
COMPACT SPACES AND THE PSEUDORADIAL PROPERTY, II

ALAN DOW

Abstract. There is a model of set theory in which all compact spaces of

weight at most ω2 are pseudoradial.

1. Introduction

We show that 2ω2 can be pseudoradial. It is easily seen that if 2ω2 is pseudoradial,
then all compact spaces of weight at most ω2 are also pseudoradial.

A well-ordered sequence {aα : α ∈ κ} converges to a point x if every neigh-
borhood of x contains a final segment of the sequence, if {aα : α ∈ κ} ⊂ A, we
could say that x is a radial limit of A. The properties radial and pseudoradial (see
[1, 3]) are natural generalizations (and stand in the same relation to each other) of
the well-known properties Frèchet-Urysohn and sequential in which converging se-
quence is replaced by converging well-ordered sequence. A space X is radial if every
point in the closure of a set is a radial limit of the set, while a space is pseudoradial
if every radially closed set is closed.

Sapirovskii suggests in [5] that [0, 1]ω2 (equivalently 2ω2) should fail to be ℵ0-
pseudoradial (a property weaker than pseudoradial). It is shown in [2] that Kunen’s
set-theoretic principle P1 on ω1 implies that 2ω2 is indeed ℵ0-pseudoradial.

The situation for 2ω1 is simpler and better understood. The analogue of P1 for ω
is the assertion that the cardinal p is equal to the continuum and greater than ω1. It
is well-known that countable subsets of 2ω1 are radial if p > ω1 and the space itself
is pseudoradial if s > ω1. If 2κ is pseudoradial, then s > κ but this only serves to
guarantee that countable sets that fail to be closed will not be radially closed. We
study analogues for ω1 sized subsets which we call sP1 and wP1 (see Definition 2.1)
since they are topological versions of Kunen’s P1 principle. Although it is shown
in [2] that wP1 is equivalent to Sapirovskii’s ℵ0-pseudoradial for 2ω2 , wP1 is more
set-theoretic and easier to deal with in isolation. The technique of this paper is
based on the fact, proven in [2], that wP1 +p > ω2 implies that 2ω2 is pseudoradial.

Specifically, we start with a model in which Shelah’s strengthening, referred to
as GMA in [8], of Kunen’s P1 principle holds and we force with the usual finite
support iteration of length ω3 in which the factors are the usual σ-centered tower
filling posets (Booth). We can choose Shelah’s model [6] so that the Continuum
Hypothesis holds and 2ℵ1 = ℵ3. It is well known that p = ω3 = c will hold in
this extension. We will show that wP1 will also hold. It was shown by Juhasz and
Szentmiklossy [4] that Martin’s Axiom plus c > ω2 does not imply that [0, 1]ω2 is
pseudoradial hence we do need GMA.
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2. Elementary matrices

This section will establish properties that will be needed to apply Shelah’s prin-
ciple to a poset we define later. We let P denote the finite support iteration of
length ω3 in which the factors are the usual filter filling posets (Booth) with a
suitable enumeration of the names of filters of cardinality at most ω2. Conditions
p ∈ P have the form {〈γ, 〈tγp , Aγ

p〉 〉 : γ ∈ dom(p)} where dom(p) is a finite subset
of ω3, each tγp is a member of ω<ω and Aγ

p is a Pγ-name of a member of Aγ , which
is itself a Pγ-name forced by 1 to be a filter of infinite subsets of ω. For each
p ∈ P , we define p∗ to be the condition {〈γ, 〈tγp , ω̌〉 〉 : γ ∈ dom(p)}. It will simplify
notation if we also identify p∗ with the obvious function into ω<ω and suppress the
side conditions. We will use the notation q <w p to denote q ≤ p and q∗ = p∗.
Therefore, q∗ is the largest condition such that q <w q∗. Note that if p∗ ∪ r∗ is
a function (agree on their common domain), then p and r are compatible, indeed
p∧ r exists. For a condition p ∈ P and subset A of P , we will use p⊥, A⊥ to denote
the set of all conditions which are incompatible with p, respectively, each member
of A. Also, p ⊥ q denotes the relation that p and q are incompatible.

