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Abstract. There is a copy K of the Stone-Cech remainder, βN \
N = N∗, of the integers inside N∗ that is not equal to D \ D for
any countable discrete D ⊂ βN. Such a copy of N∗ is known as a
non-trivial copy of N∗. This answers a longstanding open problem
of Eric van Douwen ([9, 219]).

1. Introduction

A subset K of βN is a non-trivial copy of N∗ if K is homeomorphic
to βN\N but is not equal to D \D for any countable discrete D ⊂ βN.
It is of course a fundamental property of βN that every set of the form
D \ D, for countable discrete D ⊂ βN, is a copy of N∗. Non-trivial
copies exist in abundance under CH, can be forced to exist in models
of Martin’s Axiom, and it has long been suspected that these would not
exist under the proper forcing axiom, PFA [8, 3.14.2]. For example, it
was proven by W. Just to follow from PFA that a nowhere dense P-set
of N∗ is not homeomorphic to N∗. Analogous to the classification of
autohomeomorphisms of N∗, one could say that a non-trivial copy, K,
of N∗ was nowhere trivial if every relatively clopen subset of K was
also non-trivial. Our construction produces a nowhere trivial copy of
N∗. We discuss some variants in the final section.

A closed set K ⊂ N∗ corresponds to the filter FK ⊂ P(N) consisting
of all those subsets of N whose closure contains K. The task will be to
construct such a special filter F . This paper brings together a variety
of methods that have been used to construct special filters in the study
of Stone-Cech compactifications. This includes van Mill’s notion of
nice filter [11] in the construction of weak P-points and some tools
from the construction of remote points [4]. We define the notion of a
maximal nice filter on a σ-compact space. We strengthen the notion
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to that of a non-trivial maximal nice filter, and show the connection to
the existence of non-trivial copies of N∗. This method was anticipated
in [6].

2. Aronszajn trees and a special filter

We will construct a special filter on P(N) as discussed in the intro-
duction. If X is a σ-compact space which can be embedded into N∗,
then a special filter on X naturally induces a filter on P(N). The space
we will use is obtained from the regular open algebra on 2ω1 , RO(2ω1).
This is also a common method of constructing special points in βN
(e.g. see [10, 7]).

Definition 2.1. For each n ∈ N, let Xn be a compact space. A nice
filter F on X =

⋃
n∈N{n} ×Xn is a free filter of closed sets satisfying

that for each F ∈ F , the set {n : F ∩ ({n} ×Xn) = ∅} is finite.

Proposition 2.2. Let X =
⋃
n∈N{n}×Xn with each Xn compact, and

let π denote the first coordinate projection map on X to N. If F is
a nice filter on X, then πβ[KF ] = N∗, where KF ⊂ βX is defined as⋂
{F : F ∈ F} and πβ : βX → βN.

The regular open algebra, RO(2ω1), on 2ω1 , is a complete ccc Boolean
algebra. The Stone space is often denoted as E(2ω1). The points U of
E(2ω1) consist of ultrafilters of regular open subsets of 2ω1 . There is a
canonical map, ϕ, from E(2ω1) onto 2ω1 sending U to the unique point
x ∈

⋂
{U : U ∈ U}, equivalently to the point whose neighborhood

base of clopen sets is contained in U . Additionally, if U ∈ RO(2ω1),
then U∗ = {U ∈ E(2ω1) : U ∈ U} is a basic clopen subset of E(2ω1). It
follows that ϕ[U∗] = U . Let us also note that for U ∈ RO(2ω1), there is
a δ = δU ∈ ω1 and a regular open set Uδ ⊂ 2δ such that U = Uδ×2ω1\δ.
Conversely there is an embedding eδ : RO(2δ) ↪→ RO(2ω1) (of course
eδ(U) = U × 2ω1\δ) so that RO(2ω1) =

⋃
{eδ[RO(2δ)] : δ ∈ ω1}.

Definition 2.3. A set K ⊂ N∗ is a weak P-set if for each countable
D ⊂ N∗ \K, the closure of D is disjoint from K.

The following result is a special case of [14] (see also [12, 4.15] and
[5, 3.5]).

Lemma 2.4. There is an embedding of β (N× E(2ω1)) as a weak P-set
of N∗.

