
ON RANČIN’S PROBLEM

ANGELO BELLA1 AND ALAN DOW2

Abstract. Few observations on a paper of Arhangel’skĭı and Buzyakova led
us to consider Rančin’s problem. The main result here is the construction

under ♦ of a compact c-sequential space that is not sequential.

1. Hušek number and c-sequentiality

All spaces are assumed T2. For undefined notions we refer to [6]. Given a space
X and a point x ∈ X, the Hušek number Hus(x,X) is the smallest cardinal κ
such that for any set A ⊆ X \ {x} of regular cardinality |A| ≥ κ there exists an
open neighbourhood U of x such that |A| = |A \ U | [1]. Clearly, we always have
Hus(x,X) ≤ ψ(x,X)+. As is standard, Hus(X) = sup{Hus(x,X) : x ∈ X}.

A space is linearly Lindelöf if every open cover which is totally ordered by inclu-
sion has a countable subcover. Equivalently, X is linearly Lindelöf if every subset
of uncountable regular cardinality has a complete accumulation point.

Proposition 1. [1] (Proposition 4) Let X be a compact space and x ∈ X. Then
Hus(x,X) ≤ ω1 if and only if X \ {x} is linearly Lindelöf.

Since there are locally compact linearly Lindelöf spaces which are not Lindelöf
[12] and [13], a compact space X satisfying Hus(x,X) ≤ ω1 may fail to be first
countable at x. However, the following remains open:

Question 2. [1] Is a compact space X satisfying Hus(X) ≤ ω1 always first count-
able?

Since a compact space of uncountable tightness contains an uncountable conver-
gent free sequence [11], we immediately get:

Proposition 3. A compact space X such that Hus(X) ≤ ω1 has countable tight-
ness.

Arhangel’skĭı and Buzyakova pointed out in [1] (Theorem 6) that there is a
positive answer to Question 2 under CH. This result can be improved as follows:

Proposition 4 (2ℵ0 < ℵω). A compact space X satisfying Hus(X) ≤ ω1 is first
countable.
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Proof. If X is not first countable, then there is a set A ⊆ X such that |A| ≤ ω1

and χ(p,A) ≥ ω1 for some p ∈ A (see 6.14b in [9]). Since X is countably tight,
the weight of the subspace A does not exceed 2ℵ0 < ℵω. Thus, χ(p,A) is an
uncountable regular cardinal κ. Now, the compactness of A implies the existence
of a sequence of length κ in A \ {p} converging to p. As Hus(A) ≤ Hus(X), we
reach a contradiction. �

A weaker question is:

Question 5. [1](Question 4) Let X be a compact space such that Hus(X) ≤ ω1.
Is it true that |X| ≤ 2ℵ0?

Recall that a space X is tame if |A| ≤ 2|A| holds for every A ⊆ X [10]. Here we
call a space X countably tame if every separable subspace has cardinality at most
the continuum. Of course every sequential space is tame.

Proposition 6. Let X be a compact space satisfying Hus(X) ≤ ω1. If X is
countably tame, then |X| ≤ 2ℵ0 .

Proof. Assume by contradiction that |X| > 2ℵ0 . Since X has countable tightness
and is countably tame, there exists a closed subspace Y satisfying |Y | = (2ℵ0)+.
Since a space is linearly Lindelöf if and only if every open cover has a subcover
of countable cofinality, we see that a linearly Lindelöf space of cardinality (2ℵ0)+

has Lindelöf degree not exceeding 2ℵ0 . Therefore for every x ∈ Y we must have
χ(x, Y ) ≤ 2ℵ0 . For each x ∈ Y let Ux be a base of open neighbourhoods at x
satisfying |Ux| ≤ 2ℵ0 . Since Y is countably tight and countably tame, we can
construct a non-decreasing collection {Fα : α < ω1} of closed subsets of Y in such
a way that:
1) |Fα| ≤ 2ℵ0 for each α;
2) if Y \

⋃
V 6= ∅ for a finite V ⊆

⋃
{Ux : x ∈ Fα}, then Fα+1 \

⋃
V 6= ∅.