Definition 2.1. wP1 is the statement that whenever X ⊂ ℘(ω1) and |X | < 2ω1 ,wP1
then there are a uniform filter base U on ω1 so that |U ∩ {X, ω1 \X}| = 1 for each
X ∈ X , and an uncountable set C ⊂ ω1 and a function ϕ : U → ω1 such that

{U ∩ (β, γ) : β ∈ γ, U ∈ U , and ϕ(U) < γ}

has the finite intersection property for each γ ∈ C.

The statement in a sense reflects the finite intersection property of the filter
U to countable pieces of ω1. Therefore in order to show that wP1 holds in the
forcing extension by P , we suppose we have a family, X , of ω2 many P -names
of uncountable subsets of ω1. We fix a ε-chain {Mα : 0 < α ∈ ω2} of ω-closed
elementary submodels of cardinality ω1 (recall CH holds) containing this family
and so that the chain is continuous at ω1 limits. Let M denote the union of this
entire chain. We use this chain to factor the forcing. For convenience, we let M0

be the empty set.
We enumerate the family of all P -names of subsets of ω1 which are members of

M (including X of course), {Xγ : γ ∈ ν}, as well as P ∩M = {pγ : γ ∈ ν} in
such a way that for each α in ω2 all the Mα ∩P -names are listed before any names
that are not Mα ∩ P -names and so that for each such pair p, X, there is a γ so
that pγ = p and Xγ = X. For each γ ∈ ν, we will define a P -name Fγ so that
there is a q < pγ such that q  Fγ ∈ {Xγ , ω1 \ Xγ}. For each µ ∈ ω2, there is a
minimal γµ such that the collection {Xζ : ζ < γµ} enumerates all Bµ-names which
are in M. We define Fµ to be the (name of the) collection {Fζ : ζ < γµ}. To start
the induction, {Xζ : ζ < γ0} is simply an enumeration of the canonical B0 = {∅}
names for M∩℘(ω1). We select any uniform ultrafilter U on ω1 which is in M and,
for ζ < γ0, define Fζ to be Xζ if (suppressing the trivial forcing) it is a member of
U and to be ω1 \Xζ otherwise.

Since P is ccc, each Bα = Mα ∩ P is completely embedded in P . Given a filter
G on P , we use Gα to denote G ∩Bα, and, as is usual, for α ∈ ω3, Gα will denote
G ∩ Pα, where Pα is the set of conditions in P with support contained in α.

Lemma 2.2. For any p ∈ P and α ∈ ω2 there is a q ∈ Bα such that q∗ = p∗ ∩MαBalpha
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and so that every extension of q in Bα is compatible with p (i.e. q is basically a
projection of p).

Proof. We proceed by induction on γ ∈ dom(p) ∩Mα. Let Gγ be Pγ-generic such
that p � γ and q � γ are in Gγ (where q � γ denotes the element we have defined
till now). Set A = {r ∈ P ∩Mα : r ⊥ (p � γ + 1) and |tγr | ≥ |tγp |}. Since P is ccc,
there is a countable A′ ⊂ A such that (A′)⊥ = A⊥; note that A′ ∈ Mα. Therefore,
A′/Gγ = {r : r ∈ A′ and r � γ ∈ Gγ} is a member of Mα[Gγ ]. It follows that,
in V [Gγ ], p(γ) is incompatible with r(γ) for each r ∈ A′/Gγ . That is, there is a
B ⊂ ω such that the condition (tγp , B) is incompatible with r(γ) for all r ∈ A′/Gγ .
Since the only assumption we’ve made on Gγ is that p � γ and q � γ are in Gγ , we
have that

q � γ ∧ p � γ  (∃B ∈ Aγ) ( (p∗(γ), B) ⊥ {r(γ) : r ∈ A′/Gγ} ).

We show that q � γ forces the same statement. Assume that q′ ∈ Pγ ∩ Mα and
q′ ≤ q � γ. It follows, by our induction hypothesis then that every extension of
q′ in Mα ∩ P is compatible with both q � γ and with p � γ. Therefore, in Mα, q′

does not force the failure of the above statement. By elementarity, we see that Mα

models that q � γ has no extension which forces the failure of the statement, hence,
by the forcing lemma and elementarity, we have that q � γ forces the statement as
required. The definition of q(γ) is obtained by taking any Pγ-name in Mα of a B
as in the above existential statement. �

Definition 2.3. For p ∈ P and µ ∈ ω2, let p−µ denote the set of all conditions as
in Lemma 2.2. That is, q ∈ p−µ, if q ∈ Bµ, q∗ = p∗ ∩Mµ and r is compatible with
p for each r ≤ q in Bµ.

