
COSMIC DIMENSIONS

ALAN DOW AND KLAAS PIETER HART

Abstract. Martin’s Axiom for σ-centered partial orders implies that there is

a cosmic space with non-coinciding dimensions.

Introduction

A fundamental result in dimension theory states that the three basic dimension
functions, dim, ind and Ind, coincide on the class of separable metrizable spaces.
Examples abound to show that this does not hold in general outside this class.
In [1] Arkhangel′skĭı asked whether the dimension functions coincide on the class
of cosmic spaces. These are the regular continuous images of separable metric
spaces and they are characterized by the conjunction of regularity and having a
countable network. A network for a topological space is a collection of (arbitrary)
subsets such that every open set is the union of some subfamily of that collection.
In [6] Vedenisoff proved that ind and Ind coincide on the class of perfectly normal
Lindelöf spaces, see also [3, Section 2.4]. As the cosmic spaces belong to this class
Arkhangel′skĭı’s question boils down to whether dim = ind for cosmic spaces.

In [2] Delistathis and Watson constructed, assuming the Continuum Hypothesis,
a cosmic space X with dim X = 1 and indX > 2; this gave a consistent negative
answer to Arkhangel′skĭı’s question.

The purpose of this paper is to show that the example can also be constructed
under the assumption of Martin’s Axiom for σ-centered partial orders. The over-
all strategy is that of [2]: we refine the Euclidean topology of a one-dimensional
subset X of the plane to get a topology τ with a countable network, such that
dim(X, τ) = 1 and in which the boundary of every non-dense open set is (at least)
one-dimensional, so that ind(X, τ) > 2. The latter is achieved by ensuring that
every such boundary contains a topological copy of the unit interval or else a copy
of the Cantor set whose subspace topology is homeomorphic to Kuratowski’s graph
topology, as defined in [4].

The principal difference between our approach and that of [2] lies in the details of
the constructions. In [2] the topology is introduced by way of resolutions; however,
some of the arguments given in the paper need emending because, for example,
Kuratowski’s function does not have the properties asserted and used in Lemmas 2.2
and 2.3 of [2] respectively. We avoid this and use Kuratowksi’s fuction explicitly in
the defintion of new local bases at certain points and thus make the definition of
the topology more straightforward. Also, the use of partial orders leads to a cleaner
and more perspicuous construction of the Cantor sets.

We begin with a careful analysis of Kuratowski’s function in Sections 1 and 2.
We then show how to transplant the graph topology to an arbitrary Cantor set in
the plane. The remainder of the paper is devoted to a recursive construction of the
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necessary Cantor sets and finishes with a verification of the properties of the new
topology. An outline of the full construction can be found in Section 4.

1. Kuratowski’s function

In this section we give a detailed description of Kuratowski’s function ([4], see
also [3, Exercise 1.2.E]) and the resulting topology on the Cantor set. We do this
to make our note self-contained and because the construction makes explicit use of
this description.

Let C be the Cantor set, represented as the topological product 2N, and for
x ∈ C write suppx = {i : x(i) = 1}. We let D be the set of x for which supp x
is finite, partitioned into the sets Dk = {x : |suppx| = k}; put kx = |supp x| and
Nx = max suppx for x ∈ D. Note that D0 = {0}, where 0 is the point with all
coordinates 0 (so, N0 = dom c0 = ∅). Let E = C \ D, the set of x for which
suppx is infinite.

For x ∈ C let cx be the counting function of suppx, so dom cx = {1, . . . , kx} if
x ∈ D and dom cx = N if x ∈ E.

Now define
f(x) =

∑
j∈dom cx

(−1)cx(j)2−j

Thus we use the parity of cx(j) to decide whether to add or subtract 2−j . By
convention an empty sum has the value 0, so f(0) = 0.

Notation: if x ∈ C and n ∈ N then x � n denotes the restriction of x to the set
{1, 2, . . . , n}. Also, [x � n] denotes the n-th basic open set around x: [x � n] = {y :
y � n = x � n}.

For x ∈ D we write Vx = [x � Nx]. Using the Vx it is readily seen that the sets
Dk are relatively discrete: simply observe that Vx ∩

⋃
i6kx

Di = {x}. In fact, for
a fixed k the family Dk = {Vx : x ∈ Dk} is pairwise disjoint. For later use we put
Dx = {y ∈ Dkx+1 : y�Nx = x�Nx} and we observe that Vx = {x}∪

⋃
{Vy : y ∈ Dx}.

