COMPACT SPACES AND THE PSEUDORADIAL PROPERTY, II

ALAN DOW

ABSTRACT. There is a model of set theory in which all compact spaces of weight at most ω_2 are pseudoradial.

1. INTRODUCTION

We show that 2^{ω_2} can be pseudoradial. It is easily seen that if 2^{ω_2} is pseudoradial, then all compact spaces of weight at most ω_2 are also pseudoradial.

A well-ordered sequence $\{a_{\alpha} : \alpha \in \kappa\}$ converges to a point x if every neighborhood of x contains a final segment of the sequence, if $\{a_{\alpha} : \alpha \in \kappa\} \subset A$, we could say that x is a radial limit of A. The properties *radial* and *pseudoradial* (see [1, 3]) are natural generalizations (and stand in the same relation to each other) of the well-known properties *Frèchet-Urysohn* and *sequential* in which converging sequence is replaced by converging well-ordered sequence. A space X is radial if every point in the closure of a set is a radial limit of the set, while a space is pseudoradial if every radially closed set is closed.

Sapirovskii suggests in [5] that $[0,1]^{\omega_2}$ (equivalently 2^{ω_2}) should fail to be \aleph_0 -pseudoradial (a property weaker than pseudoradial). It is shown in [2] that Kunen's set-theoretic principle P_1 on ω_1 implies that 2^{ω_2} is indeed \aleph_0 -pseudoradial.

The situation for 2^{ω_1} is simpler and better understood. The analogue of P_1 for ω is the assertion that the cardinal \mathfrak{p} is equal to the continuum and greater than ω_1 . It is well-known that countable subsets of 2^{ω_1} are radial if $\mathfrak{p} > \omega_1$ and the space itself is pseudoradial if $\mathfrak{s} > \omega_1$. If 2^{κ} is pseudoradial, then $\mathfrak{s} > \kappa$ but this only serves to guarantee that countable sets that fail to be closed will not be radially closed. We study analogues for ω_1 sized subsets which we call sP_1 and wP_1 (see Definition 2.1) since they are topological versions of Kunen's P_1 principle. Although it is shown in [2] that wP_1 is equivalent to Sapirovskii's \aleph_0 -pseudoradial for 2^{ω_2} , wP_1 is more set-theoretic and easier to deal with in isolation. The technique of this paper is based on the fact, proven in [2], that $wP_1 + \mathfrak{p} > \omega_2$ implies that 2^{ω_2} is pseudoradial.

Specifically, we start with a model in which Shelah's strengthening, referred to as GMA in [8], of Kunen's P_1 principle holds and we force with the usual finite support iteration of length ω_3 in which the factors are the usual σ -centered tower filling posets (Booth). We can choose Shelah's model [6] so that the Continuum Hypothesis holds and $2^{\aleph_1} = \aleph_3$. It is well known that $\mathfrak{p} = \omega_3 = \mathfrak{c}$ will hold in this extension. We will show that wP_1 will also hold. It was shown by Juhasz and Szentmiklossy [4] that Martin's Axiom plus $\mathfrak{c} > \omega_2$ does not imply that $[0, 1]^{\omega_2}$ is pseudoradial hence we do need GMA.

¹⁹⁹¹ Mathematics Subject Classification. 54A20, 03E05, 54A35.

Key words and phrases. pseudoradial, generalized Martin's Axiom.

2. Elementary matrices

This section will establish properties that will be needed to apply Shelah's principle to a poset we define later. We let P denote the finite support iteration of length ω_3 in which the factors are the usual filter filling posets (Booth) with a suitable enumeration of the names of filters of cardinality at most ω_2 . Conditions $p \in P$ have the form $\{\langle \gamma, \langle t_p^{\gamma}, A_p^{\gamma} \rangle \rangle : \gamma \in \operatorname{dom}(p)\}$ where $\operatorname{dom}(p)$ is a finite subset of ω_3 , each t_p^{γ} is a member of $\omega^{<\omega}$ and A_p^{γ} is a P_{γ} -name of a member of \mathcal{A}_{γ} , which is itself a P_{γ} -name forced by 1 to be a filter of infinite subsets of ω . For each $p \in P$, we define p^* to be the condition $\{\langle \gamma, \langle t_p^{\gamma}, \check{\omega} \rangle \rangle : \gamma \in \operatorname{dom}(p)\}$. It will simplify notation if we also identify p^* with the obvious function into $\omega^{<\omega}$ and suppress the side conditions. We will use the notation $q <_w p$ to denote $q \leq p$ and $q^* = p^*$. Therefore, q^* is the largest condition such that $q <_w q^*$. Note that if $p^* \cup r^*$ is a function (agree on their common domain), then p and r are compatible, indeed $p \wedge r$ exists. For a condition $p \in P$ and subset A of P, we will use p^{\perp}, A^{\perp} to denote the set of all conditions which are incompatible with p, respectively, each member of A. Also, $p \perp q$ denotes the relation that p and q are incompatible.

Definition 2.1. wP_1 is the statement that whenever $\mathcal{X} \subset \wp(\omega_1)$ and $|\mathcal{X}| < 2^{\omega_1}$, then there are a uniform filter base \mathcal{U} on ω_1 so that $|\mathcal{U} \cap \{X, \omega_1 \setminus X\}| = 1$ for each $X \in \mathcal{X}$, and an uncountable set $C \subset \omega_1$ and a function $\varphi : \mathcal{U} \to \omega_1$ such that

 $\{U \cap (\beta, \gamma) : \beta \in \gamma, U \in \mathcal{U}, \text{ and } \varphi(U) < \gamma\}$

has the finite intersection property for each $\gamma \in C$.