Proposition 2.4. For any p ∈ P and µ < ζ < ω2, if p′ ∈ p−ζ , then (p′)−µ ⊂ p−µ. fix-
In addition, there is a q <w p such that q−µ ⊂ (p′)−µ

Proof. Let p ∈ P , p′ ∈ p−ζ and q′ ∈ (p′)−µ . Since (q′)∗ = (p′)∗ ∩ Mµ and
(p′)∗ = p′ ∩Mζ , it follows that (q′)∗ = p∗ ∩Mµ. To show that q′ ∈ p−µ it remains
to show that for each r ∈ Bµ with r ≤ q′, we have that r is compatible with
p. Given such an r we have that r is compatible with p′ by definition of (p′)−µ.
Choose any r′ ∈ Bµ which is below p′ and r. By definition of p−µ and the fact
that p′ ∈ p−µ, it follows that r′ is compatible with p showing, of course, that r is
compatible with p.

Now for the existence of q, simply observe that the canonical meet of p and p′

will have the required property. �

Definition 2.5. If b ∈ Bα and p ∈ P , then

b Bα p w ϕ

will be understood to mean that if b ∈ Gα (a Bα-generic filter) then there is a q  ϕ
such that q−α ∩Gα 6= ∅ and q∗ \Mα = p∗ \Mα. Note that p must be compatible
with b in this situation.

The following result is obvious but since the notation is new, it is worth recording.

Proposition 2.6. If b Bα p 6w ϕ, then there is a q ≤ p, b such that q  ¬ϕ. factor

When it is clear from context, we will use q−µ  ϕ to abbreviate that b Bµ
ϕ

for all b ∈ q−µ. We also note that the set q−µ is centered.
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Let γ < ν (from our indexing) and let λ be minimal such that Xγ is a Bλ-
name. We define Fγ assuming that Fζ has been defined for ζ < γ. The inductive
assumption is that for µ < λ, Fµ is a Bµ-name of a maximal filter onM[Gµ]∩℘(ω1).

Case 1. There are Aγ ∈ [γ]<ω, pγ ≥ p ∈ Bλ, and µ < λ such that for every q < p,Xnotin
there is Hq ∈ Fµ such that,

q−µ  “q w ξ /∈ Xγ ∩
⋂
{Fζ : ζ ∈ Aγ} for all ξ ∈ Hq”

then µγ = µ and µ(Fγ) is max({µγ}∪{µ(Fζ) : ζ ∈ Aγ}). Note that µ(Fγ) < λ. We
define Fγ so that p  Fγ = (ω̌1 \Xγ) and p′  Fγ = ω̌1 for all p′ ∈ p⊥. Specifically,

Fγ = {(q, δ̌) : q ∈ Bλ, δ ∈ ω1, q ⊥ p′ or (q ≤ p′ and q  δ̌ /∈ Xγ)}

On the other hand,

Case 2. if there are no choices as in Case 1, we set Fγ to be the name forced byXin
pγ to be Xγ and to be ω1 by conditions in p⊥ analogous to Case 1. In this case
µγ = 0 and also set µ(Fγ) = 0 and Aγ = ∅.

Note that, by the failure of Case 1 and by the inductive assumption that Fµ is
a maximal filter over M[Gµ], we have the next claim.

Claim 1. If we are in Case 2 then for each A ∈ [γ]<ω and for each η there is a dense
below pγ (in Bλ) set of q such that there is Hq ∈ Fη with

q−η  “ξ ∈ Hq ⇒ q 6w ξ /∈ Fγ ∩
⋂
{Fζ : ζ ∈ A}” .