As Y has countable tightness, the set F =
⋃
{Fα : α < ω1} is closed. Since

|F | ≤ 2ℵ0 , we must have F 6= Y . Now, the usual closing-off argument leads to a
contradiction with condition 2. �

A space X is c-sequential [15] if for any closed set F ⊆ X and any non-isolated
point x ∈ F there is a sequence in F \ {x} converging to x.

A significant strengthening

Proposition 7. [1] (Theorem 13) A countably compact space X satisfying Hus(X) ≤
ω1 is c-sequential.

In [1], page 163, the authors claimed that Martin’s Axiom implies that a compact
c-sequential space is sequential. They then conclude (Corollary 14) that under
Martin’s Axiom every compact space X satisfying Hus(X) ≤ ω1 is sequential.
While the latter assertion may well be true (even in ZFC), the former is false. As
we will see in the next section, even CH is not enough.

2. Rančin’s problem

Rančin in [15] formulated the following:

Question 8. Is a compact c-sequential space sequential?
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The fact that a compact space of uncountable tightness has a convergent un-
countable free sequence [11] implies that a compact c-sequential space is countably
tight. Hence, Rančin’s question has a positive answer under PFA [2] and in some
models of CH [7]. Malykhin announced in 1990 [14] the existence of a counterexam-
ple in a model satisfying (t) + 2ω < 2ω1 , but he never published this result. During
the preparation of this note, he replied to a request for more information about
it by saying “I left topology in 1999 and I do not remember if I have ever proved
that fact”. However, a much stronger counterexample (also in a model in which
Martin’s Axiom fails) of a compact C-closed non-sequential space is described in
[5]. A space X is C-closed [8] if every countably compact subset is closed. A C-
closed space is necessarily c-sequential. Here we will present a negative answer to
Rančin’s problem under ♦.

Theorem 9. ♦ implies there exists a compact c-sequential space which is not se-
quential.

The remainder of this section is dedicated to the proof of this theorem. We will
construct a closed subset X of the uncountable product 2ω1 as the inverse limit of
the system 〈Xα : α ∈ ω1〉 with the usual projection maps being the bonding maps.
One could think of the construction of Fedorchuk’s space as a good prototype.

We will ensure that X has cardinality ℵ1 and is the union of two disjoint subsets.
There will be a dense countably compact subset of points of countable character.
These will be identified and labelled as the points {xα : α ∈ ω1}. This set of points
will be dense but proper, and since it is countably compact this ensures that X is
not sequential.

The complement, call it Y , in X of that dense first countable subset will be
indexed as {yα : α ∈ ω1}. We will ensure that any subset of the dense first
countable subset that is not compact, will have infinitely many of the yα in its
closure. Also, we ensure that if A is a non-discrete subset of {yα : α ∈ ω1} then
each non-isolated point of A will be the limit of a converging sequence from A.

These properties ensure that X is c-sequential. Indeed, suppose that F ⊂ X is
closed and let z be a non-isolated point of F . We have to show there is a sequence
from F converging to z. If z has countable character, then this is obvious. This
means that z is equal to yα for some α ∈ ω1. Also let A denote the set of yβ that
are in F . We first check that yα is a limit point of A. To see this, let W be any
clopen neighborhood of yα, and assume for a contradiction that W ∩A is just equal
to yα. Since yα is a limit point of W ∩ F , we have that W ∩ F ∩ {xβ : β ∈ ω1}
is not compact, and by assumption, has infinitely many limit points in A. Finally,
now that we know that yα is a limit of A, we are finished by the assumption that
A will have a sequence converging to yα.