The statement in a sense reflects the finite intersection property of the filter \mathcal{U} to countable pieces of ω_1 . Therefore in order to show that wP_1 holds in the forcing extension by P, we suppose we have a family, \mathcal{X} , of ω_2 many P-names of uncountable subsets of ω_1 . We fix a ϵ -chain $\{M_{\alpha} : 0 < \alpha \in \omega_2\}$ of ω -closed elementary submodels of cardinality ω_1 (recall CH holds) containing this family and so that the chain is continuous at ω_1 limits. Let \mathcal{M} denote the union of this entire chain. We use this chain to factor the forcing. For convenience, we let M_0 be the empty set.

We enumerate the family of all *P*-names of subsets of ω_1 which are members of \mathcal{M} (including \mathcal{X} of course), $\{X_{\gamma} : \gamma \in \nu\}$, as well as $P \cap \mathcal{M} = \{p_{\gamma} : \gamma \in \nu\}$ in such a way that for each α in ω_2 all the $M_{\alpha} \cap P$ -names are listed before any names that are not $M_{\alpha} \cap P$ -names and so that for each such pair p, X, there is a γ so that $p_{\gamma} = p$ and $X_{\gamma} = X$. For each $\gamma \in \nu$, we will define a *P*-name F_{γ} so that there is a $q < p_{\gamma}$ such that $q \Vdash F_{\gamma} \in \{X_{\gamma}, \omega_1 \setminus X_{\gamma}\}$. For each $\mu \in \omega_2$, there is a minimal γ_{μ} such that the collection $\{X_{\zeta} : \zeta < \gamma_{\mu}\}$ enumerates all B_{μ} -names which are in \mathcal{M} . We define \mathcal{F}_{μ} to be the (name of the) collection $\{F_{\zeta} : \zeta < \gamma_{\mu}\}$. To start the induction, $\{X_{\zeta} : \zeta < \gamma_0\}$ is simply an enumeration of the canonical $B_0 = \{\emptyset\}$ names for $\mathcal{M} \cap \wp(\omega_1)$. We select any uniform ultrafilter \mathcal{U} on ω_1 which is in \mathcal{M} and, for $\zeta < \gamma_0$, define \mathcal{F}_{ζ} to be X_{ζ} if (suppressing the trivial forcing) it is a member of \mathcal{U} and to be $\omega_1 \setminus X_{\zeta}$ otherwise.

Since P is ccc, each $B_{\alpha} = M_{\alpha} \cap P$ is completely embedded in P. Given a filter G on P, we use G^{α} to denote $G \cap B_{\alpha}$, and, as is usual, for $\alpha \in \omega_3$, G_{α} will denote $G \cap P_{\alpha}$, where P_{α} is the set of conditions in P with support contained in α .

Lemma 2.2. For any $p \in P$ and $\alpha \in \omega_2$ there is a $q \in B_\alpha$ such that $q^* = p^* \cap M_\alpha$

 $\mathbf{2}$

and so that every extension of q in B_{α} is compatible with p (i.e. q is basically a projection of p).

Proof. We proceed by induction on $\gamma \in \operatorname{dom}(p) \cap M_{\alpha}$. Let G_{γ} be P_{γ} -generic such that $p \upharpoonright \gamma$ and $q \upharpoonright \gamma$ are in G_{γ} (where $q \upharpoonright \gamma$ denotes the element we have defined till now). Set $A = \{r \in P \cap M_{\alpha} : r \perp (p \upharpoonright \gamma + 1) \text{ and } |t_{r}^{\gamma}| \ge |t_{p}^{\gamma}|\}$. Since P is ccc, there is a countable $A' \subset A$ such that $(A')^{\perp} = A^{\perp}$; note that $A' \in M_{\alpha}$. Therefore, $A'/G_{\gamma} = \{r : r \in A' \text{ and } r \upharpoonright \gamma \in G_{\gamma}\}$ is a member of $M_{\alpha}[G_{\gamma}]$. It follows that, in $V[G_{\gamma}], p(\gamma)$ is incompatible with $r(\gamma)$ for each $r \in A'/G_{\gamma}$. That is, there is a $B \subset \omega$ such that the condition (t_{p}^{γ}, B) is incompatible with $r(\gamma)$ for all $r \in A'/G_{\gamma}$. Since the only assumption we've made on G_{γ} is that $p \upharpoonright \gamma$ and $q \upharpoonright \gamma$ are in G_{γ} , we have that

$$q \upharpoonright \gamma \land p \upharpoonright \gamma \Vdash (\exists B \in \mathcal{A}_{\gamma}) ((p^*(\gamma), B) \perp \{r(\gamma) : r \in A'/G_{\gamma}\}).$$

We show that $q \upharpoonright \gamma$ forces the same statement. Assume that $q' \in P_{\gamma} \cap M_{\alpha}$ and $q' \leq q \upharpoonright \gamma$. It follows, by our induction hypothesis then that every extension of q' in $M_{\alpha} \cap P$ is compatible with both $q \upharpoonright \gamma$ and with $p \upharpoonright \gamma$. Therefore, in M_{α}, q' does not force the failure of the above statement. By elementarity, we see that M_{α} models that $q \upharpoonright \gamma$ has no extension which forces the failure of the statement, hence, by the forcing lemma and elementarity, we have that $q \upharpoonright \gamma$ forces the statement as required. The definition of $q(\gamma)$ is obtained by taking any P_{γ} -name in M_{α} of a B as in the above existential statement.