Proof. Take any p ≤ pγ , and note that by the failure of Case 1, there is some q < p
such that for this µ = η there is no Hq as in Case 1. Working in the model V [Gη],
we have that {ξ : q w ξ /∈ Xγ ∩

⋂
{Fζ : ζ ∈ A} is not a member of Fη. Since Fη

is a maximal filter, it follows that Hq, the Bη-name for {ξ : q 6w ξ /∈ Xγ ∩
⋂
{Fζ :

ζ ∈ A}, is in Fη. �

Lemma 2.7. If A ∈ [γ + 1]<ω, ξ ∈ ω1, and p ∈ P , thenobviouslemma

p  “ξ /∈
⋂
ρ∈A

Fρ” iff p−λ  “ξ /∈
⋂
ρ∈A

Fρ”

Proof. Note that for each ρ ∈ A, Fρ is a Bλ-name. Although Xρ and Fρ need not
be elements of Mλ, it does follow that for each ξ ∈ ω1, the name for Fρ ∩ [0, ξ] is a
member of Mλ. Therefore the result follows directly from elementarity and Lemma
2.2. �

Now we prove, by induction on γ, that the essence of the above Claim 1 also
holds when we are in Case 1.

Lemma 2.8. Suppose that A′ ∈ [γ]<ω and that ζ ≥ µ(Fρ) for each ρ ∈ {γ}∪A′∪Aγ .project
Then for each q′ ∈ P , there is a q < q′ and H ′ ∈ Fζ such that

q−ζ  “q 6w ξ /∈ Fγ ∩
⋂
{Fη : η ∈ A′} for ξ ∈ H ′”

Proof. Note that by Lemma 2.7, and by induction, we may work solely with condi-
tions in Bλ which are below pγ . Assume that q′ ∈ Bλ and also that we are in Case
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1 for γ. Now apply the inductive hypothesis to max(A′ ∪Aγ), and assume that we
have an H ′ ∈ Fζ and q < q′ such that

q−ζ  “q 6w ξ /∈
⋂
{Fη : η ∈ A′ ∪Aγ} for ξ ∈ H ′”.

Let Hq ∈ Fµγ be as in Case 1. By Proposition 2.4, we may assume that there
is some p′ ∈ (q−ζ) such that q−µγ = (p′)−µγ . We show that q and the canonical
name for Hq ∩H ′ are as required. Let ξ̇ be any Bζ-name of a member of Hq ∩H ′

in the sense that q−ζ  ξ̇ ∈ Hq ∩H ′. Therefore, since q−µγ  ξ̇ ∈ Hq by 2.7,

q−µγ  q w ξ̇ /∈ Xγ ∩
⋂
{Fη : η ∈ Aγ} .

Therefore we may fix r < q such that r−µγ  r <w q and

(2.1) r  ξ̇ /∈ Xγ ∩
⋂
{Fη : η ∈ Aγ} .

Since r−ζ  r <w q, it suffices to show that

r−ζ  r 6w ξ̇ /∈ Fγ ∩
⋂
{Fη : η ∈ A′} .

Assume otherwise, hence that by further extending r (maintaining r−ζ  r <w q)
we can obtain that

(2.2) r  ξ̇ /∈ Fγ ∩
⋂
{Fη : η ∈ A′} .

Now we still have, by definition of H ′, that r−ζ  r 6w ξ̇ /∈
⋂
{Fη : η ∈ Aγ ∪A′}.

Therefore, there is an r′ < r such that

r′  ξ̇ ∈
⋂
{Fη : η ∈ Aγ ∪A′} .

Since we are in Case 1, and we have the above forcing statements 2.1 and 2.2,
we have our contradiction since, seemingly, r′  ξ̇ /∈ Xγ ∪ (ω1 \Xγ). �

Now we relativize lemma 2.8 to an elementary submodel. In the statement below,
the restriction to α ∈ M is what allows us to overcome the complication caused by
the fact that {Bα : α ∈ ω2} is not a finite support iteration.

Lemma 2.9. Suppose M ≺ H(θ), α ∈ M , and that A ∈ M ∩Mα is a subset of P . perpw
With p ⊥w A understood to mean there is some r <w p such that r ⊥ A, we have
that if p ⊥w A, then (p∗ ∩M) ⊥w A.

Proof. First recall that p ⊥w A is equivalent to (p−α) ⊥w A by Lemma 2.2. Thus
we can assume that p ∈ Bα ⊂ Mα.