Definition 2.5. A nice filter F on
⋃
n∈N{n} × Xn will be said to be

maximal, if for each sequence 〈〈An0 , An1 〉 : n ∈ N〉 where, for each n,
{An0 , An1} is a 2-element open cover of Xn, there is an F ∈ F such
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that for each n, F ∩ ({n} × Xn) is contained in one of the elements
of {{n} × An0 , {n} × An1}. Equivalently, there is an f ∈ 2N such that

F ∩
(
{n} × (Xn \ Anf(n))

)
is empty for each n ∈ N.

Lemma 2.6. Suppose that F is a nice filter on X =
⋃
n∈N{n} × Xn

and KF is the corresponding subset of βX. The projection map πβ is
one-to-one on KF if and only if F is a maximal nice filter.

Proof. Assume that πβ is one-to-one onK = KF and let {An0 , An1} be an
open cover of Xn for each n ∈ N. Notice that H0 =

⋃
n∈N{n}×(Xn\An0 )

and H1 =
⋃
n∈N{n} × (Xn \ An1 ) have disjoint closures in βX. Since

πβ � K is one-to-one, πβ(H0 ∩K) and πβ(H1 ∩K) are disjoint closed
subsets of N∗. There is a set U0 ⊂ N such that πβ(H0 ∩K) ⊂ U∗0 and
πβ(H1 ∩K) ⊂ (N \U0)∗. Thus, with U1 denoting N \U0, there is some
F ∈ F which is disjoint from

⋃
n∈U0
{n}× (Xn \An1 )∪

⋃
n∈U1
{n}× (Xn \

An0 ). Therefore, if we define f(n) = 1− i if and only if n ∈ Ui, we have
the needed function witnessing that F is maximal.

Conversely assume that F is maximal and assume that x0 6= x1 ∈ K
satisfy that πβ(x0) = πβ(x1) = U ∈ N∗. Let W0,W1 be disjoint open
neighborhoods in βX of x0 and x1. For each n ∈ N and e ∈ 2, define
Ane so that {n} × Ane = ({n} × X) \We. By the maximal property,
choose F ∈ F so that, for each n ∈ N, there is an en ∈ 2 so that
F ∩ ({n} ×Xn) ⊂ {n} × Anen . Choose U ∈ U so that there is an e ∈ 2
with ne = e for all n ∈ U . Notice that the closure of

⋃
n∈U{n} ×Xn is

a neighborhood of xe. However since we have that F is disjoint from
We ∩

⋃
n∈U{n} ×Xn, we contradict that xe is in K. �

Definition 2.7. A nice filter F on X =
⋃
n∈N{n} ×Xn, will be called

non-trivial (respectively nowhere trivial) if for each sequence xn ∈ Xn

(n ∈ N), there is an F ∈ F such that {(n, xn) : n ∈ N} \ F is infinite
(respectively (n, xn) /∈ F for all n ∈ N).

Lemma 2.8. If β(N×X), for a compact X, embeds into N∗ as a weak
P-set, and if F is a non-trivial (respectively nowhere trivial) maximal
nice filter on N × X, then KF is sent to a non-trivial (respectively
nowhere trivial) copy of N∗ under the embedding.

Proof. Let D ⊂ βN be countable and discrete. Identify β(N×X) with
its image in βN. We prove that D \ D is not equal to K. First note
that K is a nowhere dense subset of β(N × X), hence it is nowhere
dense in N∗. Thus we may assume that D is disjoint from N. Also
D \ (N ∪ β(N × X)) is a countable subset of N∗ and so its closure
will miss β(N × X). Thus we have that D is contained in β(N × X).
If D ∩ (N × X) is infinite, then there is an infinite subset E of this
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intersection which is disjoint from some F ∈ F . Since N×X is normal,
E and F have disjoint closures in β(N × X), hence we have that the
closure of E is disjoint from K. Finally, we assume that D is contained
in the remainder of N×X. The image of D by the projection map πβ

is a countable subset of N∗, and so it is not dense. Again, it follows
that D can not contain K since πβ[K] = N∗.

The proof for nowhere trivial is similar. �

Now we turn the construction of nowhere trivial maximal nice filters.
We utilize the structure of an Aronszajn tree to ensure nowhere trivial.
Let T ⊂ 2<ω1 be an Aronszajn tree; specifically T is downward closed,
no maximal elements, and for all α < β ∈ ω1, T ∩ 2α countable and for
each t ∈ T ∩ 2α, there is an extension of t in T ∩ 2β. This next result
is from [4].

Lemma 2.9. There exists a family {t(n, α) : n ∈ N, α ∈ ω1} ⊂ T such
that

(1) for each α ∈ ω1, {t(n, α) : n ∈ N} ⊂ T ∩ 2α,
(2) for β < α, there is an n ∈ N so that for all k ≥ n, t(k, β) ⊂

t(k, α).