Definition 2.3. For $p \in P$ and $\mu \in \omega_2$, let $p^{-\mu}$ denote the set of all conditions as in Lemma 2.2. That is, $q \in p^{-\mu}$, if $q \in B_{\mu}$, $q^* = p^* \cap M_{\mu}$ and r is compatible with p for each $r \leq q$ in B_{μ} .

Proposition 2.4. For any $p \in P$ and $\mu < \zeta < \omega_2$, if $p' \in p^{-\zeta}$, then $(p')^{-\mu} \subset p^{-\mu}$. fix-In addition, there is a $q <_w p$ such that $q^{-\mu} \subset (p')^{-\mu}$

Proof. Let
$$p \in P$$
, $p' \in p^{-\zeta}$ and $q' \in (p')^{-\mu}$. Since $(q')^* = (p')^* \cap M_{\mu}$ and $(p')^* = p' \cap M_{\zeta}$, it follows that $(q')^* = p^* \cap M_{\mu}$. To show that $q' \in p^{-\mu}$ it remains to show that for each $r \in B_{\mu}$ with $r \leq q'$, we have that r is compatible with p . Given such an r we have that r is compatible with p' by definition of $(p')^{-\mu}$. Choose any $r' \in B_{\mu}$ which is below p' and r . By definition of $p^{-\mu}$ and the fact that $p' \in p^{-\mu}$, it follows that r' is compatible with p showing, of course, that r is compatible with p .

Now for the existence of q, simply observe that the canonical meet of p and p' will have the required property.

Definition 2.5. If $b \in B_{\alpha}$ and $p \in P$, then

$$b \Vdash_{B_{\alpha}} p \Vdash_{w} \varphi$$

will be understood to mean that if $b \in G^{\alpha}$ (a B_{α} -generic filter) then there is a $q \Vdash \varphi$ such that $q^{-\alpha} \cap G^{\alpha} \neq \emptyset$ and $q^* \setminus M_{\alpha} = p^* \setminus M_{\alpha}$. Note that p must be compatible with b in this situation.

The following result is obvious but since the notation is new, it is worth recording.

Proposition 2.6. If $b \Vdash_{B_{\alpha}} p \not\Vdash_{w} \varphi$, then there is a $q \leq p, b$ such that $q \Vdash \neg \varphi$.

factor

When it is clear from context, we will use $q^{-\mu} \Vdash \varphi$ to abbreviate that $b \Vdash_{B_{\mu}} \varphi$ for all $b \in q^{-\mu}$. We also note that the set $q^{-\mu}$ is centered.

Let $\gamma < \nu$ (from our indexing) and let λ be minimal such that X_{γ} is a B_{λ} name. We define F_{γ} assuming that F_{ζ} has been defined for $\zeta < \gamma$. The inductive assumption is that for $\mu < \lambda$, \mathcal{F}_{μ} is a B_{μ} -name of a maximal filter on $\mathcal{M}[G^{\mu}] \cap \wp(\omega_1)$.

Case 1. There are $A_{\gamma} \in [\gamma]^{<\omega}$, $p_{\gamma} \ge p \in B_{\lambda}$, and $\mu < \lambda$ such that for every q < p, there is $H_q \in \mathcal{F}_{\mu}$ such that,

$$q^{-\mu} \Vdash "q \Vdash_w \xi \notin X_{\gamma} \cap \bigcap \{F_{\zeta} : \zeta \in A_{\gamma}\} \text{ for all } \xi \in H_q"$$

then $\mu_{\gamma} = \mu$ and $\mu(F_{\gamma})$ is $\max(\{\mu_{\gamma}\} \cup \{\mu(F_{\zeta}) : \zeta \in A_{\gamma}\})$. Note that $\mu(F_{\gamma}) < \lambda$. We define F_{γ} so that $p \Vdash F_{\gamma} = (\check{\omega}_1 \setminus X_{\gamma})$ and $p' \Vdash F_{\gamma} = \check{\omega}_1$ for all $p' \in p^{\perp}$. Specifically,

$$F_{\gamma} = \{ (q, \delta) : q \in B_{\lambda}, \delta \in \omega_1, q \perp p' \text{ or } (q \leq p' \text{ and } q \Vdash \delta \notin X_{\gamma}) \}$$

On the other hand,

Case 2. if there are no choices as in Case 1, we set F_{γ} to be the name forced by p_{γ} to be X_{γ} and to be ω_1 by conditions in p^{\perp} analogous to Case 1. In this case $\mu_{\gamma} = 0$ and also set $\mu(F_{\gamma}) = 0$ and $A_{\gamma} = \emptyset$.

Note that, by the failure of Case 1 and by the inductive assumption that \mathcal{F}_{μ} is a maximal filter over $\mathcal{M}[G^{\mu}]$, we have the next claim.

Claim 1. If we are in Case 2 then for each $A \in [\gamma]^{<\omega}$ and for each η there is a dense below p_{γ} (in B_{λ}) set of q such that there is $H_q \in \mathcal{F}_{\eta}$ with

$$q^{-\eta} \Vdash ``\xi \in H_q \Rightarrow q \not\Vdash_w \xi \notin F_\gamma \cap \bigcap \{F_\zeta : \zeta \in A\}".$$

Proof. Take any $p \leq p_{\gamma}$, and note that by the failure of Case 1, there is some q < psuch that for this $\mu = \eta$ there is no H_q as in Case 1. Working in the model $V[G^{\eta}]$, we have that $\{\xi : q \Vdash_w \xi \notin X_{\gamma} \cap \bigcap \{F_{\zeta} : \zeta \in A\}$ is not a member of \mathcal{F}_{η} . Since \mathcal{F}_{η} is a maximal filter, it follows that H_q , the B_η -name for $\{\xi : q \not\models_w \xi \notin X_\gamma \cap \bigcap \{F_\zeta : f_\gamma \in X_\gamma \cap \bigcap \{F_\gamma \cap F_\gamma \cap F$ $\zeta \in A$, is in \mathcal{F}_{η} .