We prove the lemma by induction on |dom(p)|. In the first instance assume
that γ0 = max(dom(p) ∩ M) < max dom(p). The result will follow by showing
that p1 = p � (γ0 + 1) ⊥w A. Fix any r <w p such that r ⊥ A. Note that
r1 = r � (γ0 + 1) <w p1, so we show r1 ⊥w A. Towards a contradiction, assume
there is an a ∈ A such that r1 6⊥ a. Since P is ccc and A ∈ M ∩ Mα, we may
assume that a ∈ M ∩Mα. Therefore dom(a) ⊂ M ∩Mα, and it follows that r 6⊥ a
– a contradiction.

Now assume that γ0 = maxdom(p) ∈ M and (without loss of generality) that
p ⊥ A. Set B = {q ∈ Pγ0 : (∀q̃ < q) q̃ ∈ Pγ0+1 and q̃∗(γ0) = p∗(γ0) ⇒ q̃ 6⊥w A}.
Note that B is in M∩Mα since p∗(γ0) is simply some member of ω<ω. We check that
p � γ0 ⊥w B (in fact p � γ0 ⊥ B). Otherwise, there is a b ∈ B such that p � γ0 6⊥ b
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(again, we can assume b ∈ M ∩Mα). Define b̃ = p ∧ b in the obvious sense. Check
that b̃ ∈ Pγ0+1, b̃∗(γ0) = p∗(γ0), so we must have that b̃ 6⊥w A. However, clearly
b̃ ≤ p, hence b̃ ⊥ A. Now, by our induction assumption, ((p � γ0)∗ ∩M) ⊥w B, so,
working in M ∩ Mα, there is an r <w (p � γ0)∗ such that there is a r̃ witnessing
failure to be in B so that r̃ ⊥w A. This shows that (p∗ ∩M) ⊥w A. �

The next lemma is the key property that allows us to “weakly” replace a member
F of the filter Fλ by one from Fζ for some ζ < λ.

Lemma 2.10. Suppose M ≺ H(θ), F ∈ Fλ ∩M and ζ ∈ M \ µ(F ), and p ∈ P ,filterM
then there is a q < p and H ′ ∈ Fζ ∩M such that q∗ \M ⊂ p∗, q∗ \Mλ ⊂ p∗ and

q−ζ  “q 6w ξ /∈ F for ξ ∈ H ′ ∩M”

Proof. Let q be chosen as in Lemma 2.8 and set q′ = q∗∩M , hence q′ ∈ M . Observe
that

q−ζ “  q′ 6w ξ /∈ F for each ξ ∈ Hq ” .

Therefore,

M |= (∃q < q′)(∃H ∈ Fζ) (q∗ ⊃ q′) and q−ζ  “(∀ξ ∈ H) q′ 6w ξ /∈ F ”

Thus, there are q1 ∈ M ∩Bζ and H ∈ M ∩Fζ such that q1  “(∀ξ ∈ H) q′ 6w ξ /∈
F ”, and q∗1 ⊃ q′. Since q1 ∈ M and q∗1 ⊃ q′, it follows that q∗1 ∪ q∗ is a function;
thus q and q1 are compatible. In particular, q1 and q have a common extension,
which we denote by q2, such that q−ζ

2  q2 <w q .
We show that q2 and H ′ are as required. In fact, this is immediate from Lemma

2.9 by working in V [G−ζ ] and noting that A = {a ∈ P : a  ξ ∈ F} is in
M [G−ζ ]∩Mλ[G−ζ ] for each ξ ∈ M ∩ω1 where λ is minimal (hence in M) such that
F ∈ Mλ. �

Lemma 2.11. Suppose M ≺ H(θ), F ∈ Fλ ∩M and ζ ∈ M , and p ∈ P , there isfilterM+
a q < p and H ′ ∈ Fζ ∩M such that q∗ \M ⊂ p∗, q∗ −Mλ ⊂ p∗ and

q−ζ  “q 6w ξ /∈ F for ξ ∈ H ′ ∩M”

Proof. We proceed by induction on λ. Apply Lemma 2.10 to obtain q1 ≤ p, H1 ∈
Fµ(F ) ∩M as in Lemma 2.10, so that

q
−µ(F )
1  q1 6w ξ /∈ F for all ξ ∈ H1 ∩M .

