COMPACT SPACES AND THE PSEUDORADIAL PROPERTY, II

ALAN DOW

ABSTRACT. There is a model of set theory in which all compact spaces of
weight at most wo are pseudoradial.

1. INTRODUCTION

We show that 2¢2 can be pseudoradial. It is easily seen that if 22 is pseudoradial,
then all compact spaces of weight at most wo are also pseudoradial.

A well-ordered sequence {a, : @ € Kk} converges to a point z if every neigh-
borhood of z contains a final segment of the sequence, if {a, : @ € K} C A, we
could say that x is a radial limit of A. The properties radial and pseudoradial (see
[1, 3]) are natural generalizations (and stand in the same relation to each other) of
the well-known properties Frechet-Urysohn and sequential in which converging se-
quence is replaced by converging well-ordered sequence. A space X is radial if every
point in the closure of a set is a radial limit of the set, while a space is pseudoradial
if every radially closed set is closed.

Sapirovskii suggests in [5] that [0,1]“? (equivalently 2¢2) should fail to be Rg-
pseudoradial (a property weaker than pseudoradial). It is shown in [2] that Kunen’s
set-theoretic principle P; on w; implies that 2¢2 is indeed Ny-pseudoradial.

The situation for 2“1 is simpler and better understood. The analogue of P; for w
is the assertion that the cardinal p is equal to the continuum and greater than w;. It
is well-known that countable subsets of 2“! are radial if p > w; and the space itself
is pseudoradial if s > wy. If 2* is pseudoradial, then s > x but this only serves to
guarantee that countable sets that fail to be closed will not be radially closed. We
study analogues for wy sized subsets which we call sP; and wP; (see Definition 2.1)
since they are topological versions of Kunen’s P; principle. Although it is shown
in [2] that wP; is equivalent to Sapirovskii’s Rg-pseudoradial for 2“2, wP; is more
set-theoretic and easier to deal with in isolation. The technique of this paper is
based on the fact, proven in [2], that wP; +p > ws implies that 2*2 is pseudoradial.

Specifically, we start with a model in which Shelah’s strengthening, referred to
as GMA in [8], of Kunen’s P; principle holds and we force with the usual finite
support iteration of length ws in which the factors are the usual o-centered tower
filling posets (Booth). We can choose Shelah’s model [6] so that the Continuum
Hypothesis holds and 2% = N3. It is well known that p = ws = ¢ will hold in
this extension. We will show that wP; will also hold. It was shown by Juhasz and
Szentmiklossy [4] that Martin’s Axiom plus ¢ > ws does not imply that [0, 1]“2 is
pseudoradial hence we do need GMA.
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2. ELEMENTARY MATRICES

This section will establish properties that will be needed to apply Shelah’s prin-
ciple to a poset we define later. We let P denote the finite support iteration of
length w3 in which the factors are the usual filter filling posets (Booth) with a
suitable enumeration of the names of filters of cardinality at most we. Conditions
p € P have the form {(v, (t), 4)) ) : v € dom(p)} where dom(p) is a finite subset
of ws, each t} is a member of w<* and A} is a P,-name of a member of A,, which
is itself a P,-name forced by 1 to be a filter of infinite subsets of w. For each
p € P, we define p* to be the condition {(v, (t},w) ) : v € dom(p)}. It will simplify
notation if we also identify p* with the obvious function into w<“ and suppress the
side conditions. We will use the notation ¢ <,, p to denote ¢ < p and ¢* = p*.
Therefore, ¢* is the largest condition such that ¢ <, ¢*. Note that if p* U r* is
a function (agree on their common domain), then p and r are compatible, indeed
pAr exists. For a condition p € P and subset A of P, we will use p-, A to denote
the set of all conditions which are incompatible with p, respectively, each member
of A. Also, p 1 q denotes the relation that p and ¢ are incompatible.