obviouslemma

project

Lemma 2.7. If $A \in [\gamma + 1]^{<\omega}$, $\xi \in \omega_1$, and $p \in P$, then

$$p \Vdash ``\xi \notin \bigcap_{\rho \in A} F_{\rho} " iff \quad p^{-\lambda} \Vdash ``\xi \notin \bigcap_{\rho \in A} F_{\rho} "$$

Proof. Note that for each $\rho \in A$, F_{ρ} is a B_{λ} -name. Although X_{ρ} and F_{ρ} need not be elements of M_{λ} , it does follow that for each $\xi \in \omega_1$, the name for $F_{\rho} \cap [0,\xi]$ is a member of M_{λ} . Therefore the result follows directly from elementarity and Lemma 2.2.

Now we prove, by induction on γ , that the essence of the above Claim 1 also holds when we are in Case 1.

Lemma 2.8. Suppose that $A' \in [\gamma]^{<\omega}$ and that $\zeta \ge \mu(F_{\rho})$ for each $\rho \in \{\gamma\} \cup A' \cup A_{\gamma}$. Then for each $q' \in P$, there is a q < q' and $H' \in \mathcal{F}_{\zeta}$ such that

$$q^{-\zeta} \Vdash ``q \not\Vdash_w \xi \notin F_{\gamma} \cap \bigcap \{F_{\eta} : \eta \in A'\} \text{ for } \xi \in H'``$$

Proof. Note that by Lemma 2.7, and by induction, we may work solely with conditions in B_{λ} which are below p_{γ} . Assume that $q' \in B_{\lambda}$ and also that we are in Case

Xin

Xnotin

4

1 for γ . Now apply the inductive hypothesis to $\max(A' \cup A_{\gamma})$, and assume that we have an $H' \in \mathcal{F}_{\zeta}$ and q < q' such that

$$q^{-\zeta} \Vdash ``q \not\Vdash_w \xi \notin \bigcap \{F_\eta : \eta \in A' \cup A_\gamma\} \text{ for } \xi \in H'``.$$

Let $H_q \in \mathcal{F}_{\mu_{\gamma}}$ be as in Case 1. By Proposition 2.4, we may assume that there is some $p' \in (q^{-\zeta})$ such that $q^{-\mu_{\gamma}} = (p')^{-\mu_{\gamma}}$. We show that q and the canonical name for $H_q \cap H'$ are as required. Let $\dot{\xi}$ be any B_{ζ} -name of a member of $H_q \cap H'$ in the sense that $q^{-\zeta} \Vdash \dot{\xi} \in H_q \cap H'$. Therefore, since $q^{-\mu_{\gamma}} \Vdash \dot{\xi} \in H_q$ by 2.7,

$$q^{-\mu_{\gamma}} \Vdash q \Vdash_{w} \dot{\xi} \notin X_{\gamma} \cap \bigcap \{F_{\eta} : \eta \in A_{\gamma}\}$$

Therefore we may fix r < q such that $r^{-\mu_{\gamma}} \Vdash r <_{w} q$ and

(2.1)
$$r \Vdash \dot{\xi} \notin X_{\gamma} \cap \bigcap \{F_{\eta} : \eta \in A_{\gamma}\} .$$

Since $r^{-\zeta} \Vdash r <_w q$, it suffices to show that

$$r^{-\zeta} \Vdash r \not\Vdash_w \dot{\xi} \notin F_{\gamma} \cap \bigcap \{F_{\eta} : \eta \in A'\} .$$

Assume otherwise, hence that by further extending r (maintaining $r^{-\zeta} \Vdash r <_w q$) we can obtain that

(2.2)
$$r \Vdash \dot{\xi} \notin F_{\gamma} \cap \bigcap \{F_{\eta} : \eta \in A'\}$$

Now we still have, by definition of H', that $r^{-\zeta} \Vdash r \not\Vdash_w \dot{\xi} \notin \bigcap \{F_\eta : \eta \in A_\gamma \cup A'\}$. Therefore, there is an r' < r such that

$$r' \Vdash \dot{\xi} \in \bigcap \{ F_\eta : \eta \in A_\gamma \cup A' \}$$
.

Since we are in Case 1, and we have the above forcing statements 2.1 and 2.2, we have our contradiction since, seemingly, $r' \Vdash \dot{\xi} \notin X_{\gamma} \cup (\omega_1 \setminus X_{\gamma})$.

Now we relativize lemma 2.8 to an elementary submodel. In the statement below, the restriction to $\alpha \in M$ is what allows us to overcome the complication caused by the fact that $\{B_{\alpha} : \alpha \in \omega_2\}$ is not a finite support iteration.

Lemma 2.9. Suppose $M \prec H(\theta)$, $\alpha \in M$, and that $A \in M \cap M_{\alpha}$ is a subset of P. perpw With $p \perp_w A$ understood to mean there is some $r <_w p$ such that $r \perp A$, we have that if $p \perp_w A$, then $(p^* \cap M) \perp_w A$.

Proof. First recall that $p \perp_w A$ is equivalent to $(p^{-\alpha}) \perp_w A$ by Lemma 2.2. Thus we can assume that $p \in B_{\alpha} \subset M_{\alpha}$.