Apply the induction hypothesis to H1 to obtain q2 < q1 and H2, again as in the
statement of the Lemma, so that

q−ζ
2  q2 6w ξ /∈ H1 for all ξ ∈ H2 ∩M .

It should be clear that (q∗2 \M)∪ (q∗2 \Mλ) ⊂ p∗. Now suppose that r ≤ q2 is such
that r−ζ  r ≤w q2 and that r  ξ /∈ F . Noting that r−µ(F )  r <w q1 it follows
that r−µ(F )  ξ /∈ H1. This is because H1 is a Bµ(F )-name and no extension of
r � Mµ(F ) can force ξ ∈ H1. However, this contradicts that r−ζ  q2 6w ξ /∈ H1. �

Definition 2.12. A family M is a conforming system if each M ∈ M is an ele-
mentary submodel of some Hθ, and given M,M ′ ∈ M, there is an ∈-isomorphism
f : M ′ → M such that f is the identity on M ∩M ′ and M ∩ µ = M ′ ∩ µ for each
µ ∈ ω2 such that M ∩ µ and M ′ ∩ µ are both cofinal in µ.
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Lemma 2.13. If M = {Mi : i ∈ n} is a finite conforming system, and if Fi ∈conform
Mi ∩F for each i, then for each p ∈ P , there is an A ∈ F0 ∩

⋃
i<n Mi such that for

each ξ ∈ A ∩M0, there is a q < p such that q  ξ ∈ Fi for each i < n.

Proof. Let λi be minimal such that Fi is a Bλi
-name (note that λi ∈ Mi) and

enumerated so that λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1. We proceed by induction on n
and then on the lexicographic ordering on 〈λn−1, λn−2, . . . , λ0〉.

For n = 1 we just apply Lemma 2.11. For each i, j < n, let fi,j denote the
isomorphism from Mi to Mj . If λj ∈ Mi for some i 6= j, then we can replace Fi

by the canonical name for Fi ∩ fj,i(Fj). If we have some ξ ∈ ω1 ∩Mi and q such
that q  ξ ∈ fj,i(Fj), then note that q  ξ ∈ Fj . This is simply because the set,
D(i, ξ) = {r : r  ξ ∈ fj,i(Fj)} is determined by each of D∗(i, ξ) = {r∗ : r ∈
Bλi

and r∗  ξ ∈ fj,i(Fj)} and D∗(i, ξ)∩Mi, and that fi,j is the identity mapping
on D∗(i, ξ) ∩Mi . Therefore we may assume that λi /∈ Mj for i < j.

The above situation will recur in other forms and it will be useful to recall some
standard notation. Given an ordinal ξ and a name F , [[ξ ∈ F ]] normally denotes
the unique element in the complete Boolean algebra generated by P which is the
join of the open subset of P consisting of those elements that force the statement
ξ ∈ F . We will instead treat [[ξ ∈ F ]] as that open subset of P . Certainly there
will be a minimal ζ such that [[ξ ∈ F ]] ∩ Bζ is predense in [[ξ ∈ F ]], and since
P is ccc, ζ will not have uncountable cofinality. Let us more loosely denote this
relationship by saying that [[ξ ∈ F ]] is a member of Bζ when we really mean that
Bζ ∩ [[ξ ∈ F ]] is predense. If there are i < j < n such that, for each ξ ∈ Mj ∩ ω1,
the corresponding ζ for [[ξ ∈ Fj ]] is in Mi ∩ λi, then as above we can replace Fi by
fj,i(Fj) ∩ Fi and apply the induction hypothesis and obtain good behavior for Fj

for free.
For each i < n, set λ̃i = sup(Mi ∩ λi). We first show that there cannot be

i 6= j such that Mi is cofinal in λ̃j . Assume otherwise; hence, by the definition
of conforming system, Mi ∩ λ̃j = Mj ∩ λ̃j . If λ̃j = λj , then λj has countable
cofinality, as does fi,j(λj) = µi ∈ Mi. Therefore, fi,j(Mj ∩ λj) is cofinal in µi

which would imply that µi = λj . This contradicts our current assumption that
λj /∈ Mi. Therefore we have shown that λj has uncountable cofinality in this
situation. However, we would then be in the situation of the previous paragraph
since for each ξ ∈ Mj ∩ω1, the ζ associated with the set [[ξ ∈ Fj ]] will be a member
of Mj ∩ λj ∈ Mi.