Definition 2.1. wP; is the statement that whenever X C p(w;) and |X| < 2¢1,
then there are a uniform filter base U on wy so that |/ N {X,w; \ X}| =1 for each
X € X, and an uncountable set C' C wy and a function ¢ : Y — w; such that

{UN(B.y):8€r,Uecl, and o(U) <~}
has the finite intersection property for each v € C.

The statement in a sense reflects the finite intersection property of the filter
U to countable pieces of wy. Therefore in order to show that wP; holds in the
forcing extension by P, we suppose we have a family, X, of wy many P-names
of uncountable subsets of w;. We fix a e-chain {M, : 0 < o € ws} of w-closed
elementary submodels of cardinality w; (recall CH holds) containing this family
and so that the chain is continuous at w; limits. Let M denote the union of this
entire chain. We use this chain to factor the forcing. For convenience, we let M
be the empty set.

We enumerate the family of all P-names of subsets of w; which are members of
M (including X of course), {X, : v € v}, as wellas PN M = {p, : v € v} in
such a way that for each « in ws all the M, N P-names are listed before any names
that are not M, N P-names and so that for each such pair p, X, there is a v so
that py, = p and X, = X. For each v € v, we will define a P-name F’, so that
there is a ¢ < p, such that ¢ IF F, € {X,, w1 \ X,}. For each p € wo, there is a
minimal 7, such that the collection {X¢ : ¢ < 7,} enumerates all B,,-names which
are in M. We define F}, to be the (name of the) collection {F¢ : { < 7,}. To start
the induction, {X¢ : ¢ < 7o} is simply an enumeration of the canonical By = {0}
names for MNp(w;). We select any uniform ultrafilter U« on w; which is in M and,
for { < 7o, define F¢ to be X if (suppressing the trivial forcing) it is a member of
U and to be wy \ X¢ otherwise.

Since P is ccc, each B, = M, N P is completely embedded in P. Given a filter
G on P, we use G“ to denote G N B,, and, as is usual, for a € w3, G, will denote
G N P,, where P, is the set of conditions in P with support contained in «.

Lemma 2.2. For any p € P and o € wy there is a q € B, such that ¢* = p* N M,
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and so that every extension of q in B, is compatible with p (i.e. q is basically a
projection of p).

Proof. We proceed by induction on v € dom(p) N M,. Let G, be P,-generic such
that p [ v and ¢ | v are in G, (where ¢ | v denotes the element we have defined
till now). Set A={r€ PN M, :7 L (p[~v+1)and [t]] > [t][}. Since P is ccc,
there is a countable A’ C A such that (A’)~ = AL; note that A’ € M,. Therefore,
A/)Gy ={r:r e A and r | v € G4} is a member of M,[G,]. It follows that,
in V[G,], p(7) is incompatible with r(v) for each r € A’/G,. That is, there is a
B C w such that the condition (¢}, B) is incompatible with r(v) for all r € A’/G.,.
Since the only assumption we’ve made on G, is that p [ v and ¢ [ v are in G, we
have that

glyAplylE 3BeA) ((p"(7),B) L {r(y):reA/G,}).
We show that ¢ | v forces the same statement. Assume that ¢’ € P, N M, and
¢ < q | 7. It follows, by our induction hypothesis then that every extension of
q' in M, N P is compatible with both ¢ [ v and with p [ 7. Therefore, in M, ¢’
does not force the failure of the above statement. By elementarity, we see that M,
models that ¢ | « has no extension which forces the failure of the statement, hence,
by the forcing lemma and elementarity, we have that ¢ [ v forces the statement as
required. The definition of ¢(v) is obtained by taking any P,-name in M, of a B
as in the above existential statement. O

Definition 2.3. For p € P and p € we, let p™# denote the set of all conditions as
in Lemma 2.2. That is, ¢ € p™#, if ¢ € By, ¢* = p* N M, and r is compatible with
p for each » < ¢ in B,.