We prove the lemma by induction on $|\operatorname{dom}(p)|$. In the first instance assume that $\gamma_0 = \max(\operatorname{dom}(p) \cap M) < \max\operatorname{dom}(p)$. The result will follow by showing that $p_1 = p \upharpoonright (\gamma_0 + 1) \perp_w A$. Fix any $r <_w p$ such that $r \perp A$. Note that $r_1 = r \upharpoonright (\gamma_0 + 1) <_w p_1$, so we show $r_1 \perp_w A$. Towards a contradiction, assume there is an $a \in A$ such that $r_1 \not\perp a$. Since P is ccc and $A \in M \cap M_\alpha$, we may assume that $a \in M \cap M_\alpha$. Therefore dom $(a) \subset M \cap M_\alpha$, and it follows that $r \not\perp a$ – a contradiction.

Now assume that $\gamma_0 = \max \operatorname{dom}(p) \in M$ and (without loss of generality) that $p \perp A$. Set $B = \{q \in P_{\gamma_0} : (\forall \tilde{q} < q) \ \tilde{q} \in P_{\gamma_0+1} \text{ and } \tilde{q}^*(\gamma_0) = p^*(\gamma_0) \Rightarrow \tilde{q} \not\perp_w A\}$. Note that B is in $M \cap M_\alpha$ since $p^*(\gamma_0)$ is simply some member of $\omega^{<\omega}$. We check that $p \upharpoonright \gamma_0 \perp_w B$ (in fact $p \upharpoonright \gamma_0 \perp B$). Otherwise, there is a $b \in B$ such that $p \upharpoonright \gamma_0 \not\perp b$

(again, we can assume $b \in M \cap M_{\alpha}$). Define $b = p \wedge b$ in the obvious sense. Check that $\tilde{b} \in P_{\gamma_0+1}$, $\tilde{b}^*(\gamma_0) = p^*(\gamma_0)$, so we must have that $\tilde{b} \not\perp_w A$. However, clearly $\tilde{b} \leq p$, hence $\tilde{b} \perp A$. Now, by our induction assumption, $((p \upharpoonright \gamma_0)^* \cap M) \perp_w B$, so, working in $M \cap M_{\alpha}$, there is an $r <_w (p \upharpoonright \gamma_0)^*$ such that there is a \tilde{r} witnessing failure to be in B so that $\tilde{r} \perp_w A$. This shows that $(p^* \cap M) \perp_w A$.

The next lemma is the key property that allows us to "weakly" replace a member F of the filter \mathcal{F}_{λ} by one from \mathcal{F}_{ζ} for some $\zeta < \lambda$.

Lemma 2.10. Suppose $M \prec H(\theta)$, $F \in \mathcal{F}_{\lambda} \cap M$ and $\zeta \in M \setminus \mu(F)$, and $p \in P$, then there is a q < p and $H' \in \mathcal{F}_{\zeta} \cap M$ such that $q^* \setminus M \subset p^*$, $q^* \setminus M_{\lambda} \subset p^*$ and

$$q^{-\zeta} \Vdash ``q \not\Vdash_w \xi \notin F \text{ for } \xi \in H' \cap M$$
"

Proof. Let q be chosen as in Lemma 2.8 and set $q' = q^* \cap M$, hence $q' \in M$. Observe that

$$q^{-\zeta} `` \Vdash q' \not\Vdash_w \xi \notin F$$
 for each $\xi \in H_q$ "

Therefore,

6

$$M \models (\exists q < q')(\exists H \in \mathcal{F}_{\zeta}) \ (q^* \supset q') \text{ and } q^{-\zeta} \Vdash "(\forall \xi \in H) \ q' \not\models_w \xi \notin F "$$

Thus, there are $q_1 \in M \cap B_{\zeta}$ and $H \in M \cap \mathcal{F}_{\zeta}$ such that $q_1 \Vdash "(\forall \xi \in H) q' \not\Vdash_w \xi \notin F$ ", and $q_1^* \supset q'$. Since $q_1 \in M$ and $q_1^* \supset q'$, it follows that $q_1^* \cup q^*$ is a function; thus q and q_1 are compatible. In particular, q_1 and q have a common extension, which we denote by q_2 , such that $q_2^{-\zeta} \Vdash q_2 <_w q$.

We show that q_2 and H' are as required. In fact, this is immediate from Lemma 2.9 by working in $V[G^{-\zeta}]$ and noting that $A = \{a \in P : a \Vdash \xi \in F\}$ is in $M[G^{-\zeta}] \cap M_{\lambda}[G^{-\zeta}]$ for each $\xi \in M \cap \omega_1$ where λ is minimal (hence in M) such that $F \in M_{\lambda}$.

Lemma 2.11. Suppose $M \prec H(\theta)$, $F \in \mathcal{F}_{\lambda} \cap M$ and $\zeta \in M$, and $p \in P$, there is $a \ q < p$ and $H' \in \mathcal{F}_{\zeta} \cap M$ such that $q^* \setminus M \subset p^*$, $q^* - M_{\lambda} \subset p^*$ and

$$q^{-\zeta} \Vdash ``q \not\models_w \xi \notin F \text{ for } \xi \in H' \cap M'$$

Proof. We proceed by induction on λ . Apply Lemma 2.10 to obtain $q_1 \leq p, H_1 \in \mathcal{F}_{\mu(F)} \cap M$ as in Lemma 2.10, so that

$$q_1^{-\mu(F)} \Vdash q_1 \not\Vdash_w \xi \notin F$$
 for all $\xi \in H_1 \cap M$.

Apply the induction hypothesis to H_1 to obtain $q_2 < q_1$ and H_2 , again as in the statement of the Lemma, so that

$$q_2^{-\zeta} \Vdash q_2 \not\vDash_w \xi \notin H_1 \text{ for all } \xi \in H_2 \cap M$$
.