1.1. Continuity. We begin by identifying the points of continuity of f .

Proposition 1.1. The function f is continuous at every point of E.

Proof. Let x ∈ E and let ε > 0 be given. Choose N so large that 2−N < ε/2 and
let M = cx(N). If x � M = y � M then cx(j) = cy(j) for j 6 N , so that

f(x)− f(y) =
∑
j>N

(−1)cx(j)2−j −
∑
j>N

(−1)cy(j)2−j .

The absolute value of the right-hand side is not larger than 2
∑

j>N 2−j = 2 · 2−N ,
which is less than ε. This shows that f is continuous at x. �

1.2. Distribution of values. The function f is definitely not continuous at the
points of D. This will become clear from the following discussion on the distribution
of the values of f .

Proposition 1.2. Let t ∈ [−1, 1]. The preimage f←(t) is uncountable, crowded
and its intersection with E is closed in E.

Proof. The last claim follows immediately from Proposition 1.1, so we concentrate
on the other two claims.

We associate a sequence 〈ik : k ∈ N〉 of zeros and ones with t. Recursively let
ik = 0 if t >

∑
j<k(−1)ij 2−j and ik = 1 otherwise (if k = 1 the sum is zero by our

convention on empty sums). One shows by induction that |t −
∑k

j=1(−1)ij 2−j | 6

2−k, so that t =
∑∞

j=1(−1)ij 2−j . For every strictly increasing function φ : N → N
we define x = xt,φ ∈ C to be zero everywhere except at 2φ(j) when ij = 0 and at
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2φ(j + 1) when ij = 1. The parity of cx(j) is everywhere the same as that of ij ;
this implies that f(x) = t. Clearly then the set {xt,φ : φ strictly increasing} is an
uncountable subset of f←(t).

To see that f←(t) is crowded assume f(x) = t. In case x ∈ D define yn for
each n as follows: yn � Nx = x � Nx and above Nx we let yn be zero, except at the
coordinates 2Nx +2n, 2Nx +2n+1, 2Nx +2n+3, 2Nx +2n+5, . . . The sequence
〈yn〉n converges to x and for all n we have

f(yn) = f(x) +
(
2−(kx+1) −

∑
j>kx+1

2−j
)

= f(x)

In case x ∈ E define yn for all n as follows: yn � n = x � n and above n put
yn(n + 1) = yn(n + 2) = 0 and yn(n + k) = x(n + k − 2) for k > 3. Again yn → x
and f(yn) = f(x) for all n. �

Proposition 1.3. Let x ∈ D and k = kx. Then x is an accumulation point of
f←(t) if and only if f(x)− 2−k 6 t 6 f(x) + 2−k.

Proof. To prove ‘only if’ note that f(x) − 2−k 6 f(y) 6 f(x) + 2−k whenever
y � Nx = x � Nx.

To prove ‘if’ let t be as in the statement of the proposition. We localize the proof
of Proposition 1.2: define a sequence 〈ij : j ∈ N〉 by starting with ij = cx(j) mod 2
for j 6 k and proceeding as above for j > k. In the end t =

∑∞
j=1(−1)ij 2−j .

Then define a sequence 〈yn〉n much as in the previous proposition. First ensure
yn � Nx = x � Nx, next yn(i) = 0 for Nx < i < 2(Nx + k + n) and to finish let
yn(2(Nx + n + j) + ij) = 1 and yn(2(Nx + n + j) + 1− ij) = 0 for j > k. In the end
yn → x and f(yn) = t for all n. �

1.3. The dimension of the graph. We identify f with its graph in C × [−1, 1]
and we write I = [−1, 1]. For x ∈ D we let Ix = [f(x) − 2−kx , f(x) + 2−kx ]. The
discussion in the previous subsection can be summarized by saying that the closure
of f in C × I is equal to the set K = f ∪

⋃
x∈D

(
{x} × Ix

)
.

Proposition 1.4. ind f 6 1.