Proposition 2.4. For anyp € P and u < { < wo, if p' € p~S, then (p/) ™" C p~*.
In addition, there is a q <4 p such that g=* C (p')~#

Proof. Let p € P, p/ € p=¢ and ¢ € (p/)™* . Since (¢')* = (p')* N M, and
(p")* =p' N M, it follows that (¢')* = p* N M,,. To show that ¢’ € p~# it remains
to show that for each » € B, with r < ¢/, we have that r is compatible with
p. Given such an r we have that r is compatible with p’ by definition of (p’)~*.
Choose any 7’ € B,, which is below p’ and r. By definition of p~# and the fact
that p’ € p~#, it follows that 7’ is compatible with p showing, of course, that r is
compatible with p.

Now for the existence of g, simply observe that the canonical meet of p and p’
will have the required property. (Il

Definition 2.5. If b € B, and p € P, then

blFp, plkw @

will be understood to mean that if b € G* (a By-generic filter) then thereisa ¢ I ¢
such that ¢ N G* # () and ¢* \ M, = p* \ M,. Note that p must be compatible
with b in this situation.

The following result is obvious but since the notation is new, it is worth recording.
Proposition 2.6. IfblFp, plffw @, then there is a ¢ < p,b such that q IF —p.

When it is clear from context, we will use ¢~# I ¢ to abbreviate that b I-p, ¢
for all b € g~#. We also note that the set ¢~ # is centered.

fix-

factor
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Let v < v (from our indexing) and let A be minimal such that X, is a Bx-
name. We define F, assuming that F; has been defined for ¢ < . The inductive
assumption is that for u < A, F, is a B,-name of a maximal filter on M[G*|Ngp(w1).

Case 1. There are A, € [y]<%, py > p € By, and p < X such that for every ¢ < p,
there is H,; € F, such that,

g I qlhy, ¢ X, N[ W{Fe: ¢ €Ay} forall € € H,'
then p1 = p and p(Fy) is max({p, U{u(Fe) : ¢ € A,}). Note that pu(F,) < A. We
define F, so that p IF F, = (&1 \ X,,) and p IF F, = &y for all p’ € pt. Specifically,
F,={(q,0):q€By,6 €wi,qg Lp or (¢g<p and qlFé ¢ X.)}
On the other hand,

Case 2. if there are no choices as in Case 1, we set F, to be the name forced by
py to be X, and to be w; by conditions in pt analogous to Case 1. In this case
py =0 and also set pu(Fy) =0 and Ay = 0.

Note that, by the failure of Case 1 and by the inductive assumption that F,, is
a maximal filter over M[G*], we have the next claim.

Claim 1. If we are in Case 2 then for each A € [y]<* and for each 7 there is a dense
below p, (in B)) set of ¢ such that there is H, € F;, with

I E e Hy = q e E¢ Fy N[ [{Fe:Ce AY .

Proof. Take any p < p,, and note that by the failure of Case 1, there is some ¢ < p
such that for this g = 7 there is no H, as in Case 1. Working in the model V[G"],
we have that {£ : ¢ Ik, € € X, N({F¢ : ¢ € A} is not a member of F,,. Since F,
is a maximal filter, it follows that H,, the B,-name for {£ : ¢ I, £ € X, NN{F¢ -
(e A}, isin F,. O

Lemma 2.7. If A€ [y+1]<%, £ € wy, and p € P, then
P I ug ¢ m Fp;: Zﬁ pf)\ Ik “f ¢ m Fp »”
pEA pEA

Proof. Note that for each p € A, F), is a By-name. Although X, and F), need not
be elements of M}, it does follow that for each { € w, the name for F, N[0,¢] is a
member of M. Therefore the result follows directly from elementarity and Lemma
2.2. O

Now we prove, by induction on <, that the essence of the above Claim 1 also
holds when we are in Case 1.

