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Abstract. The Lindelöf property of the space of continuous real-valued continuous
functions is studied. A consistent example of an uncountable Ψ-like space is con-

structed for which the space of continuous real-valued functions with the pointwise

convergence topology is Lindelöf.

All spaces considered in this paper will be Tychonoff. For a space X, Cp(X)
denotes, as usual, the space of all continuous real-valued functions with the topology
of pointwise convergence, i.e., the topology of Cp(X) is inherited from Tychonoff
product RX .

It is well known that the Lindelöf property is met in the space Cp(X) very rarely.
If X is separable metrizable, then Cp(X) is Lindelöf. Except for this classical
one, there was no other theorem about Lindelöf function spaces for quite some
time. Theorems in the literature proceed in the converse implication, they deduce
properties of X from the fact that Cp(X) is Lindelöf, cf. [A]. Quite recently,
Raushan D. Buzyakova discovered another class of spaces, having Lindelöf space
of continuous functions: For any ordinal α with the usual ordinal topology, if
X = α \ {β ∈ α : cf (β) > ω}, then Cp(X) is Lindelöf ([B]).

Our aim is to find other spaces, which are far from being metrizable, and still
have the space of continuous functions Lindelöf. We are certainly motivated by the
questions raised in ([B] and [A]). We were eventually led to study Ψ- and Ψ-like
spaces from this point of view. Our main goal is to present two examples under
the set-theoretical principle ♦ with this property. As a result we are able to answer
some questions from [B].

Let A be an infinite maximal almost disjoint family on ω. A Ψ-space is a space
Ψ(A), whose underlying set is ω ∪A and the topology is given by: All points from
ω are isolated, the neighborhood basis at A ∈ A consists of all sets {A} ∪ A \ K,
where K is a finite subset of ω [GJ, Exercise 5I]. If we relax maximality and consider
only an uncountable almost disjoint family A, then we shall call the resulting space
Ψ(A) a Ψ-like space.
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2 ALAN DOW AND PETR SIMON

The Lindelöf property of Cp(X) always fails for a Ψ-space X. We believe this to
be a new result.

Proposition 1. If A is a MAD family on ω, then Cp(Ψ(A)) is not Lindelöf.

Proof. Fix an arbitrary maximal almost disjoint family A on ω. For A ∈ A, let
VA = {f ∈ Cp(Ψ(A)) : f(A) 6= 0}. For k < m < ω, let Vk,m = {f ∈ Cp(Ψ(A)) :
If k ≤ n < m, then f(n) < 1

2 and f(m) < 1
1+k}. Let V = {VA : A ∈ A} ∪ {Vk,m :

k < m < ω}.
We shall show that V is an open cover of Cp(Ψ(A)) without a countable subcover.
If f is a continuous function on Ψ(A), then either there is some A ∈ A with

f(A) 6= 0; in this case, f is then in VA. Or for every A ∈ A, f(A) = 0, and, by
the maximality of A, limn→∞ f(n) exists and equals to 0. So there is some k such
that f(n) < 1

2 for all n ≥ k and there is some m > k such that f(n) < 1
1+k for all

n ≥ m. For this pair k,m, f ∈ Vk,m.
Consider a countable subfamily W ⊆ V. Since A is uncountable, there is some

A ∈ A with VA /∈ W. Consider the following function g: g(n) = 1 for all n ∈ A,
g(A) = 1, g(n) = 1

1+|A∩n| for n /∈ A, g(B) = 0 for B ∈ A \ {A}. Clearly, g is a
continuous function on Ψ(A). Since for every B ∈ A, if B 6= A, then g(B) = 0, we
have that g cannot belong to VB for VB ∈ W.

If k < m < ω, then g /∈ Vk,m: If there is some n ∈ A, k ≤ n < m, then g(n) = 1
and so g /∈ Vk,m. But if for all n, k ≤ n < m, we have n /∈ A, then A ∩m ⊆ k and
we have either g(m) = 1 or g(m) ≥ 1

1+k , depending on whether m belongs to A or
not. In both cases, g /∈ Vk,m.

So Cp(Ψ(A)) is not Lindelöf. �

It is perhaps of some interest that if one restricts to the subspace of two-valued
continuous functions, namely the space Cp(Ψ(A), {0, 1}), then it may or may not be
Lindelöf, depending on the set-theory, as illustrated in the following two statements.

Theorem 2. Assume ♦. Then there is a maximal almost disjoint family A on ω
such that Cp(Ψ(A), {0, 1}) is Lindelöf.

Proof. Our aim is to construct the MAD family A in such a way that every contin-
uous two-valued function on Ψ(A) is almost constant on the subspace A, i.e., either
the set {A ∈ A : f(A) = 0} or the set {A ∈ A : f(A) = 1} is finite. Throughout
the proof, we shall restrict our attention only to functions with {A ∈ A : f(A) = 1}
being a finite set.

