6, and ‘translate it around in E(2c)’ to ensure homogeneity of X ′. But
this does not work since no infinite Abelian totally bounded topological group is irresolv-
able by a result of Comfort, Gladdines and van Mill [3]. This leads us to the following
question: can there be a dense homogeneous van Douwen space in E(2c)? Observe that
there are consistent examples of van Douwen groups by Malyhin [16]. And that there are
homogeneous van Douwen spaces in ZFC by the result of Protasov just quoted.

The character of van Douwen spaces. The van Douwen spaces constructed in this
paper are dense subspaces of E(2c), and hence have character c. It would be interesting to
have a consistent example of a van Douwen space with character less than c.

The π-character of van Douwen spaces. The van Douwen spaces constructed in this
paper are dense subspaces of E(2c), and hence have π-character c. There are consistent
examples of van Douwen spaces that have π-character less than c. This follows from the
following observations. As usual, i denotes the least cardinal of a maximal independent
family of infinite subsets of ω. By the same arguments as in §3, 2i contains a countable
dense hereditarily irresolvable space, hence E(2i) contains a countable dense van Douwen
space. Now all one needs to do is to apply the result in Kunen [14, VIII, Exercise A13] (see
also Shelah [18] for a stronger result) that there is a model where i < c. So consistently,
2c and 2i are non-homeomorphic Čech-Stone compactifications of van Douwen spaces. For
many more such examples, see Dow [6].

Uncountable van Douwen spaces. For which cardinals κ can there exist a ccc van
Douwen space of density κ? The techniques in this paper can be modified to produce
examples up to density c and other uncountable van Douwen spaces with greater density
[10].

Other point pre-images. It would be interesting to further explore finite to one maps
from βN. Specifically, it would be interesting to determine which finite sets F ⊆ N have
the property that there is a map f from βN onto a crowded space K, such that F =
{|f−1(y)| : y ∈ K}.
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