It should be clear that $(q_2^* \setminus M) \cup (q_2^* \setminus M_\lambda) \subset p^*$. Now suppose that $r \leq q_2$ is such that $r^{-\zeta} \Vdash r \leq_w q_2$ and that $r \Vdash \xi \notin F$. Noting that $r^{-\mu(F)} \Vdash r <_w q_1$ it follows that $r^{-\mu(F)} \Vdash \xi \notin H_1$. This is because H_1 is a $B_{\mu(F)}$ -name and no extension of $r \upharpoonright M_{\mu(F)}$ can force $\xi \in H_1$. However, this contradicts that $r^{-\zeta} \Vdash q_2 \not \Vdash_w \xi \notin H_1$. \Box

Definition 2.12. A family \mathcal{M} is a conforming system if each $M \in \mathcal{M}$ is an elementary submodel of some H_{θ} , and given $M, M' \in \mathcal{M}$, there is an \in -isomorphism $f: M' \to M$ such that f is the identity on $M \cap M'$ and $M \cap \mu = M' \cap \mu$ for each $\mu \in \omega_2$ such that $M \cap \mu$ and $M' \cap \mu$ are both cofinal in μ .

filterM

filterM+

conform

Lemma 2.13. If $\mathcal{M} = \{M_i : i \in n\}$ is a finite conforming system, and if $F_i \in M_i \cap \mathcal{F}$ for each *i*, then for each $p \in P$, there is an $A \in \mathcal{F}_0 \cap \bigcup_{i < n} M_i$ such that for each $\xi \in A \cap M_0$, there is a q < p such that $q \Vdash \xi \in F_i$ for each i < n.

Proof. Let λ_i be minimal such that F_i is a B_{λ_i} -name (note that $\lambda_i \in M_i$) and enumerated so that $\lambda_0 \leq \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_{n-1}$. We proceed by induction on nand then on the lexicographic ordering on $\langle \lambda_{n-1}, \lambda_{n-2}, \ldots, \lambda_0 \rangle$.

For n = 1 we just apply Lemma 2.11. For each i, j < n, let $f_{i,j}$ denote the isomorphism from M_i to M_j . If $\lambda_j \in M_i$ for some $i \neq j$, then we can replace F_i by the canonical name for $F_i \cap f_{j,i}(F_j)$. If we have some $\xi \in \omega_1 \cap M_i$ and q such that $q \Vdash \xi \in f_{j,i}(F_j)$, then note that $q \Vdash \xi \in F_j$. This is simply because the set, $D(i,\xi) = \{r : r \Vdash \xi \in f_{j,i}(F_j)\}$ is determined by each of $D^*(i,\xi) = \{r^* : r \in B_{\lambda_i} \text{ and } r^* \Vdash \xi \in f_{j,i}(F_j)\}$ and $D^*(i,\xi) \cap M_i$, and that $f_{i,j}$ is the identity mapping on $D^*(i,\xi) \cap M_i$. Therefore we may assume that $\lambda_i \notin M_j$ for i < j.

The above situation will recur in other forms and it will be useful to recall some standard notation. Given an ordinal ξ and a name F, $[[\xi \in F]]$ normally denotes the unique element in the complete Boolean algebra generated by P which is the join of the open subset of P consisting of those elements that force the statement $\xi \in F$. We will instead treat $[[\xi \in F]]$ as that open subset of P. Certainly there will be a minimal ζ such that $[[\xi \in F]] \cap B_{\zeta}$ is predense in $[[\xi \in F]]$, and since P is ccc, ζ will not have uncountable cofinality. Let us more loosely denote this relationship by saying that $[[\xi \in F]]$ is a member of B_{ζ} when we really mean that $B_{\zeta} \cap [[\xi \in F]]$ is predense. If there are i < j < n such that, for each $\xi \in M_j \cap \omega_1$, the corresponding ζ for $[[\xi \in F_j]]$ is in $M_i \cap \lambda_i$, then as above we can replace F_i by $f_{j,i}(F_j) \cap F_i$ and apply the induction hypothesis and obtain good behavior for F_j for free.

For each i < n, set $\tilde{\lambda}_i = \sup(M_i \cap \lambda_i)$. We first show that there cannot be $i \neq j$ such that M_i is cofinal in $\tilde{\lambda}_j$. Assume otherwise; hence, by the definition of conforming system, $M_i \cap \tilde{\lambda}_j = M_j \cap \tilde{\lambda}_j$. If $\tilde{\lambda}_j = \lambda_j$, then λ_j has countable cofinality, as does $f_{i,j}(\lambda_j) = \mu_i \in M_i$. Therefore, $f_{i,j}(M_j \cap \lambda_j)$ is cofinal in μ_i which would imply that $\mu_i = \lambda_j$. This contradicts our current assumption that $\lambda_j \notin M_i$. Therefore we have shown that λ_j has uncountable cofinality in this situation. However, we would then be in the situation of the previous paragraph since for each $\xi \in M_j \cap \omega_1$, the ζ associated with the set $[[\xi \in F_j]]$ will be a member of $M_j \cap \lambda_j \in M_i$.

Therefore we have shown that we may assume that for each j there is a $\zeta_j \in M_j \cap \lambda_j$ such that $[\zeta_j, \tilde{\lambda}_j) \cap M_i$ is empty for each $i \neq j$. Let i be such that $\tilde{\lambda}_i$ (hence also ζ_i) is maximal. It is easily checked that $\tilde{\lambda}_j < \zeta_i$ for each $j \neq i$. Let $p_1 \leq p$ be chosen according to Lemma 2.11 together with H_i so that

$$p_1^{-\zeta_i} \Vdash p_1 \not\Vdash_w \xi \notin F_i \text{ for each } \xi \in H_i$$
.