We shall construct an almost disjoint family A by induction and use an enumera-
tion A = {Aα : ω ≤ α < ω1}. If ϕ is a finite function on a subset of ω1 with values in
{0, 1}, we shall interpret it as a code for an open set V (ϕ) ⊆ Cp(Ψ(A), {0, 1}) by the
rule V (ϕ) = {f ∈ Cp(Ψ(A), {0, 1}) : f(k) = ϕ(k) for all k ∈ dom (ϕ) ∩ ω, f(Aα) =
ϕ(α) for all α ∈ dom (ϕ) \ ω}.

Fix an enumeration {ϕα : α < ω1} of the set of all finite functions
⋃
{2K : K ∈

[ω1]<ω}. This, of course, gives also an enumeration Vα = V (ϕα) of the open basis
of the space of continuous two-valued functions on the future Ψ(A).

Next, fix some enumeration {Mα : α ∈ ω1} of P(ω), which is via characteristic
functions also an enumeration of {0, 1}ω. Let every subset of ω appear in this
enumeration cofinally many times.

Also, for every β, ω+ω ≤ β < ω1, choose and fix some bijection bβ : ω −→ β \ω.
Finally, let 〈Sβ : ω + ω ≤ β < ω1〉 be a diamond sequence.
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We shall proceed by transfinite induction. Start with an arbitrary infinite
partition of ω, say Aω+n = {2n · (2k + 1) − 1 : k ∈ ω} for n ∈ ω and let
Aω+ω = {Aω+n : n ∈ ω}.

In each step β, ω + ω ≤ β < ω1, we shall construct first two strictly increasing
sequences qβ(n), kβ(n) of integers. We shall consider two cases, depending on the
behaviour of the diamond instance Sβ . Given a finite set B ⊆ Aβ(={Aα : ω ≤ α <
β}), natural number ` and a finite set K ⊆ `, define a function f(B,`,K) on Ψ(Aβ)
by the rule f(A) = 1 for every A ∈ B, f(n) = 1 for every n ∈ K and also for every
n ∈ A, n ≥ ` with A ∈ B. For the remaining n ∈ ω and A ∈ Aβ , the value of f at
n (at A, resp.) will be 0.

Case 1: For every α ∈ Sβ, dom (ϕα) ⊆ β and the family {Vα : α ∈ Sβ} covers
all functions f(B,`,K), where B ∈ [Aβ ]<ω, ` ∈ ω and K ⊆ `.

Put qβ(0) = 0, next, if qβ(n) is known, we have a finite set of functions

F β
n = {f(B,`,K) : B ⊆ {Aα : α ∈ bβ [qβ(n)]}, ` ≤ qβ(n),K ⊆ `}.

For each f ∈ F β
n , choose α(f) ∈ Sβ with f ∈ Vα(f) and let qβ(n+1) be the smallest

integer bigger than qβ(n) such that for every f ∈ F β
n , dom (ϕα(f))∩ω ⊆ qβ(n + 1).

Case 2: Not Case 1. Put qβ(n) = n in this case.
We already know sequences kα for ω+ω ≤ α < β. Choose the sequence kβ in such

a way that for every function g from the countable list {qβ}∪{kα : ω +ω ≤ α < β}
there is some j such that for every n ≥ j, the set of values {g(i) : kβ(n) < g(i) <
kβ(n + 1)} is of size at least n.

Finally, it remains to define the set Aβ . Since the set {Aα : ω ≤ α < β} is
countable, one may reenumerate it as {Bn : n ∈ ω}. A standard induction allows
one to pick the n’th point of Aβ outside of the union

⋃
i<n Bi, to ensure that for

every n ∈ ω, Aβ ∩ kβ(n + 1) \ kβ(n) contains at most one point and also, whenever
possible, to get |Aβ ∩Mβ | = ω and |Aβ \Mβ | = ω.

This completes the inductive definitions.
Clearly, we arrived in a maximal almost disjoint family. Almost disjointness

follows from the inductive definitions; if X ∈ [ω]ω, then X appeared in our enu-
meration as Mβ . If Mβ ∩ Aα was finite for all α < β, then it was possible to get
Aβ ∩Mβ infinite. So A is maximal.

Let us show that no continuous two-valued function f on Ψ(A) can satisfy |{A ∈
A : f(A) = 0}| = ω = |{A ∈ A : f(A) = 1}|. Consider a set X ⊆ ω such that both
sets {A ∈ A : |X ∩A| = ω}, {A ∈ A : |A \X| = ω} are infinite. Then there is some
β < ω1 such that Mβ = X and, since the set X was listed cofinally many times, we
have also that {A ∈ Aβ : |A ∩ X| = ω} and {A ∈ Aβ : |A \ X| = ω} are infinite.
But this means that the set Aβ was chosen so that Aβ ∩ X is infinite as well as
Aβ \X. Consequently, if f−1(0) ⊇ X and f−1(1) ⊇ ω \X, then the mapping f is
discontinous at Aβ .

It remains to show that Cp(Ψ(A), {0, 1}) is Lindelöf. Let V be an open cover of
Cp(Ψ(A), {0, 1}). We may and shall assume that there is a subset I ⊆ ω1 such that
V = {Vα : α ∈ I}.