Say that this is a nicely descending family.

Proof. For each n ∈ N, t(0, n) is simply the empty function (root of
T ). Also, t(1, n) is either element of T ∩ 21 for all n ∈ N. Let δ ∈ ω1

and assume that {t(n, α) : n ∈ N, α ∈ δ} have been chosen so that
the conditions are satisfied for each β < α < δ. If δ = α + 1, then
again t(n, δ) is simply either of the two extensions of t(n, α) for each
n ∈ N. If δ is a limit, let {αj : j ∈ ω} enumerate the ordinals below
δ. For each j ∈ ω, let ᾱj = max{αi : i ≤ j}. Choose nj ∈ N (strictly
increasing with j) large enough so that for all k ≥ nj and all i ≤ j,
t(k, αi) ⊂ t(k, ᾱj). For each j and k ∈ [nj, nj+1), choose t(k, δ) ∈ T ∩2δ

to be any extension of t(k, ᾱj). It is immediate that for each k ≥ nj
and each i ≤ j, t(k, αi) ⊂ t(k, δ). This completes the proof. �

This next lemma is not sufficient for our needs because 2ω1 does not
embed into βN but it provides the fundamental idea.

Lemma 2.10. For each t ∈ 2<ω1, let [t] denote the closed set {x ∈ 2ω1 :
t ⊂ x}. Let {t(n, α) : n ∈ N, α ∈ ω1} be a nicely descending family as
in Lemma 2.9. The filter F on N× 2ω1 generated by the family

{
⋃
n∈N

{n} × [t(n, α)] : α ∈ ω1}

is a nowhere trivial maximal nice filter.
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Proof. Property (2) of a nicely descending family ensures that F is a
nice filter. Actually the fact that it is a free filter follows from the
fact that T has no cofinal branches, but this would be simple to ensure
just by enlarging the filter base. To show that F is nowhere trivial,
we let {xn : n ∈ N} ⊂ 2ω1 . Since T has no uncountable branches,
there is a δ ∈ ω1 such that, for each n ∈ N, xn � δ /∈ T . Clearly⋃
n∈N{n} × [t(n, δ)] is a member of F which avoids {(n, xn) : n ∈ N}

as required.
Now we prove that F is maximal. Since 2ω1 is zero-dimensional

and compact, it suffices to consider any sequence {An0 , An1 : n ∈ N} of
complementary clopen sets. Choose δ ∈ ω1 large enough so that each
An0 is in eδ[RO(2δ)] as discussed above (i.e. in standard terminology,
the support of the clopen sets are contained in δ). Of course, for each
n ∈ N, [t(n, δ)] is contained in one of {An0 , An1}. It is now trivial to see
that F =

⋃
n∈N{n} × [t(n, δ)] is the desired witness to maximality. �

We are now ready to prove our main result.

Theorem 2.11. There is a non-trivial copy of N∗.

By Lemmas 2.4 and 2.8, it suffices to prove the following result which
is of independent interest. We lift the construction from Lemma 2.10
to N× E(2ω1).

Lemma 2.12. There is a nowhere trivial maximal nice filter on N ×
E(2ω1).

Proof. Let {t(n, α) : n ∈ N, α ∈ ω1} be the nicely descending family
constructed in Lemma 2.9. For each n, α we may regard the point
t(n, α) ∈ 2α as generating the filter T (n, α) of clopen subsets of 2α

containing t(n, α). We will select by induction on α, an ultrafilter
U(n, α) on RO(2α) extending T (n, α). For β < α, let eβ,α be the
natural embedding of RO(2β) into RO(2α) given by eβ,α(U) = U×2α\β

for U ∈ RO(2β). Our inductive hypothesis is that for β < α there is an
n ∈ N, such that for all k ≥ n, U(k, α) extends the filter generated by
T (k, α) ∪ eβ,α[U(k, β)]. For β < ω, the definition of U(n, β) is simply
that it equals T (n, β). Now suppose that δ ∈ ω1 and that we have
constructed U(n, α) for all α ∈ δ and n ∈ N. We proceed much as in
the proof of Lemma 2.9. Let {αi : i ∈ ω} enumerate δ and, for each
j ∈ ω, let ᾱj = max{αi : i ≤ j}. By the induction hypothesis, there is
a strictly increasing sequence {nj : j ∈ ω} ⊂ N so that for each k ≥ nj
and i ≤ j, we have