Let E denote the stationary set consisting of limit of limits. Let {Lξ : ξ ∈ ω1\E}
enumerate the infinite countable subsets of ω1 in such a way that Lξ ⊂ ξ. For
technical convenience we arrange that for each β ∈ E and ` ∈ ω, Lβ+` = ω. This
implies CH but, in fact, we will assume that ♦ holds. In fact, suppose that there
is a partition {E0, E1, E2} of E into disjoint stationary sets, and that there is a
sequence {aα : α ∈ ω1} such that, for each α, aα is a subset of α, and for all sets
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A ⊂ ω1, the set Ei(A) = {δ ∈ Ei : aδ = A∩ δ} is stationary for each i = 0, 1, 2. We
omit the straightforward verification that this assumption is equivalent to ♦.

As a technical device, for each β ∈ ω1, let eβ be any bijection from β to ω

We define, (as we said), Xα ⊂ 2α, as well as, xαβ , y
α
β ∈ Xα (for β ≤ α). We also

define countable sets τα ⊂ α and ordinals γα satisfying these inductive assumptions
(the role of the τα are to ensure that there are converging sequences in Y ). For
each ω ≤ β ≤ α,

(1) Xα is a compact subset of 2α that projects onto Xβ ,
(2) Xn = 2n for all n ∈ ω and Xω = 2ω,
(3) {xωn : n ∈ ω} and {yωn : n ∈ ω} are arbitrary disjoint dense subsets of Xω,

(4) xαβ , y
α
β are points in Xα such that xαβ � β = xββ and yαβ � β = yββ ,

(5) xαβ is the only point in Xα that projects onto xββ ,

(6) {xαξ : ξ ≤ α} and {yαξ : ξ ≤ α} are disjoint and dense in Xα,

(7) if β < α, then the set {xαξ : ξ ∈ Lβ} has a limit in {xαγ : γ ≤ α},
(8) τβ is an infinite subset of β, and {yαξ : ξ ∈ τβ} converges to yαγβ ,

(9) if α ∈ E0, and if the point χaα (the characteristic function of aα) is a point
of Xα that is not an element of {yαβ : β < α}, then xαα is chosen to be χaα ,

(10) if β ∈ E1 and if there is a unique ζβ < β such that yβζβ is in the closure of

{xβξ : ξ ∈ aβ}, then, for all ` ∈ ω such that β + ` ≤ α, each of the points

yαζδ and yαβ+` are limits of {xαξ : ξ ∈ aβ},
(11) if β ∈ E2 and if γ < β is such that yβγ is a limit point of {yβξ : ξ ∈ aβ}, then

(a) if α < β + eβ(γ), then yαγ is still a limit point of {yαξ : ξ ∈ aβ}, and

(b) if δ = β + eβ(γ) ≤ α, then γδ = γ and τδ ⊂ aβ (and by clause 8)
{yαξ : ξ ∈ τδ} converges to yαγ .

Before actually carrying out the induction, let us verify that the resulting space
Xω1

= X has the desired properties. Naturally, for each β ∈ ω1, we let the points
xβ and yβ respectively, denote the limit of the cohering sequences {xαβ : β ≤ α ∈ ω1}
and {yαβ : β ≤ α ∈ ω1}.

Clause (5) ensures that each xβ is a Gδ and so, a point of countable character
in X. Clause (7) ensures that the subset {xβ : β ∈ ω1} is countably compact. As
above, let Y denote the set {yβ : β ∈ ω1}. Now we show that X \ Y is the set
{xβ : β ∈ ω1}. Let x be any point of X \ Y and let A denote the set of values
ξ ∈ ω1 such that x(ξ) = 1. In other words, x is the characteristic function of A.
Recall that E0(A) is a stationary subset of E0 and this is the set of δ ∈ E0 such
that aδ = A ∩ δ. Since x ∈ X we have that x � δ is a point of Xδ for all δ. Assume
there is a δ ∈ E0(A) such that x � δ is not an element of {yδβ : β < δ}. By property

(9), we then have that xδδ = x � δ, and then by property (5), x = xδ. So suppose
there is no such δ. Then, for each δ ∈ E0(A), there is βδ < δ such that x � δ = yδβδ .

By the pressing down lemma, there is (essentially) a single such β. But then it
follows that x = yβ .