Consider the following set C ⊆ ω1: β ∈ C iff
(i) for each α ∈ β ∩ I, dom (ϕα) ⊆ β;
(ii) whenever B is a finite subset of Aβ , ` < ω and K ⊆ `, then there is an

α ∈ β ∩ I with f(B,`,K) ∈ Vα.
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The set C is obviously closed unbounded in ω1.
The set S = {β ∈ ω1 : Sβ = I ∩ β} is a stationary subset of ω1, so select an

ordinal β ∈ C ∩ S. For this β we have that W = {Vα : α ∈ Sβ} is a countable
subset of V. Let us prove that it covers all functions from Cp(Ψ(A), {0, 1}) which
attain the value 1 at finite number of members of A only.

To this end, pick such a continuous f on Ψ(A) arbitrarily. Denote by B the set
of all A ∈ Aβ with f(A) = 1 and by D the set of all A ∈ A \ Aβ with f(A) = 1.

The set B ∪ D is finite. If D is empty, it is enough to select ` < ω so big that
that for all n ≥ `, f(n) = 1 if and only if n ∈ A for some A ∈ B, and to put
K = ` ∩ f−1(1). We have now that f = f(B,`,K) and by (ii) and by the fact that
β ∈ C, f belongs to some member of W.

If the set D is nonempty, |D| = m > 0, then D = {Aγ(1), . . . , Aγ(m)} with each
γ(i) bigger or equal to β.

Notice that for every γ ≥ β, our construction of the set Aγ guaranteed that
for each n < ω, |Aγ ∩ kγ(n + 1) \ kγ(n)| ≤ 1. Also, we made sure that there
was some j = j(γ) with {kβ(i) : kγ(n) < kβ(i) < kγ(n + 1)}| ≥ n whenever
n ≥ j. So, if j is bigger that max{j(γ(1)), . . . , j(γ(m))} and i is so big that
kβ(i) > max{kγ(1)(j), . . . , kγ(m)(j)}, then for every A ∈ D, |A∩kβ(i+1)\kβ(i)| ≤ 2
(typically, |A ∩ kβ(i + 1) \ kβ(i)| ≤ 1, but one must make allowance for the case
when kβ(i) < kγ(n) < kβ(i + 1) and the two consecutive points of Aγ were chosen
in intervals kγ(n) \ kβ(i), kβ(i + 1) \ kγ(n)).

Let p ∈ ω be such that (
⋃
B ∩

⋃
D) \ p = ∅ and for every n ≥ p, f(n) = 1 if and

only if n ∈
⋃
B ∪

⋃
D.

Let r ∈ ω be big enough for bβ [r] to contain all α < β with Aα ∈ B.
Choose now n ∈ ω such that n > 2m + 1, kβ(n) > max{kγ(1)(j), . . . , kγ(m)(j)},

kβ(n) ≥ r, kβ(n) ≥ p and |{qβ(i) : kβ(n) < qβ(i) < kβ(n + 1)}| ≥ n. The number
of intervals qβ(i + 1) \ qβ(i), which are contained in the interval kβ(n + 1) \ kβ(n)
is bigger than 2m and there are only m many sets in D, each meeting an inteval
kβ(n + 1) \ kβ(n) in at most two points. Consequently, there must be some ı̃ with
kβ(n) < qβ (̃ı) < qβ (̃ı + 1) < kβ(n + 1) and with A ∩ qβ (̃ı + 1) \ qβ (̃ı) = ∅ for all
A ∈ D.

Put ` = qβ (̃ı) and K = ` ∩ f−1(1). The mapping f(B,`,K) belongs to some Vα

with α ∈ Sβ . Since β ∈ C, we have that Vα ∈ W. We, however, have also that
f(B,`,K) belongs to the set F β

ı̃ , which implies that α could be chosen to satisfy
that dom (ϕα) ∩ ω ⊆ qβ (̃ı + 1). By the choice of ı̃, no A ∈ D meets the interval
qβ (̃ı + 1) \ qβ (̃ı), so f and f(B,`,K) agree on dom (ϕα). This however means that
f ∈ Vα and concludes the proof. �

Remark. In the previous example, all two-valued continuous functions on Ψ(A)
attained one of the values on a compact (or empty) subset of Ψ(A). Hence for
this A, β(Ψ(A)) \ Ψ(A) consists of precisely one point. It should be remarked
that a slightly more complicated construction can provide the family A such that
the Čech-Stone remainder of the resulting space is homeomorphic to any compact
0-dimensional metric space given in advance.

The opposite situation occurs if b > ω1. An explicit statement follows.

Proposition 3. Assume b > ω1. If A is a MAD family on ω, then Cp(Ψ(A), {0, 1})
is not Lindelöf.