(1) t(k, αi) ⊂ t(k, ᾱj) ⊂ t(k, δ), and
(2) eαi,ᾱj

[U(k, αi)] ⊂ U(k, ᾱj)



6 ALAN DOW

It follows then that, for each k ∈ [nj, nj+1) and each i ≤ j,

eαi,δ[U(n, αi)] ∪ T (k, δ) ⊂ eᾱj ,δ[U(n, ᾱj)] ∪ T (k, δ)

generates a regular filter on RO(2δ). Indeed, if W ∈ T (k, δ), then,
since t(k, ᾱj) ⊂ t(k, δ), there is a W ′ ∈ T (k, ᾱj) such that W ′ is the
projection of W into 2ᾱj . If U ∈ U(k, ᾱj), then W ′ ∩ U is not empty,
and if follows that W ∩eᾱj ,δ[U ] = W ∩(U×2δ\ᾱj) is not empty. Choose
any ultrafilter U(k, δ) which extends eᾱj ,δ[U(k, ᾱj)]∪T (k, δ). This com-
pletes the inductive construction.

We consider the nice filter F generated by the family

{
⋃
n∈N

{n} × U∗n : (∃α ∈ ω1) (∀n ∈ N) Un ∈ eα[U(n, α)]} ,

recall that U∗ is a basic clopen subset of E(2ω1) for U ∈ RO(2ω1).
We omit the easy verification that F generates a nice filter. To see

that F is nowhere trivial, fix any sequence {Wn : n ∈ N} ⊂ E(2ω1).
For each n ∈ N, let xn = ϕ(Wn) (i.e. the unique point whose clopen
neighborhood base is contained in Wn). Fix any δ ∈ ω1 so that, for
all n ∈ N, xn � δ /∈ T . For each n, choose clopen Un ∈ T (n, δ)
so that xn � δ /∈ Un. It follows that eδ[Un] /∈ Wn for each n ∈ N.
Therefore,

⋃
n∈N{n}×U∗n is the desired member of F which avoids the

set {(n,Wn) : n ∈ N}.
Finally we check that F is maximal. Again, since E(2ω1) is compact

and zero-dimensional, it suffices to consider a sequence {(An0 )∗, (An1 )∗ :
n ∈ N} of basic clopen subsets of E(2ω1). For each n, An0 and An1
are complementary regular open subsets of 2ω1 . Choose δ ∈ ω1 large
enough so that each Ane is in eδ[RO(2δ)] and let Un

e ∈ RO(2δ) be chosen
so that eδ[U

n
e ] = Ane . Let f ∈ 2N be chosen so that for each n ∈ N, Un

f(e)

is in the ultrafilter U(n, δ). Clearly
⋃
n∈N{n}× (Anf(n))

∗ is a member of
F . �

3. Maximal nice filters on 2ω

In the previous section we established that N× 2ω1 and N× E(2ω1)
carry nowhere trivial maximal nice filters. In [6] it was asked if N ×
E(2ω) carries such a filter. It turns out that it does simply because
E(2ω1) can be embedded as a closed subspace of E(2ω). In this section
we consider the situation for metric spaces. We will establish that it is
independent of Martin’s Axiom plus c = ω2 whether N × 2ω carries a
non-trivial maximal nice filter. These results are closely related to the
question of the existence of non-trivial autohomeomorphisms on N∗.



A NON-TRIVIAL COPY OF βN \ N 7

Question 1. If N×2ω carries a nowhere trivial maximal nice filter, then
does there exist a non-trivial autohomeomorphism on N∗?

We skip the easy inductive proof of the next result, but just include
it for context.

Proposition 3.1 (CH). If {Xn : n ∈ N} is a sequence of finite sets
whose cardinalities diverge to infinity, then

⋃
n∈N{n} × Xn carries a

nowhere trivial maximal nice filter.

The connection to non-trivial autohomeomorphisms will be helpful.
We will need some notions from [8].

Definition 3.2. An embedding ϕ : N∗ → N∗ is trivial on A ⊂ N, if
there is a function ψ : A → βN such that ψβ ⊃ ϕ � A∗. An ideal
I on a set Y is said to be ccc over fin if every uncountable almost
disjoint family of subsets of Y has all but countably many members in
I. Analogously, a closed set J ⊂ N∗ will be said to be ccc over fin if
the dual ideal I of subsets of N whose closure misses J is ccc over fin.