Lemma 2.8. Suppose that A’ € [y]<“ and that ¢ > p(F,) for each p € {y}UA'UA,.
Then for each ¢' € P, there is a ¢ < ¢’ and H' € F¢ such that

I qlfu §E BNy ine A} for§ € H'”

Proof. Note that by Lemma 2.7, and by induction, we may work solely with condi-
tions in By which are below p,. Assume that ¢’ € B) and also that we are in Case



COMPACT SPACES AND THE PSEUDORADIAL PROPERTY, II 5

1 for . Now apply the inductive hypothesis to max(A’ U A, ), and assume that we
have an H' € F; and ¢ < ¢’ such that

g gl §E({Fyine AUA,} for € H.

Let H, € F,, be as in Case 1. By Proposition 2.4, we may assume that there
is some p’ € (¢~¢) such that ¢=#v = (p’)"#». We show that ¢ and the canonical
name for H, N H' are as required. Let & be any Be-name of a member of H, N H’
in the sense that ¢ ¢ I+ f € H,N H'. Therefore, since ¢=# I f € H, by 2.7,

g gl § & XN [ [{Fyine A}
Therefore we may fix r < ¢ such that r=# IF r <,, ¢ and
(2.1) ribE¢ X, n({F,:ine A},

Since r~¢ IF r <4, g, it suffices to show that

r Skl §E Byn({F,ine A}
Assume otherwise, hence that by further extending r (maintaining =S IF 7 <,, q)
we can obtain that

(2.2) riEE¢ Byn({F, ine A}

Now we still have, by definition of H’, that 7—¢ IF 7 I, € ¢ ({F, : n € A,UA'}.
Therefore, there is an r’ < r such that

r’lkéeﬂ{Fn:neAvuA’} :
Since we are in Case 1, and we have the above forcing statements 2.1 and 2.2,
we have our contradiction since, seemingly, ' IF £ ¢ X, U (w1 \ X). O

Now we relativize lemma 2.8 to an elementary submodel. In the statement below,
the restriction to a € M is what allows us to overcome the complication caused by
the fact that {B, : @ € ws} is not a finite support iteration.

Lemma 2.9. Suppose M < H(), « € M, and that A € M N M, is a subset of P.
With p 1, A understood to mean there is some r <, p such that r L A, we have
that if p Ly, A, then (p* N M) L, A.

Proof. First recall that p L, A is equivalent to (p~%) L, A by Lemma 2.2. Thus
we can assume that p € B, C M,,.

We prove the lemma by induction on |dom(p)|. In the first instance assume
that 79 = max(dom(p) N M) < maxdom(p). The result will follow by showing
that p1 = p [ (7o +1) Ly A. Fix any r <, p such that » L A. Note that
ri =71 (y0+1) <w p1, s0 we show r; L,, A. Towards a contradiction, assume
there is an a € A such that r; / a. Since P is ccc and A € M N M, we may
assume that a € M N M,. Therefore dom(a) C M N M,, and it follows that r f a
— a contradiction.

Now assume that fyo = maxdom(p) € M and (without loss of generality) that
pL A Set B={q€ Py, :(YG4<q)q€ Pyi1and ¢*(70) = p*(10) = ¢ Luw A}.
Note that B isin MNM, smce p*(70) is simply some member of w<*. We check that

p [ 7 Lw B (in fact p [ 70 L B). Otherwise, there is a b € B such that p [ vo £ b

perpw



filterM

filterM+

6 ALAN DOW

(again, we can assume b € M N M,). Define b= pAb in the obvious sense. Check
that b € Py, 41, b*(70) = p*(70), so we must have that b [, A. However, clearly
b < p, hence b L A. Now, by our induction assumption, ((p I v)*NM) L, B, so,
working in M N M, there is an r <, (p | 70)* such that there is a 7 witnessing
failure to be in B so that 7 L,, A. This shows that (p* N M) L,, A. O

The next lemma is the key property that allows us to “weakly” replace a member
F of the filter F, by one from F¢ for some ¢ < A.