Proof. Enumerate an uncountable subset of A as {Aα : α < ω1}. Let eα be an
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increasing bijection from ω onto Aα. Since b > ω1, there is a function f ∈ ωω

dominating all eα, α < ω1. We are allowed to assume that f is strictly increasing.
If we define a mapping g ∈ ωω by g(0) = f(0), g(n + 1) = f(g(n) + 1), then for

each α < ω1 there is some j = j(α) such that for every n ≥ j, Aα∩g(n+1)\g(n) 6= ∅.
Let j0 be the minimal j ∈ ω such that j = j(α) for uncountably many α ∈ ω1

and let B = {Aα : α < ω1, j(α) = j0}.
The cover V which does not have a countable subcover consists of all sets

VA = {f ∈ Cp(Ψ(A), {0, 1}) : f(A) = 1} for A in A,
V (K) = {f ∈ Cp(Ψ(A), {0, 1}) : f(n) = 1 for all n ∈ K and f(n) =
0 for all n ∈ g(m(K)) \ K}, where K is a finite subset of ω and m(K) =
j0 + 1, if max K < j0, otherwise m(K) = j + 1 for a minimal j satisfying
j0 ≤ max K < j.

Notice that V is a cover of Cp(Ψ(A), {0, 1}): If f(A) = 1 for some A ∈ A, then
f ∈ V (A). If f(A) = 0 for all A ∈ A, then by maximality of A, then K = f−1(1)
must be finite and f ∈ V (K) then.

If W is a countable subfamily of V, then there is some B ∈ B with V (B) /∈ W.
However, a characteristic function hB (hB(x) = 1 iff x ∈ B or x = B) is a continuous
two-valued function and belongs to no V (A) ∈ W, but it also belongs to no V (K)
for a finite K ⊆ ω, because hB(n) = 1 for some n ∈ g(m(K)) \ g(m(K)− 1). �

According to Proposition 1, we have to relax maximality, if we wish to get an
almost disjoint family A with Cp(X) Lindelöf. In what follows, we shall deal with
a standard example of a (nonmaximal) uncountable almost disjoint family, namely,
with the family of all branches in a full binary tree. Some notation is needed.

Let Σ =
⋃

n∈ω 2n and let X = Σ∪ 2ω. We shall equip X with two topologies, T
(=tree topology) and C (=cone topology). In both topologies, the set Σ is the set
of isolated points of X. If x ∈ 2ω, then the set {{x � n : k ≤ n ≤ ω} : k ∈ ω} is a
neighborhood basis at x it the topology T , and {y ∈ X : y ⊇ x � k} : k ∈ ω} is a
neighborhood basis at x in the topology C.

Notice that the subspace 2ω of the space (X, C) is homeomorphic to the Cantor
set.

Lemma 4. The space Cp(X, T ) is not Lindelöf.

Proof. For n ∈ ω, let Vn = {f ∈ Cp(X, T ) : (∀p ∈ 2n) f(p) ∈ (−1, 1)}.
For x ∈ 2ω, let Vx = {f ∈ Cp(X, T ) : f(x) ∈ R \ {0}}.
If A ⊆ Σ, A = {p, q} and neither p ⊆ q nor q ⊆ p (i.e., A is an antichain in a

tree order of Σ), let VA = {f ∈ Cp(X, T ) : f(p) ∈ R \ {0}, f(q) ∈ R \ {0}}.
Let V = {Vn : n ∈ ω}∪{Vx : x ∈ 2ω}∪{VA : A ⊆ Σ, |A| = 2, A is an antichain}.
Clearly, V is a collection of open subsets of Cp(X, T ). Let us check that V

is a cover of Cp(X, T ). If f ∈ Cp(X, T ), then either for some n ∈ ω and all
p ∈ 2n, f(p) ∈ (−1, 1). Then f ∈ Vn. Or for every n ∈ ω, there is some p ∈ 2n

with |f(p)| ≥ 1. If there are two incomparable p, q like that, then f ∈ V{p,q}.
The remaining possibility is that for each n ∈ ω there is a unique pn ∈ 2n with
|f(pn)| ≥ 1 and for any n < m < ω, pn ⊆ pm. Let x =

⋃
n∈ω pn then. By

T -continuity, |f(x)| ≥ 1. So for this x, f ∈ Vx.
If W is a countable subset of V, then there is some x ∈ 2ω with Vx /∈ W. Define

f(p) = 1 for all p ⊆ x, f(p) = 0 otherwise. Then f ∈ Cp(X, T ) and f /∈
⋃
W. �

The following result is the main result of the paper and is the main step in
answering question 3.5 of [B] (see Example 8).
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Theorem 5. Assume ♦. Then there is an uncountable subset Z ⊆ 2ω such that
Cp(Σ ∪ Z, T ) is Lindelöf.

Proof. We shall construct the set Z by a transfinite induction to ω1. We have two
topologies on X, C and T , and we know that Cp(X, T ) is not Lindelöf. So both
inclusions Cp(X, C) ⊂ Cp(X, T ) ⊂ Cp(Σ ∪ Z, T ) are proper. To keep the necessary
control, we shall consider all real-valued functions defined on Σ. Of course, not all
of them continuously extend to points from 2ω. Given an ε > 0 and f : Σ −→ R, let
us denote Osc (f, ε, C) (Osc (f, ε, T ), resp.) the set of all x ∈ 2ω such that for every
C-open neighborhood (T -open neighborhood, resp.) U of x there are p, q ∈ U ∩ Σ
with |f(p) − f(q)| ≥ ε. Next, put Osc (f, C) =

⋃
ε>0 Osc (f, ε, C) and similarly,

Osc (f, T ) =
⋃

ε>0 Osc (f, ε, T ). Clearly, each set Osc (f, ε, C) is a closed subset of
2ω with the usual topology of a Cantor set, and Osc (f, C) is an Fσ-set in 2ω. Also,
since the topology T is finer than the topology C, we have Osc (f, T ) ⊆ Osc (f, C).