Therefore we have shown that we may assume that for each j there is a ζj ∈
Mj ∩λj such that [ζj , λ̃j)∩Mi is empty for each i 6= j. Let i be such that λ̃i (hence
also ζi) is maximal. It is easily checked that λ̃j < ζi for each j 6= i. Let p1 ≤ p be
chosen according to Lemma 2.11 together with Hi so that

p−ζi

1  p1 6w ξ /∈ Fi for each ξ ∈ Hi .

Apply the induction hypothesis to the family {Hi} ∪ {Fj : j 6= i, j < n − 1} to
obtain A ∈ M0 ∩ F0 such that for each ξ ∈ A ∩ M0, there is a q < p1 such that
q  ξ ∈ Fj

Fix any ξ ∈ A∩M0 and q < p1 such that q  ξ ∈ Fj for all j 6= i and q  ξ ∈ Hi.
Observe that [[ξ ∈ Fj ]] is in Bζi for each j 6= i since λ̃j < ζi. Therefore

q−ζi  ξ ∈ Fj ∩Hi for each j 6= i
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Now we have that
q−ζi Bζi

p1 6 ξ /∈ Fi .

By Proposition 2.6, there is an r ∈ P so that r ≤ p1, r−ζi ≤ q−ζi , and r  ξ ∈ Fi.
Clearly, r  ξ ∈ Fj for all j < n. �

3. Property wP1 and p > ω1

In this section we prove that if the ground model satisfies Shelah’s generalized
MA principle, then V [G] is a model of wP1.

Recall that the axiom is the following:

Definition 3.1. [7, page264] [GMA] If Q is an ℵ1-complete poset such that for
any {qi : i ∈ ω2} ⊂ Q, there are q†i ≤ qi (for i ∈ ω2) and pressing down functions
fn : ω2 \ {0} → ω2 such that

if i < j and (∀n)(fn(i) = fn(j)), then q†i ∧ q†j exists

then for any family of fewer than 2ℵ1 = ω3 dense open subsets of Q, there is a filter
on Q which meets each of them.

Fix the family U = {Fγ : γ ∈ ν} as in the previous section. Our poset Q is
defined as follows. A condition q ∈ Q consists of a pair (Aq,Mq) where Aq ∈ [ω1]ω

and Mq =
⋃
{Mq,α : α ∈ A} and

(1) each M ∈ Mq is a countable family of elementary submodels of some (fixed)
suitably large Hθ,

(2) for each M ∈ Mq, P and U are in M ,
(3) for each M ∈ Mq,α, M ∩ ω1 = α
(4) Mq,α is a conforming system,
(5) for each α < β ∈ A and M ∈ Mq,α, there is an M ′ ∈ Mq,β , M ∈ M ′.

The ordering on Q is q < q′ providing Aq is an end extension of Aq′ , and
Mq′ ⊂ Mq.

Lemma 3.2. The poset Q satisfies the requirements in the Axiom GMA

Proof. Suppose we are given {qi : i ∈ ω2} ⊂ Q. For each i ∈ ω2, let Mi be a
countable elementary submodel such that qi, i ∈ Mi. Let δi = Mi ∩ ω1, and set
q†i = (Aqi

∪ {δi}, {Mi} ∪Mqi
). Fix an enumeration, {Sζ : ζ < ω2} of the countable

subsets of ω2 (recall we are assuming CH) and let C be a cub of ω2 so that for all
γ ∈ C and β < γ, [β]ω ⊂ {Sζ : ζ < γ} ⊂ [γ]ω. In addition, let {Hξ : ξ ∈ ω1} be
an enumeration of the countable subsets of H(ω1). We are now ready to define our
pressing down functions.

For each ω1 ≤ i ∈ ω2, let f0(i) = ξ ∈ ω1 be such that the transitive (Mostowski)
collapse of Mi is equal to Hξ. Also let f1(i) = ξ′ be such that Hξ′ is equal to
the image of qi under the collapsing function. Define f2(i) = max(C ∩ i) if i /∈ C,
f2(i) = ω if cofinality of i is ω, otherwise set f2(i) = ζ where Mi ∩ i = Zζ .