Apply the induction hypothesis to the family $\{H_i\} \cup \{F_j : j \neq i, j < n-1\}$ to obtain $A \in M_0 \cap \mathcal{F}_0$ such that for each $\xi \in A \cap M_0$, there is a $q < p_1$ such that $q \Vdash \xi \in F_j$

Fix any $\xi \in A \cap M_0$ and $q < p_1$ such that $q \Vdash \xi \in F_j$ for all $j \neq i$ and $q \Vdash \xi \in H_i$. Observe that $[[\xi \in F_j]]$ is in B_{ζ_i} for each $j \neq i$ since $\tilde{\lambda}_j < \zeta_i$. Therefore

$$q^{-\zeta_i} \Vdash \xi \in F_i \cap H_i$$
 for each $j \neq i$

Now we have that

$$p_{1}^{-\zeta_{i}} \Vdash_{B_{\zeta_{i}}} p_{1} \not\models \xi \notin F_{i}$$

By Proposition 2.6, there is an $r \in P$ so that $r \leq p_1, r^{-\zeta_i} \leq q^{-\zeta_i}$, and $r \Vdash \xi \in F_i$. Clearly, $r \Vdash \xi \in F_j$ for all j < n.

3. PROPERTY WP₁ AND $\mathfrak{p} > \omega_1$

In this section we prove that if the ground model satisfies Shelah's generalized MA principle, then V[G] is a model of wP_1 .

Recall that the axiom is the following:

Definition 3.1. [7, page264] [GMA] If Q is an \aleph_1 -complete poset such that for any $\{q_i : i \in \omega_2\} \subset Q$, there are $q_i^{\dagger} \leq q_i$ (for $i \in \omega_2$) and pressing down functions $f_n : \omega_2 \setminus \{0\} \to \omega_2$ such that

if
$$i < j$$
 and $(\forall n)(f_n(i) = f_n(j))$, then $q_i^{\dagger} \land q_j^{\dagger}$ exists

then for any family of fewer than $2^{\aleph_1} = \omega_3$ dense open subsets of Q, there is a filter on Q which meets each of them.

Fix the family $\mathcal{U} = \{F_{\gamma} : \gamma \in \nu\}$ as in the previous section. Our poset Q is defined as follows. A condition $q \in Q$ consists of a pair (A_q, \mathcal{M}_q) where $A_q \in [\omega_1]^{\omega}$ and $\mathcal{M}_q = \bigcup \{\mathcal{M}_{q,\alpha} : \alpha \in A\}$ and

- (1) each $M \in \mathfrak{M}_q$ is a countable family of elementary submodels of some (fixed) suitably large H_{θ} ,
- (2) for each $M \in \mathcal{M}_q$, P and \mathcal{U} are in M,
- (3) for each $M \in \mathfrak{M}_{q,\alpha}, M \cap \omega_1 = \alpha$
- (4) $\mathcal{M}_{q,\alpha}$ is a conforming system,
- (5) for each $\alpha < \beta \in A$ and $M \in \mathcal{M}_{q,\alpha}$, there is an $M' \in \mathcal{M}_{q,\beta}$, $M \in M'$.

The ordering on Q is q < q' providing A_q is an end extension of $A_{q'}$, and $\mathfrak{M}_{q'} \subset \mathfrak{M}_q$.

Lemma 3.2. The poset Q satisfies the requirements in the Axiom GMA

Proof. Suppose we are given $\{q_i : i \in \omega_2\} \subset Q$. For each $i \in \omega_2$, let M_i be a countable elementary submodel such that $q_i, i \in M_i$. Let $\delta_i = M_i \cap \omega_1$, and set $q_i^{\dagger} = (A_{q_i} \cup \{\delta_i\}, \{M_i\} \cup M_{q_i})$. Fix an enumeration, $\{S_{\zeta} : \zeta < \omega_2\}$ of the countable subsets of ω_2 (recall we are assuming CH) and let C be a cub of ω_2 so that for all $\gamma \in C$ and $\beta < \gamma$, $[\beta]^{\omega} \subset \{S_{\zeta} : \zeta < \gamma\} \subset [\gamma]^{\omega}$. In addition, let $\{H_{\xi} : \xi \in \omega_1\}$ be an enumeration of the countable subsets of $H(\omega_1)$. We are now ready to define our pressing down functions.

For each $\omega_1 \leq i \in \omega_2$, let $f_0(i) = \xi \in \omega_1$ be such that the transitive (Mostowski) collapse of M_i is equal to H_{ξ} . Also let $f_1(i) = \xi'$ be such that $H_{\xi'}$ is equal to the image of q_i under the collapsing function. Define $f_2(i) = \max(C \cap i)$ if $i \notin C$, $f_2(i) = \omega$ if cofinality of i is ω , otherwise set $f_2(i) = \zeta$ where $M_i \cap i = Z_{\zeta}$.

For n > 2 and $i \in \omega_2 \setminus C$, let $f_n(i) \in 2$ be any mappings just so long as for each $\gamma \in C$ and $\gamma' = \min(C \setminus (\gamma + 1))$, the mapping *i* to $\langle f_n(i) : 3 \leq n \in \omega \rangle$ is one-to-one on the set (γ, γ') . For $i \in C$ with countable cofinality, simply ensure that $\{f_n(i) : 3 \leq n < \omega\}$ is increasing cofinal in *i*.