Enumerate RΣ as {fα : α < ω1}.
Fix a countable basis B for the reals. The basis of Tychonoff product RX consists

of all sets of the form

V (〈x0, x1, . . . , xk〉, 〈B0, B1, . . . , Bk〉) = {f ∈ RX : (∀i ≤ k) f(xi) ∈ Bi},

where k ∈ ω, x0, x1, . . . , xk ∈ X and B0, B1, . . . , Bk ∈ B.
Enumerate this basis for RX as {Vα : α < ω1}.
Finally, let 〈Sα : α < ω1〉 be a ♦-sequence on ω1 and let Vα = {Vβ : β ∈ Sα}.
During the induction, we shall define points xα, meager sets Mα and mappings

gα as follows:
Assume xβ ,Mβ and gβ are known for all β < α < ω1. Consider the family Vα

first. If there is a mapping g : Σ −→ R such that
(i) Osc (g, T ) ∩ {xβ : β < α} = ∅, and
(ii) Osc (g, C) is a meager subset of 2ω, and
(iii) a T -continuous extension of g to the set 2ω \Osc (g, T ) does not belong to⋃

Vα,
denote this g as gα and put Mα = Osc (gα, C). If there is no mapping with the
required properties, denote by gα an arbitrary constant mapping and put Mα = ∅.

Next, consider a mapping fα. If there is a point x ∈ 2ω \
⋃

β≤α Mβ , x /∈ {xβ :
β < α}, such that fα cannot be T -continuously extended to x, denote this x as xα.
If there is no point like this,

let xα ∈ 2ω be an arbitrary point not belonging to {xβ : β < α} ∪
⋃

β≤α Mβ .
This completes the inductive definitions. It remains to denote Z = {xα : α <

ω1}.

We need to show that Cp(Σ ∪ Z, T ) is Lindelöf. However, we need some infor-
mation about continuous functions on (Σ ∪ Z, T ) before.

Claim. Let f ∈ RΣ. Then either Osc (f � Σ, C) is a meager subset or 2ω or
for every countable family {Dn : n ∈ ω} of nowhere dense subsets of 2ω, the set
Osc (f, T ) \

⋃
n∈ω Dn contains a perfect set.

If the set Osc (f, C) is not meager, then there is some ε > 0 such that Int (Osc
(f, ε, C)) 6= ∅. So there is some p∅ ∈ Σ such that U∅ = {y ∈ 2ω : p∅ ⊆ y} ⊆
Int (Osc (f, ε, C)) \D0.
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Induction step: Suppose that for n ∈ ω and all σ ∈ 2n we have found points
pσ ∈ Σ and pairwise disjoint open sets Uσ = {y ∈ 2ω : pσ ⊆ y} with the property
that for σ ⊆ %, pσ ⊆ p% and, consequently, U% ⊆ Uσ.

For σ ∈ 2n, we have two disjoint C-open sets: G0 = {y ∈ 2ω : pσ
_0 ⊆ y} and

G1 = {y ∈ 2ω : pσ
_1 ⊆ y}. Since the set Dn is closed and nowhere dense, there

are some ti ∈ Σ, ti ⊇ pσ
_i for i = 0, 1 with Wti = {y ∈ 2ω : ti ⊆ y} disjoint from

Dn. Since both the sets Wt0 and Wt1 are subsets of Osc (f, ε, C), there are two
points si, qi ∈ Wti

with |f(si) − f(qi)| ≥ ε, i = 0, 1. Let pσai be the point from
{si, qi} which satisfies |f(pσ) − f(pσai)| ≥ ε

2 . Put Uσai = {y ∈ 2ω : pσai ⊆ y}.
This completes the inductive definitions.

The set P = {
⋃

n∈ω pϕ�n : ϕ ∈ 2ω} is a perfect subset of 2ω, disjoint from all
Dn, n ∈ ω, and the mapping f cannot be T -continuously extended to points of P ,
since the sequence 〈f(y � n) : n ∈ ω〉 not Cauchy whenever y ∈ P .

The Claim is proved.

As an immediate consequence we have that every f ∈ Cp(Σ ∪ Z, T ) the set
Osc (f � Σ, C) is meager. Indeed, f � Σ appears in our enumeration as fα. The
family {Mβ : β ≤ α} is a countable family of meager subsets of 2ω, so if Osc (fα, C)
were not meager, then by Claim, the point xα would belong to Z∩Osc (fα, T ), and
f would not be T -continuous then.

It remains to show that Cp(Σ ∪ Z, T ) is Lindelöf. Let V be an open cover of
Cp(Σ∪Z, T ). We assume that V consists of basic open sets and so for some I ⊆ ω1,
V = {Vβ : β ∈ I}.