For n > 2 and i ∈ ω2 \ C, let fn(i) ∈ 2 be any mappings just so long as for
each γ ∈ C and γ′ = min(C \ (γ + 1)), the mapping i to 〈fn(i) : 3 ≤ n ∈ ω〉 is
one-to-one on the set (γ, γ′). For i ∈ C with countable cofinality, simply ensure
that {fn(i) : 3 ≤ n < ω} is increasing cofinal in i.

It should be reasonably clear that the fn’s are pressing down functions. Suppose
that i, j are such that fn(i) = fn(j) for all n. By the definitions of fn’s, it easily
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follows that both i, j are in C and both have uncountable cofinality. Furthermore,
Mi and Mj will have the same transitive collapse with qi and qj being sent by that
collapse to the same element. By the definition of f2(j) = Mj∩j = Mi∩i, it follows
that {Mi,Mj} is a conforming system. Suppose that M ∈ Mqi

and M ′ ∈ Mqj
and

δ = M ∩ ω1 = M ′ ∩ ω1}. Assume µ ∈ ω2 is such that M and M ′ are cofinal in
µ. It follows immediately that µ ∈ Mi ∩Mj , hence µ ∈ i. Since Mi and Mj agree
on i and their transitive collapses take Mqi,δ and Mqj ,δ to the same set, it follows
that there is an M ′′ ∈ Mqi,δ such that the transitive collapse of Mi sends M ′′ to
the same set that the transitive collapse of Mj sends M ′. Since M and M ′′ must
agree on µ, it follows that M and M ′ also agree on µ. The rest of the details that
(Aqi

∪ {δi},Mqi
∪Mqj

∪ {Mi,Mj}) is the meet of q†i and q†j are straightforward.
To see that Q is ℵ1-complete, suppose that {qn : n ∈ ω} is a descending chain

in Q, then simply q = (
⋃

n Aqn
,
⋃
{Mqn

: n ∈ ω}) is the needed lower bound. �

Lemma 3.3. If G is a Q-generic filter, then there is a function ϕ : U → ω1 and a
cub C such that the statement of wP1 is forced by 1 to hold in the forcing extension
by P .

Proof. Let G be a generic filter for Q (we only have to meet the following dense
sets {Dγ : γ ∈ ν} where q ∈ Dγ providing there is an M ∈ Mq such that Fγ ∈ M).
For each Fγ ∈ U , fix a minimal δ such that there is a q ∈ G and M ∈ Mq,δ such
that Fγ ∈ M . We define ϕ(M) to be this δ. The set C is the closure of the set
A =

⋃
{Aq : q ∈ G}. It is clear that to verify the property wP1 we need only show

that the condition holds for δ ∈ A.
Suppose then that δ ∈ A and that ϕ(Fγ) < δ for each γ ∈ B ∈ [ν]<ω. Fix

any β < δ. By the definition of ϕ, there are qγ ∈ G so that Fγ ∈ Mγ for some
Mγ ∈ Mqγ and such that Mγ ∩ ω1 = ϕ(Fγ). By the definition of Q and by the
directedness of G, there is a single q ∈ G, and for each γ ∈ B an M ′

γ ∈ Mq,δ such
that Fγ ∈ M ′

γ . Assume that p ∈ P is such that p 
⋂
{Fγ : γ ∈ B} ∩ (β, δ) is

empty. Since β ∈ Mγ , we may replace Fγ by Fγ \ β and remain in Mγ ∩ U . Note
that the family {Mγ : γ ∈ B} is a finite conforming family. Therefore we can apply
Lemma 2.13 and observe that there is a ξ ∈ δ and a p′ ≤ p such that p′  ξ ∈ Fγ

for each γ ∈ B. �

Theorem 3.4. It is consistent to have p = ω3 and wP1. It follows that it is
consistent all compact spaces of weight at most ω2 are pseudoradial.

References
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[3] Horst Herrlich. Quotienten geordneter Räume und Folgenkonvergenz. Fund. Math., 61:79–81,

1967.
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