It should be reasonably clear that the f_n 's are pressing down functions. Suppose that i, j are such that $f_n(i) = f_n(j)$ for all n. By the definitions of f_n 's, it easily

follows that both i, j are in C and both have uncountable cofinality. Furthermore, M_i and M_j will have the same transitive collapse with q_i and q_j being sent by that collapse to the same element. By the definition of $f_2(j) = M_j \cap j = M_i \cap i$, it follows that $\{M_i, M_j\}$ is a conforming system. Suppose that $M \in \mathcal{M}_{q_i}$ and $M' \in \mathcal{M}_{q_j}$ and $\delta = M \cap \omega_1 = M' \cap \omega_1\}$. Assume $\mu \in \omega_2$ is such that M and M' are cofinal in μ . It follows immediately that $\mu \in M_i \cap M_j$, hence $\mu \in i$. Since M_i and M_j agree on i and their transitive collapses take $\mathcal{M}_{q_i,\delta}$ and $\mathcal{M}_{q_j,\delta}$ to the same set, it follows that there is an $M'' \in \mathcal{M}_{q_i,\delta}$ such that the transitive collapse of M_i sends M'' to the same set that the transitive collapse of M_j sends M'. Since M and M'' must agree on μ , it follows that M and M' also agree on μ . The rest of the details that $(A_{q_i} \cup \{\delta_i\}, \mathcal{M}_{q_i} \cup \mathcal{M}_{q_j} \cup \{M_i, M_j\})$ is the meet of q_i^{\dagger} and q_j^{\dagger} are straightforward.

To see that Q is \aleph_1 -complete, suppose that $\{q_n : n \in \omega\}$ is a descending chain in Q, then simply $q = (\bigcup_n A_{q_n}, \bigcup \{\mathfrak{M}_{q_n} : n \in \omega\})$ is the needed lower bound. \Box

Lemma 3.3. If G is a Q-generic filter, then there is a function $\varphi : \mathcal{U} \to \omega_1$ and a cub C such that the statement of wP_1 is forced by 1 to hold in the forcing extension by P.

Proof. Let G be a generic filter for Q (we only have to meet the following dense sets $\{D_{\gamma} : \gamma \in \nu\}$ where $q \in D_{\gamma}$ providing there is an $M \in \mathcal{M}_q$ such that $F_{\gamma} \in M$). For each $F_{\gamma} \in \mathcal{U}$, fix a minimal δ such that there is a $q \in G$ and $M \in \mathcal{M}_{q,\delta}$ such that $F_{\gamma} \in M$. We define $\varphi(M)$ to be this δ . The set C is the closure of the set $A = \bigcup \{A_q : q \in G\}$. It is clear that to verify the property wP_1 we need only show that the condition holds for $\delta \in A$.

Suppose then that $\delta \in A$ and that $\varphi(F_{\gamma}) < \delta$ for each $\gamma \in B \in [\nu]^{<\omega}$. Fix any $\beta < \delta$. By the definition of φ , there are $q_{\gamma} \in G$ so that $F_{\gamma} \in M_{\gamma}$ for some $M_{\gamma} \in \mathcal{M}_{q_{\gamma}}$ and such that $M_{\gamma} \cap \omega_1 = \varphi(F_{\gamma})$. By the definition of Q and by the directedness of G, there is a single $q \in G$, and for each $\gamma \in B$ an $M'_{\gamma} \in \mathcal{M}_{q,\delta}$ such that $F_{\gamma} \in M'_{\gamma}$. Assume that $p \in P$ is such that $p \Vdash \bigcap\{F_{\gamma} : \gamma \in B\} \cap (\beta, \delta)$ is empty. Since $\beta \in M_{\gamma}$, we may replace F_{γ} by $F_{\gamma} \setminus \beta$ and remain in $M_{\gamma} \cap \mathcal{U}$. Note that the family $\{M_{\gamma} : \gamma \in B\}$ is a finite conforming family. Therefore we can apply Lemma 2.13 and observe that there is a $\xi \in \delta$ and a $p' \leq p$ such that $p' \Vdash \xi \in F_{\gamma}$ for each $\gamma \in B$.

Theorem 3.4. It is consistent to have $\mathfrak{p} = \omega_3$ and wP_1 . It follows that it is consistent all compact spaces of weight at most ω_2 are pseudoradial.

References

- A. V. Arhangel'skiĭ. The structure and classification of topological spaces and cardinal invariants. Uspekhi Mat. Nauk, 33(6(204)):29–84, 272, 1978.
- [2] A. Bella, A. Dow, and G. Tironi. Pseudoradial spaces: separable subsets, products and maps onto Tychonoff cubes. In *Proceedings of the International School of Mathematics "G. Stampacchia" (Erice, 1998)*, volume 111 1-2, pages 71–80, 2001.
- [3] Horst Herrlich. Quotienten geordneter Räume und Folgenkonvergenz. Fund. Math., 61:79–81, 1967.
- [4] I. Juhász and Z. Szentmiklóssy. Sequential compactness versus pseudo-radiality in compact spaces. *Topology Appl.*, 50(1):47–53, 1993.
- [5] Boris Shapirovskii. The equivalence of sequential compactness and pseudoradialness in the class of compact T₂-spaces, assuming CH. In Papers on general topology and applications (Madison, WI, 1991), pages 322–327. New York Acad. Sci., New York, 1993.
- [6] S. Shelah. A weak generalization of MA to higher cardinals. Israel J. Math., 30(4):297–306, 1978.

- [7] Saharon Shelah. Proper forcing. Springer-Verlag, Berlin, 1982.
 [8] William Weiss. Versions of Martin's axiom. In Handbook of set-theoretic topology, pages 827–886. North-Holland, Amsterdam, 1984.

10