Now we just have to prove those two properties of Y described in the third
paragraph. First, suppose that A ⊂ ω1 satisfies that {xα : α ∈ A} is a closed but
not compact subset of X \Y . Of course this means that there is a β ∈ ω1 such that
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yβ is a limit point of {xα : α ∈ A}. We have to prove that this set has infinitely
many limit points in Y . In fact, by intersecting with a clopen neighborhood of yβ ,
it is easy to see that it suffices to prove that it has more than one limit. We leave
as an exercise that there is a cub C satisfying that for all δ ∈ C, the point yδβ is

the unique limit point in {yδξ : ξ ∈ δ} of the set {xδα : α ∈ A ∩ δ}. For uniqueness
we just need witnessing basic clopen neighborhoods with support below δ for each
β 6= ξ ∈ δ. Choose any δ ∈ E1(A)∩C. Property (10) ensures that {xξ : ξ ∈ aδ ⊂ A}
has infinitely many limits in Y .

Finally we consider a subset A of ω1 such that {yα : α ∈ A} is not discrete. Fix
any β ∈ ω1 such that yβ is a limit. Again, it is a basic exercise to show that there
is a cub C such that for all δ ∈ C, yβ � δ is a limit of the set {yξ � δ : ξ ∈ A ∩ δ}.
Here is the proof of that (not using elementary submodels): define an increasing
function f from ω1 to ω1 so that for each γ ∈ ω1 and each finite H ⊂ γ, f(γ) is
large enough so that there is a ξ ∈ A ∩ f(γ) such that yξ is in the basic clopen
neighborhood yβ obtained by restricting to the coordinates in H. If δ satisfies that
f(γ) < δ for all γ < δ, then δ ∈ C. Now choose any δ ∈ E2(A) ∩ C and check
that clause (11) guarantees that with ` = eδ(β), Lδ+` ⊂ A ∩ δ and the sequence
{yξ : ξ ∈ Lδ+`} converges to yβ .

Now it remains to carry out the induction. We can use this next lemma in each
step.

Lemma 10. Assume that X is a compact 0-dimensional metric space. Let z be
any non-isolated point of X. Assume that {σn : n ∈ ω} are sequences that converge
to z, and that {τn : n ∈ ω} are sets that have z as a limit. Further assume
that for each n,m ∈ ω, z is a limit of τn \

⋃
{σk : k < m}. Then there is a

partition U,W of X \{z} into non-compact open sets satisfying that for each n ∈ ω
σn is almost contained in U , while, for each n,m, z is a limit point of each of
U ∩ τn \

⋃
{σk : k < m} and W ∩ τn \

⋃
{σk : k < m}.

Proof. Let {B` : ` ∈ ω} enumerate the family of all compact open subsets of
X \ {z}. For convenience, let A` denote the union of the family {Bk : k ≤ `}.
Another assumption that we make for convenience is that we assume that the
family of sequences {σk : k ∈ ω} is increasing. We will recursively choose a sequence
{`k : k ∈ ω} so that the sequence {B`k : k ∈ ω} are pairwise disjoint and converge
to z. That is, if W is the union of any infinite subsequence of this sequence then
we will have that U = X \ ({z} ∪W ) will be open. Choose `0 to be minimal such
that B`0 meets τ0 and is disjoint from σ0. At stage k, we choose `k to be minimal
so that

(1) B`k is disjoint from A`k−1
,

(2) B`k is disjoint from σk
(3) B`k meets τj for each j ≤ k.

To see there is such a value `, we just note that z is a limit of each of the sets
τj \

(
σk ∪A`k−1

)
. For each such j ≤ k, choose a point zkj from each of these sets,

and there is an ` such that {zkj : j ≤ k} ⊂ B` while B` is disjoint from σk ∪A`k−1
.