Lemma 2.10. Suppose M < H(f), F € FANM and ( € M\ u(F), and p € P,
then there is a g < p and H' € Fe N M such that ¢* \ M C p*, ¢* \ My C p* and

¢ gl EEF foré e HNM”

Proof. Let g be chosen as in Lemma 2.8 and set ¢’ = ¢*NM, hence ¢’ € M. Observe
that

T¢I ¢ W, & F foreach E € H, .

Therefore,
MEQ@¢<d)BHeF) (¢*D¢)and ¢ - “(Vé€ H) ¢ f EEF

Thus, there are ¢ € M N B, and H € M N F¢ such that ¢1 IF “(Vé € H) ¢' I, £ ¢
F 7, and ¢f D ¢'. Since ¢1 € M and ¢f D ¢/, it follows that ¢f U ¢* is a function;
thus ¢ and ¢; are compatible. In particular, ¢; and ¢ have a common extension,
which we denote by go, such that g5 Sk q2 <w q -

We show that g2 and H’ are as required. In fact, this is immediate from Lemma
2.9 by working in V[G~¢] and noting that A = {a € P : a IF £ € F} is in
M[G=¢]N My[G~¢] for each £ € M Nw; where \ is minimal (hence in M) such that
F e M,. |

Lemma 2.11. Suppose M < H(#), F € FaANM and ( € M, and p € P, there is
aq<pand H € Fe N M such that ¢* \ M C p*, ¢* — M C p* and

¢ gy EEF forE c H NM”

Proof. We proceed by induction on A\. Apply Lemma 2.10 to obtain ¢; < p, Hy €

Fury N M as in Lemma 2.10, so that

ql—u(F) Fgi W &g Florallé e HHNM .

Apply the induction hypothesis to H; to obtain ¢ < g1 and Hs, again as in the
statement of the Lemma, so that

43 I qo W € ¢ Hy forall €€ HyN M .

It should be clear that (¢5 \ M) U (¢5 \ M) C p*. Now suppose that r < ¢, is such
that 7=¢ IF r <, g2 and that r I- ¢ ¢ F. Noting that pRE) | g <w q1 it follows
that r—#F) |- ¢ ¢ Hy. This is because H; is a BM(F)—name and no extension of
7 | M,y can force { € Hy. However, this contradicts that =< I gz I, € ¢ Hy. O

Definition 2.12. A family M is a conforming system if each M € M is an ele-
mentary submodel of some Hy, and given M, M’ € M, there is an €-isomorphism
f: M’ — M such that f is the identity on M N M’ and M Nu = M’ N pu for each
it € wo such that M N u and M’ N p are both cofinal in p.
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Lemma 2.13. If M = {M; : i € n} is a finite conforming system, and if F; €
M;NF for each i, then for each p € P, there is an A € FoN,.,, M; such that for
each & € AN My, there is a q < p such that q - £ € F; for each i < n.

Proof. Let A; be minimal such that F; is a Bj,-name (note that A; € M;) and
enumerated so that \g < A < Ay < --- < A\,_1. We proceed by induction on n
and then on the lexicographic ordering on (A, _1, An_2,...,Ag).

For n = 1 we just apply Lemma 2.11. For each ¢,j < n, let f;; denote the
isomorphism from M; to M;. If \; € M; for some i # j, then we can replace F;
by the canonical name for F; N f;;(F};). If we have some & € w; N M; and g such
that ¢ IF & € f;;(F;), then note that ¢ IF £ € F;. This is simply because the set,
D(i,&) = {r : v |- £ € f;:(F;)} is determined by each of D*(i,§) = {r* : r €
By, and r* IF € € f;,(F;)} and D*(4,&) N M;, and that f; ; is the identity mapping
on D*(i,€) N M; . Therefore we may assume that A\; ¢ M; for i < j.