By ♦, the set S = {α ∈ ω1 : {Vβ : β ∈ I ∩ α} = Vα} is stationary.
For k, n ∈ ω, y0, y1, . . . , yk ∈ Σ∪Z, G0, G1, . . . , Gn basic open subsets of (X, C),

and B0, B1, . . . , Bk, B′
0, B

′
1, . . . , B

′
n ∈ B, let us denote

K(〈y0, . . . , yk, G0, G1, . . . , Gn〉, 〈B0, . . . , Bk, B′
0, B

′
1, . . . , B

′
n〉) =

= {f ∈ Cp(Σ ∪ Z, T ) : (∀i ≤ k) f(yi) ∈ Bi and (∀i ≤ n) f [Gi] ⊆ B′
i}.

Define a set C ⊆ ω1 by: α ∈ C iff whenever {y0, y1, . . . , yk} ∩ Z ⊂ {xγ : γ < α}
and K(〈y0, . . . , yk, G0, . . . , Gn〉, 〈B0, B1, . . . , Bk, B′

0, B
′
1, . . . , B

′
n〉) is nonempty and

contained in V for some V ∈ V, then there is such a V ∈ Vα.
It is again easy to see that the set C is closed unbounded in ω1. Pick an α ∈ S∩C.

Since α ∈ S, we have that {Vβ : β ∈ I ∩ α} = Vα, so Vα is a countable subset of V.
So we need to show that the family Vα covers Cp(Σ ∪ Z, T ).

Suppose Vα does not cover, i.e. there is a mapping f ∈ Cp(Σ ∪ Z, T ) \
⋃
Vα;

denote by g the restriction f � Σ. Since f is T -continuous mapping on Σ∪Z, we have
Osc (g, T ) ∩ Z = ∅, which in particular means that Osc (g, T ) ∩ {xβ : β < α} = ∅.

As a consequence of the Claim we know that Osc (g, C) is a meager subset of 2ω.
Also, the mapping f is a subset of a T -continuous extension g̃ of a mapping g and
f does not belong to

⋃
Vα, so g̃ does not belong to

⋃
Vα as well.

We have verified that in the α-th step of the induction, all demands (i), (ii), (iii)
were satisfied. Consider now the mapping gα defined in this step. The mapping
gα can be T -continuously extended to all {xβ : β < α} by (i) and can be even
C-continuously extended to all {xβ : α ≤ β < ω1}, because Osc (gα, C) ∩ {xβ : α ≤
β < ω1} = ∅ by (ii) and by the choice of points xβ for α ≤ β < ω1. Let us call this
extension h.
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Since h is in Cp(Σ ∪ Z, T ), there is some V ∈ V containing the mapping h. Let
us write V = V (〈xα(0), . . . , xα(k), xβ(0), . . . , xβ(n)〉, 〈B0, . . . , Bk, B′

0, . . . , B
′
n〉), where

all α(i) < α and all β(i) ≥ α.
For each i ≤ n, let a real ε(i) > 0 be so small that {t ∈ R : |f(xβ(i)) − t| ≤

ε(i)} ⊆ B′
i, put ε = 1

2 min{ε(0), . . . , ε(n)}. The set Osc (h, ε, C) is closed and
meager and disjoint from the set {xβ(0), . . . , xβ(n)}. So for each i ≤ n there is some
C-neighborhood Gi of a point xβ(i), Gi ∩ cl(X,C)(Osc (h, ε, C)) = ∅.

If x ∈ Gi, then |h(x)− h(xβ(i))| ≤ ε and consequently h(x) ∈ B′
i. Therefore

h ∈ K(〈xα(0), . . . , xα(k), G0 . . . , Gn〉, 〈B0, . . . , Bk, B′
0, . . . , B

′
n〉).

Next, the inclusion

K(〈xα(0), . . . , xα(k), G0 . . . , Gn〉, 〈B0, . . . , Bk, B′
0, . . . , B

′
n〉) ⊆ V

trivially holds, because any function, which maps the set Gi onto a subset of B′
i,

must map point xβ(i) ∈ Gi into B′
i, too.

Since α ∈ C there must be some Vβ ∈ Vα with

h ∈ K(〈xα(0), . . . , xα(k), G0 . . . , Gn〉, 〈B0, . . . , Bk, B′
0, . . . , B

′
n〉) ⊆ Vβ .

However, h is a T -continuous extension of gα, h ∈ Vβ and Vβ ∈ Vα, which
contradicts (iii) of our choice of gα.

So Vα is a cover of Cp(Σ∪Z, T ) and consequently Cp(Σ∪Z, T ) is Lindelöf. �

To provide a counterpart to Proposition 1, we have a strong belief that it may
be consistent that no uncountable almost disjoint family A has Lindelöf Cp(Ψ(A)).
We can, however, prove the following weaker statement only.

Proposition 6. Assume b > ω1. If A is an almost disjoint family on ω of size
ω1, then Cp(Ψ(A)) is not Lindelöf. If, in addition 2ω < 2ω1 , then Cp(Ψ(A), {0, 1})
is not Lindelöf.

Proof. The space Ψ(A) is separable and its closed discrete subspace A is of size ω1.
We shall consider two cases.