Finally, set W equal to
⋃
{B`2k : k ∈ ω}. By construction W is almost disjoint

from each σn. Additionally, W meets τn \ (σk ∪Ak) for each pair n, k and so
W ∩ τn \ σk has z in its closure. It follows similarly that U ∩ τn \ σk has z in its
closure for each n, k. �
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Now we show how to select {xαβ : β ≤ α}, {yαβ : β ≤ α} and τα, γα depending
on the value of ω ≤ α ∈ ω1. Let δ denote the largest limit such that δ ≤ α and let
¯̀∈ ω be fixed so that α = δ + ¯̀. If δ = α, then let Xα denote the intersection of
the family {Xβ × 2α\β : β < α} (i.e. the inverse limit). Also, for each β < α, let
xαβ , y

α
β denote the unique points in Xα satisfying that xαβ � γ = xγβ and yαβ � γ = yγβ

for each β < γ < α.
We proceed in cases:

Case 1.1: α = δ /∈ E. Clearly items (9)-(11) do not apply in this case. Since
the closure of {yαn : n ∈ ω} maps onto Xω, we can choose a point yαα /∈ {xαβ : β < α}
in this closure. Also choose τα ⊂ ω so that {yαn : n ∈ τα} converges to yαα , and set
γα = α. Similarly we can choose xαα ∈ Xα simply so that it is not in {yαβ : β ≤ α}.
Now we verify the inductive conditions (1)-(8). Items (1)-(4) and item (6) are
immediate. Item (5) holds by the induction hypothesis and because we are at a
limit step. Item (7) is vacuous, and τα was chosen so that (8) holds when we set
γα = α.

Case 1.2: If 0 < ¯̀, then let β be the predecessor of α. Clearly we have already

chosen points xβξ , y
β
ξ in Xβ for all ξ ≤ β. Since δ /∈ E, the main task is to ensure

item (7). If {xβξ : ξ ∈ Lβ} has a limit point z that is not in {yβξ : ξ ≤ β}, then

the construction is trivial. We let Xα = Xβ × {0} and, for all ξ ≤ β, both xαξ and

yαξ are the unique points of Xα that projects onto xβξ , y
β
ξ respectively. We let xαα

denote the unique point of Xα that projects onto z. The choice of yαα is again taken
to be any limit point (not among {xαξ : ξ ≤ α}) of {yαn : n ∈ ω} and we let τα ⊂ ω

be chosen so that {yαn : n ∈ τβ} converges to yαα . Set γα = α. The verification of
the inductive conditions proceeds as in Case 1.1.

So now assume that z is in the set {yβξ : ξ ≤ β}. It is possible that z is the

unique limit of the set {xβξ : ξ ∈ Lβ} and so we must “double” the point z before

assigning a value to xαα. Let {σn : n ∈ ω} enumerate the (possibly finitely) many

sequences of the form {yβξ : ξ ∈ τγ} (γ ≤ β) that converge to z. Notice that

{xβξ : ξ ∈ Lβ} is disjoint from each σn. Apply Lemma 10 to choose the open

subsets U and W of Xβ \ {z} as indicated in the conclusion of the Lemma, namely

that W ∩ {xβξ : ξ ∈ Lβ} has z as a limit point, and that U mod finite contains σn

for each n as well as having that z is a limit of U ∩ {xβξ : ξ ∈ Lβ}. We define Xα

to be ((U ∪ {z})× {0}) ∪ ((W ∪ {z})× {1}) as a subspace of 2α. We define yαα to
equal z_0 and we let xαα be z_1. Similarly, yαξ is equal to yαα for any ξ < α such

that yβξ is equal to z. Evidently, every point of Xβ \ {z} has a unique extension in
Xα, hence the definition of xαξ for all ξ < α and similarly for all yαξ 6= z. By the

induction assumption (6), we can choose a sequence τα ⊂ α so that {yαξ : ξ ∈ τα}
converges to yαα as required in item (8), and set γα = α.