The above situation will recur in other forms and it will be useful to recall some
standard notation. Given an ordinal ¢ and a name F, [[¢ € F]] normally denotes
the unique element in the complete Boolean algebra generated by P which is the
join of the open subset of P consisting of those elements that force the statement
¢ € F. We will instead treat [[£ € F]] as that open subset of P. Certainly there
will be a minimal ¢ such that [[§ € F]] N B¢ is predense in [[{ € F]], and since
P is cce, ¢ will not have uncountable cofinality. Let us more loosely denote this
relationship by saying that [[¢ € F]] is a member of B; when we really mean that
B¢ N [[§ € F]] is predense. If there are i < j < n such that, for each £ € M; Nwy,
the corresponding ¢ for [[{ € F}]] is in M; N A;, then as above we can replace F; by
f5.i(F;) N F; and apply the induction hypothesis and obtain good behavior for F)
for free.

For each i < n, set 5\1 = sup(M; N ;). We first show that there cannot be
1 # j such that M; is cofinal in S\j. Assume otherwise; hence, by the definition
of conforming system, M; N 5\]- = M; N S\j. If 5\]- = Jj, then A; has countable
cofinality, as does f; ;(A\;) = p; € M;. Therefore, f;;(M; N A;) is cofinal in p;
which would imply that p; = A;. This contradicts our current assumption that
Aj ¢ M,;. Therefore we have shown that A; has uncountable cofinality in this
situation. However, we would then be in the situation of the previous paragraph
since for each £ € M; Nwy, the ¢ associated with the set [[{ € Fj;]] will be a member
of Mj n >‘j € M;.

Therefore we have shown that we may assume that for each j there is a (; €
M; N\ such that [, 5\]) N M; is empty for each i # j. Let i be such that A; (hence
also ¢;) is maximal. It is easily checked that 5\]- < (; for each j #i. Let p1 < p be
chosen according to Lemma 2.11 together with H; so that

Py IF py Wy € ¢ F for each € € H; .

Apply the induction hypothesis to the family {H;} U{F; : j # i,j < n — 1} to
obtain A € My N Fy such that for each £ € AN My, there is a ¢ < p; such that
gl & € F;

Fix any £ € ANMj and g < p; such that ¢ I-& € Fj forall j #4and g I- £ € H;.
Observe that [[¢ € F}]] is in By, for each j # i since A; < ¢;. Therefore

¢S lFee F; N H; for each j # 4
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Now we have that
g g, mIFEEE; .
By Proposition 2.6, there is an ~ € P so that r» < py, 7~% < ¢~%, and r IF £ € F;.
Clearly, r IF £ € F} for all j <n. O

3. PROPERTY WP AND p > w;

In this section we prove that if the ground model satisfies Shelah’s generalized
MA principle, then V[G] is a model of wP;.
Recall that the axiom is the following:

Definition 3.1. [7, page264] [GMA] If @ is an R;-complete poset such that for
any {q; : i € wa} C Q, there are q;r < g; (for i € we) and pressing down functions
frn i wa \ {0} — wy such that

if i < j and (Vn)(fn(i) = fn(4)), then gf A q; exists

then for any family of fewer than 28 = w3 dense open subsets of Q, there is a filter
on () which meets each of them.

Fix the family &4 = {F, : v € v} as in the previous section. Our poset @ is
defined as follows. A condition g € @ consists of a pair (A4, M) where A, € [wq]*
and My = (J{Mg,a : € A} and

(1) each M € M, is a countable family of elementary submodels of some (fixed)
suitably large Hy,

(2) for each M € My, P and U are in M,

(3) for each M € My o, M Nwy = &

(4) My, is a conforming system,

(5) for each a < f € A and M € M, there is an M’ € My g, M € M'.