Case 1. The space Ψ(A) is not normal.
We shall show that a closed subspace Cp(Ψ(A), {0, 1}) of Cp(Ψ(A)) is not Lin-

delöf in this case.
Denote B and C two disjoint closed subsets of A, which cannot be separated.
Observe that the assumption b > ω1 implies that whenever A0 is a countable

subset of A, then there is a continuous two-valued function on Ψ(A), separating
A0 from A \ A0. — This is clear if A0 is finite. If A0 = {An : n ∈ ω} and each
An = {an,k : k ∈ ω} with an,k < an,k+1 for all k ∈ ω, define for A ∈ A \ A0

a mapping fA ∈ ωω by the rule fA(n) = min{k : A ∩ An ⊆ {an,i : i < k}}.
Since b > ω1, there is a mapping g ∈ ωω dominating all fA, A ∈ A \ A0. Let
h : Ψ(A) −→ {0, 1} be defined by h(A) = 1 for all A ∈ A0 and h(an,k) = 1 for all
n ∈ ω and all k ≥ g(n) with an,k /∈

⋃
i<n Ai, g(x) = 0 for the remaining x ∈ Ψ(A).

Clearly h is continuous and separates A0 from A \ A0.
Applying the observation, we conclude that both B and C must be uncountable.

So enumerate B = {Bα : α < ω1} and C = {Cα : α < ω1}.
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For α < ω1, let

Uα = {f ∈ Cp(Ψ(A), {0, 1}) : f(Bα) = 0}
Vα = {f ∈ Cp(Ψ(A), {0, 1}) : f(Bα) = f(Cα) = 1}

The collection V = {Uα, Vα : α < ω1} is an open cover of Cp(Ψ(A), {0, 1}):
By the choice of B and C, there is no function separating them. So if f ∈
Cp(Ψ(A), {0, 1}), then there is some α < ω1 with f(Bα) = f(Cα) and consequently,
f ∈ Uα ∪ Vα for this α.

However, no countable subcollection W ⊆ V covers Cp(Ψ(A), {0, 1}): If α is such
that W ⊆ {Uβ , Vβ : β < α}, applying the observation once more, find a continuous
mapping f such that f(Bβ) = 1 and f(Cβ) = 0 for all β < α. Clearly, f /∈

⋃
W.

Case 2. The space Ψ(A) is normal.
Now we shall show that a closed subspace Cp(Ψ(A), ω) is not Lindelöf.
Enumerate A = {Aα : α < ω1}. For α < β < ω1 and n ∈ ω, let

Uα,β,n = {f ∈ Cp(Ψ(A), ω) : f(Aα) = f(Aβ) = n}.

The collection V = {Uα,β,n : α < β < ω1, n ∈ ω} is an open cover of Cp(Ψ(A), ω).
Apparently, each set Uα,β,n is an open subset of Cp(Ψ(A), ω). If f : Ψ(A) −→ ω is
an arbitrary function, then there must be some n ∈ ω with {α < ω1 : f(Aα) = n}
uncountable. So there are α < β < ω1 with f ∈ Uα,β,n.

If W is a countable subset of V, put

γ = sup{β ∈ ω1 : for some α < β and n ∈ ω, Uα,β,n ∈ W}+ 1.

Since γ is a countable ordinal, there is a bijection b : γ −→ ω. Define a mapping
g : A −→ ω by the rule g(Aα) = b(α) for α < γ and g(Aα) = 0 for γ ≤ α < ω1.
The subspace A is a discrete subspace, so the mapping g is continuous, and A is
a closed subspace in a normal space Ψ(A), so g has a continuous extension f to
the whole space Ψ(A). It should be clear now that the mapping f cannot belong
to any member of W, since every possibility when f ∈ Uα,β,n implies n = 0 and
β ≥ γ.

In both cases, we succeeded to find a closed subspace of Cp(Ψ(A)), which is not
Lindelöf. The first statement in the proposition follows. The second statement fol-
lows immediately from Jones’ Lemma, that with the hypothesis 2ω < 2ω1 , a separa-
ble space with an uncountable closed discrete subset will not be normal. Therefore,
the space Ψ(A) will not be normal, and, as is shown in Case 1, Cp(Ψ(A), {0, 1}) is
not Lindelöf. �

A very similar proof may serve to answer Question 3.1 from [B] — Let X be
countably compact and first countable. Assume also that the closure of any countable
set is countable in X. Is then Cp(X) Lindelöf? — in the negative. In fact, the
example below answers negatively also Buzyakova’s questions 3.2 and 3.3.

Example 7. There is a locally countable, locally compact, first countable, countably
compact, zero-dimensional space X such that each countable subset of X has a
countable closure and Cp(X) is not Lindelöf.

Proof. The space in question was already constructed by Jerry Vaughan in 1979
with its main properties summarized in the title [V], but its space of continuous
functions has never been examined.
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We shall not repeat the construction from Vaughan’s paper, since we need only
a few properties, as indicated below, to show that Cp(X) is not Lindelöf.

The underlying set of the space X is ω1×(ω+1)×{0, 1} equipped with a topology
T such that the mapping π : (X, T ) −→ ω1 × (ω + 1) defined by π(α, β, 0) =
π(α, β, 1) = (α, β) for all α ∈ ω1, β ∈ ω + 1 is open and continuous. Consequently,
for each α < ω1, a subspace (α + 1) × (ω + 1) × {0, 1} is compact, and hence, the
closure of every countable subset is countable.