Case 2.1: δ = α ∈ E0. In this case we have already defined Xα and all the
points in {xαξ , yαξ : ξ < α}. If χaα is as described in item (9), then xαα is equal to

χaα . Otherwise, we let xαα be any point of Xα \ {yαξ : ξ < α}. Next, let yαα be any

point of Xα \ {xαξ : ξ ≤ α} and choose τα ⊂ α so that {yαξ : ξ ∈ τα} converges to
yαα .
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Case 2.2: δ ∈ E0 and δ < α. There are few requirements for this case. Let
α = β + 1 and set Xα equal Xβ × {0}. For each ξ < α the definitions of xαξ and

yαξ is immediate. Choose xαα, y
α
α distinct points of Xα \ {xαξ , yαξ : ξ < α}. Finally,

choose τα ⊂ ω so that {yαξ : ξ ∈ τα} converges to yαα .

Case 3: δ is in E1 and there is a unique ζδ < δ such that yδζδ is in the closure

of {xδξ : ξ ∈ aδ}. If α = δ, then let yαα be equal to yδζδ and also let τα = τζδ .

Choose any xαα in Xα \ {yαξ : ξ ≤ α}. If α = β + 1, then let z denote yβζδ and apply

Lemma 10 to choose disjoint open U,W so that {yβξ : ξ ∈ τγ} is almost contained
in U for all γ < α such that yαγ = yαζδ . Also, by Lemma 10, ensure that z is a

limit of each of U ∩ {xδξ : ξ ∈ aδ} and W ∩ {xδξ : ξ ∈ aδ}. Define Xα to equal

((U ∪ {z})× {0}) ∪ ((W ∪ {z})× {1}) and set yαζδ = z_0 and yαα = z_1. Choose

τα ⊂ α as usual, as well as xαα in Xα \ {yαξ : ξ ≤ β}. By our assumption that Lβ is

equal to ω, item (7) is immediate.

Case 4. δ ∈ E2. For easier reference we restate the key requirements for this
case:

(1) if α < δ + eδ(γ), then yαγ is still a limit point of {yαξ : ξ ∈ aδ}, and

(2) if β = δ+eδ(γ) ≤ α, then γβ = γ and τβ ⊂ aδ (and by clause 8) {yαξ : ξ ∈ τβ}
converges to yαγ .

If α = δ, we have already defined Xα. Otherwise, choose β so that α = β + 1,
and define Xα to be Xβ ×{0}. For all γ < α, define xαγ and yαγ in the obvious way.
We have clearly preserved the inductive requirement that {yαξ : ξ ∈ τζ} converges
to yαγζ for all ζ < α. It is also immediate that we have preserved that yαζ is a limit

of {yαξ : ξ ∈ aδ} for any ζ < δ such that yδζ was a limit of {yδξ : ξ ∈ aδ} for any

ζ < δ. Choose γ < α so that eδ(γ) = ¯̀. We have, by induction assumption, that yαγ
is a limit point of {yαξ : ξ ∈ aδ}, so choose τα ⊂ aδ so that {yαξ : ξ ∈ τα} converges

to yαγ and set γα = γ. Choose yαα ∈ Xα \ {xαξ : ξ < α} arbitrarily. Similarly choose

xαα ∈ Xα \ {yαξ : ξ ≤ α}.
This completes the proof of Theorem 9

3. One more remark

Recall that a space X is said to be weakly Whyburn provided that for any non-
closed set A there is a set B ⊆ A such that |B\A| = 1. Clearly, a space is sequential
if and only if it is weakly Whyburn and c-sequential.

A space X is pseudoradial if for any non-closed set A there is a well-ordered net
S ⊆ A converging to a point outside A. In [3] it was observed that any compact
weakly Whyburn space is pseudoradial. Much harder it is to show that the previous
implication is not reversible [4] (Theorem 2.3). The space we constructed in Theo-
rem 9 is sequentially compact, being a compact space of cardinality ℵ1. Since the
continuum hypothesis implies that a compact sequentially compact space is pseu-
doradial [16],we obtain another example of a compact pseudoradial non weakly
Whyburn space. This new example is in addition c-sequential and of size ℵ1.

Notice that, the one-point compactification of Ostaszewski’s space provides a
compact weakly Whyburn (hence pseudoradial) space of countable tightness which
is not c-sequential.



8 A. BELLA AND A. DOW

References
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