The ordering on @ is ¢ < ¢’ providing A, is an end extension of Ay, and

My C M.
Lemma 3.2. The poset Q) satisfies the requirements in the Aziom GMA

Proof. Suppose we are given {¢; : i € we} C Q. For each i € wsy, let M; be a
countable elementary submodel such that ¢;,i € M;. Let §; = M; Nwy, and set
q = (A, U{6:}, {M;} UM,,). Fix an enumeration, {S¢ : ¢ <ws} of the countable
subsets of wo (recall we are assuming CH) and let C' be a cub of wy so that for all
vy€ Cand <7, [B]YC{Sc:¢<n~}C [ Inaddition, let {He : £ € wy} be
an enumeration of the countable subsets of H(w;). We are now ready to define our
pressing down functions.

For each wy < i € wy, let fo(i) = & € wy be such that the transitive (Mostowski)
collapse of M; is equal to He. Also let f1(i) = £ be such that He is equal to
the image of ¢; under the collapsing function. Define f2(:) = max(C' Ni) if i ¢ C,
f2(4) = w if cofinality of ¢ is w, otherwise set f2(i) = ¢ where M; Ni = Z,.

Forn > 2 and i € wy \ C, let f,(i) € 2 be any mappings just so long as for
each v € C and 7/ = min(C \ (v + 1)), the mapping i to (f,(i) : 3 < n € w) is
one-to-one on the set (v,v'). For i € C' with countable cofinality, simply ensure
that {f,(7) : 3 <n < w} is increasing cofinal in 1.

It should be reasonably clear that the f,’s are pressing down functions. Suppose
that 4, j are such that f,, (i) = f,(j) for all n. By the definitions of f,’s, it easily
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follows that both ¢, j are in C' and both have uncountable cofinality. Furthermore,
M; and M; will have the same transitive collapse with g; and g; being sent by that
collapse to the same element. By the definition of fo(j) = M;Nj = M;N¢, it follows
that {M;, M;} is a conforming system. Suppose that M € My, and M’ € M,, and
d=MnNw = M Nwy}. Assume p € ws is such that M and M’ are cofinal in
p. It follows immediately that p € M; N M;, hence p € i. Since M; and M, agree
on ¢ and their transitive collapses take My, s and Mg, 5 to the same set, it follows
that there is an M"” € My, 5 such that the transitive collapse of M; sends M" to
the same set that the transitive collapse of M; sends M’. Since M and M" must
agree on f, it follows that M and M’ also agree on p. The rest of the details that
(Ag, U{di}, My, UMy, U{M;, M;}) is the meet of qiT and q;( are straightforward.
To see that @ is Xj-complete, suppose that {g, : n € w} is a descending chain
in @, then simply ¢ = (U,, 4q.., U{Mg, : n € w}) is the needed lower bound. O

Lemma 3.3. If G is a Q-generic filter, then there is a function ¢ : U — w1 and a
cub C' such that the statement of wP; is forced by 1 to hold in the forcing extension
by P.

Proof. Let G be a generic filter for @ (we only have to meet the following dense
sets {D : v € v} where ¢ € D providing there is an M € M, such that F,, € M).
For each F, € U, fix a minimal § such that there is a ¢ € G and M € M, s such
that F, € M. We define (M) to be this 6. The set C is the closure of the set
A ={4,;: ¢ € G}. Tt is clear that to verify the property wP; we need only show
that the condition holds for § € A.

Suppose then that § € A and that ¢(F,) < ¢ for each v € B € [v]<¥. Fix
any 3 < 6. By the definition of ¢, there are ¢, € G so that F, € M, for some
M, € My, and such that M, Nw; = p(F,). By the definition of @ and by the
directedness of GG, there is a single ¢ € G, and for each v € B an M§ € M,,s such
that F., € M!. Assume that p € P is such that p IF N{F, : v € B} N (B,9) is
empty. Since § € M., we may replace F,, by F, \ § and remain in M, NU. Note
that the family {M, : v € B} is a finite conforming family. Therefore we can apply
Lemma 2.13 and observe that there is a £ € § and a p’ < p such that p’ I- § € F,
for each v € B. |

Theorem 3.4. It is consistent to have p = w3 and wPy. It follows that it is
consistent all compact spaces of weight at most wy are pseudoradial.
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