Next, the sets F = {(α, ω, 0) : α < ω1} and H = {(α, ω, 1) : α < ω1} are both
closed and cannot be separated, which makes the space (X, T ) nonnormal.

Let us show that the space Cp(X) is not Lindelöf. Let for α < ω1

Uα = {f ∈ Cp(X) : f(α, ω, 0) 6= 0 and f(α, ω, 1) 6= 0}
Vα = {f ∈ Cp(X) : f(α, ω, 0) 6= 1 and f(α, ω, 1) 6= 1}
Wα = {f ∈ Cp(X) : f(α, ω, 0) 6= 0 and f(α, ω, 1) 6= 1}.

The family V = {Uα : α < ω1}∪ {Vα : α < ω1}∪ {Wα : α < ω1} consists of open
subsets of Cp(X). Let us show that it covers Cp(X). Fix an α < ω1. If f ∈ Cp(X)
is such that f /∈ Uα ∪ Vα ∪Wα, then necessarily f(α, ω, 0) = 0 and f(α, ω, 1) = 1.
This, however, cannot happen for all α < ω1, since otherwise the mapping f would
separate closed sets F and H.

The family V has no countable subcover: Indeed, if V0 ⊆ V is countable, put
γ = sup{α : Uα ∈ V0 or Vα ∈ V0 or Wα ∈ V0}+1. The set (γ +1)× (ω +1)×{0, 1}
is compact, hence normal, so there is a continuous mapping g : (γ + 1) × (ω +
1) × {0, 1} −→ R with g(α, ω, 0) = 0 and g(α, ω, 1) = 1 for α < γ + 1. However,
the set (γ + 1) × (ω + 1) × {0, 1} as a preimage of an open set (γ + 1) × (ω + 1)
under a continuous mapping π is open. So the mapping f , which agrees with g
on (γ + 1) × (ω + 1) × {0, 1} and equals to 0 in all remaining points from X, is
continuous. Apparently, f ∈ Cp(X) \

⋃
V0. So Cp(X) is not Lindelöf. �

Buzyakova attributes her Question 3.5 to Arhangel’skĭı. Let Cp(X \{x}) be Lin-
delöf for a space X and let x have a countable tightness in X. Is Cp(X) Lindelöf?
What if X is first countable? We do not know the answer to the first-countable
case, but we have already presented the space X \ {x} in Theorem 5.

Example 8. Assume ♦. Then there is a space X containing a point x such that x
has a countable tightness, X \ {x} is first countable, Cp(X \ {x}) is Lindelöf while
Cp(X) is not.

Proof. Let X be a one-point compactification of the space (Σ ∪ Z, T ) constructed
in the proof of Theorem 5, denote {x} = X \ (Σ ∪ Z). We have proved above that
Cp(X \ {x}) is Lindelöf. Clearly, the space X is countably tight at x.

It remains to show that Cp(X) is not Lindelöf. The proof will be an analogy of
the proof of Lemma 4, we shall even use the same kind of an open cover:

For n ∈ ω, let Vn = {f ∈ Cp(X) : (∀p ∈ 2n) f(p) ∈ (−1, 1)}.
For z ∈ Z, let Vz = {f ∈ Cp(X) : f(z) ∈ R \ {0}}.
If A ⊆ Σ, A = {p, q} and A is an antichain in a tree order of Σ, let VA = {f ∈

Cp(X) : f(p) ∈ R \ {0}, f(q) ∈ R \ {0}}.
Let V = {Vn : n ∈ ω} ∪ {Vz : z ∈ Z} ∪ {VA : A ⊆ Σ, |A| = 2, A is an antichain}.
The family V is an open cover of Cp(X). Let f ∈ Cp(X) be arbitrary. If f(x) 6= 0,

then by the continuity at x there must ve some z ∈ Z with f(z) 6= 0, too. So f ∈ Vz

for this z.
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If f(x) = 0, we shall repeat the reasoning from the proof of Lemma 4: Either
there is some n ∈ ω such that for all p ∈ 2n, f(p) ∈ (−1, 1) and f ∈ Vn then.
Or there are two incomparable p, q ∈ Σ with |f(p)| ≥ 1, |f(q)| ≥ 1 and we have
f ∈ V{p,q}. Finally, if f /∈ Vn for all n ∈ ω and f /∈ VA for each two-element
antichain A in Σ, then there is a function y ∈ 2ω with |f(y � n)| ≥ 1 for all n ∈ ω.
In this last case, if y ∈ Z, then f ∈ Vy. But y must belong to Z, for otherwise x
is a cluster point of the set {y � n : n ∈ ω} and f(x) = 0, which contradicts the
continuity of f .

Consider now a countable subfamily W ⊆ V. Then there is some z ∈ Z with
Vz /∈ W. The mapping f with value 1 at z and at all z � n, n ∈ ω, and with value
0 in all remaining points from X, is continuous and does not belong to

⋃
W. �
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