Theorem 3.3. [8, 3.8.1] PFA implies that for every embedding ϕ of
N∗ into N∗, there is a partition A ∪B of N such that ϕ is trivial on A
and ϕ[B∗] is ccc over fin.

Corollary 3.4 (PFA). If {Xn : n ∈ N} is a family of finite sets, then
every maximal nice filter on

⋃
n∈N{n} ×Xn is trivial in that there is a

sequence {xn : n ∈ N} such that {(n, xn) : n ∈ N} is a member of the
filter.

Proof. Since each Xn is finite, the space βX with X =
⋃
n∈N{n} ×Xn

is a copy of βN. If F is a maximal nice filter on X, then K = KF
is such that the projection map πβ is one-to-one on K. Let ϕ be the
inverse of the πβ � K. By Theorem 3.3, there is a partition A ∪ B
of N such that ϕ is trivial on A and ϕ[B∗] is ccc over fin in X∗. It
is immediate that this implies that B is finite since for each infinite
D ⊂ B, (πβ)−1(D∗) will meet K, meaning that ϕ[B∗] could not be ccc
over fin. Let ψ : A→ βX be chosen so that ψβ ⊃ ϕ. We note that we
may assume that ψ[A] ⊂ X since πβ[ψ[A]\X] is a nowhere dense subset
of N∗. It is easily checked that ψ[A] will, mod finite, contain a set of
the form {(n, xn) : n ∈ N} as in the statement of the Corollary. �

In a paper [2, 2.5] studying the existence of non-trivial autohome-
omorphisms in a forcing extension of a model of PFA, a generic filter
on
⋃
n∈N{n} × 2n is added satisfying the second statement of the next

theorem.
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Theorem 3.5. It is consistent with MA + c = ω2 that there are no
nowhere trivial maximal nice filters on any set of the form

⋃
n∈N{n}×

Xn (with each Xn finite), while there is a non-trivial maximal nice filter
on
⋃
n∈N{n} × 2n.

It is also shown in [2] that all embeddings of N∗ into N∗ are some-
where trivial, and so the first half of the statement holds in that model.

In a forthcoming paper, a proof of the following statement will be
provided. The proof is similar to the construction of a nowhere trivial
autohomeomorphism on N∗ in a model of MA + c = ω2 given in [13].

Proposition 3.6. [1] It is consistent with MA + c = ω2 that there is
a nowhere trivial maximal nice filter on

⋃
n∈N{n} × 2n.

Finally we strengthen Corollary 3.4 to the main result of this section.
It modifies the method used in [3]. It uses the following key consequence
of PFA established by Todorcevic (see [8, 2.2.7]).

Proposition 3.7 (PFA). If {hf : f ∈ ωω} is a family of functions into
N with the property that for each f < g ∈ ωω, dom(hf ) ⊂ dom(hg) and
the set {x ∈ dom(hf ) : hf (x) 6= hg(x)} is finite, then there is a single
function h such that hf ⊂∗ h for all f ∈ ωω.

Theorem 3.8. PFA implies that N × 2ω does not carry a non-trivial
maximal nice filter.

Proof. Let F be a maximal nice filter on N × 2ω. By identifying each
t ∈ 2<ω with the canonical clopen set [t] ⊂ 2ω, it is evident that, for
each f ∈ ωN, F induces a maximal nice filter, Ff on

⋃
n∈N{n} × 2f(n).

By Corollary 3.4, there is a sequence {tfn : n ∈ N} so that tfn ∈ 2f(n)

(for n ∈ N) and {(n, tfn) : n ∈ N} is a member of Ff . Notice that,
for f < g both in ωN, tfn ⊂ tgn for all but finitely many n ∈ N. Define
hf :

⋃
n∈N{n} × 2≤f(n) → 2 according to hf (t) = 1 providing t ⊂ tfn.

By Proposition 3.7, there is a single function h : N × 2<ω → 2 which
mod finite extends each hf . It then follows that for all but finitely
many n ∈ N, Cn = {t ∈ 2<ω : h(n, t) = 1} is a maximal chain. Let
{xn : n ∈ N} ⊂ 2ω be any sequence so that for each n such that Cn is
a maximal chain, xn is the union of that chain. Let, for each n ∈ N,
Un be a clopen neighborhood of xn. There is an f ∈ ωN such that
[xn � f(n)] ⊂ Un for each n. Since [xn � f(n)] = [tfn] for all but finitely
many n ∈ N, it follows that

⋃
n∈N{n} × Un is in F . Therefore F fails

to be non-trivial as witnessed by {(n, xn) : n ∈ N}. �
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