Proof. This is clear, by the subset theorem, as ind(C × I) = 1. �

Proposition 1.5. If x ∈ E then ind〈x,f(x)〉 f = 0.

Proof. For each n the set [x � n] = {y : y � n = x � n} is a neighbourhood of x and
the family of all such sets is a local base at x in C. Because f is continuous at x
the family of intersections

(
[x � n]× I

)
∩ f is a local base at

〈
x, f(x)

〉
in f . These

sets are clopen. �

Proposition 1.6. If x ∈ D then ind〈x,f(x)〉 f = 1.

Proof. Work in the compact set K. Put t = f(x)+2−kx and let F = (C×{t})∩K;
observe that, by Proposition 1.3, 〈x, t〉 ∈ F .

If ind〈x,f(x)〉 f were zero then we could find a partition L in K between
〈
x, f(x)

〉
and F such that L ∩ f = ∅. As L is compact, so is its projection πC [L]; this
projection is a subset of D, hence countable and therefore scattered.

We reach a contradiction by showing that πC [L] contains a crowded subset.
To this end we define a sequence 〈xn〉n in Dkx+1 by stipulating that suppxn =
suppx∪{2(Nx +n)}. Then xn → x and for all n we have f(xn)+2−(kx+1) = t and
f(xn) − 2−(kx+1) = f(x). It follows that L is a partition in K between

〈
xn, f(x)

〉
and 〈xn, t〉 for almost all n, which means that L must intersect the interval {xn}×
[f(x), t] for all those n, so that x is an accumulation point of πC [L]. This may
repeated for each point xn above as L is also a partition between

〈
xn, f(xn)

〉
and
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one of
〈
xn, f(xn) ± 2−(kx+1)

〉
. Then repeat this for the terms of the sequences

converging to the xn and so on to get the crowded subset. �

2. Basic neighbourhoods in the topology τf

It will be useful to have a description of the topology of f in terms of C alone, that
is, we consider the (separable metric) topology τf on C given by τf = {Of : O open
in C × I}, where Of = {x :

〈
x, f(x)

〉
∈ O}.

2.1. The points of E. The proof of Proposition 1.5 shows that at the points of E
the topology τf is the same as the usual topology. To be precise: if x ∈ E then the
family

{
[x � n] : n ∈ N

}
is a local base for τf at x.

2.2. The points of D. For ease of notation we describe the neighbourhoods of 0
(the point with all coordinates 0). For n ∈ N the n-the basic neighbourhood of〈
0, f(0)

〉
in C × I is Bn = [0 � n]× (−2−n, 2−n). We let Un = {x :

〈
x, f(x)

〉
∈ Bn}.

Clearly Un ⊆ [0 � n] but the question is how much of [0 � n] actually is in Un. Until
further notice we leave n fixed.

Lemma 2.1. If x ∈ Dk and k > 1 then |f(x)| > 2−k.

Proof. If cx(1) is even then f(x) > 2−1 − 2−2 − · · · − 2−k = 2−k and if cx(1) is odd
then f(x) 6 −2−1 + 2−2 + · · ·+ 2−k = −2−k. �

This lemma shows that Dk ∩ Un = ∅ whenever k 6 n, so that in the internal
description we must subtract

⋃n
k=1 Dk from [0 � n].

We know that the set Dn+1 is relatively discrete and that the family Dn+1 =
{Vx : x ∈ Dn+1} is a pairwise disjoint family of clopen sets; note that

⋃
Dn+1 =

C \
⋃n

k=0 Dk. For each x ∈ C we let px ∈ {−1, 1}dom cx be its pattern, i.e., px(i) =
(−1)cx(i) for i ∈ dom cx.

Lemma 2.2. If x ∈ Dn+1 and px(k) = px(1) for some k > 2 then Vx ∩ Un = ∅.

Proof. Assume px(1) = px(k) = 1. Then f(x) > 2−1− 2−2− · · · − 2−n + 2−(n+1) =
2−n + 2−(n+1), and so f(y) > 2−n whenever y � Nx = x � Nx.

The same argument applies when px(1) = px(k) = −1, but with all signs opposite
of course. �

For want of a better term let us say that x ∈ D satisfies (†) if its pattern satisfies
px(k) = −px(1) for all k > 2.

It follows that [0 � n] \
⋃n

k=1 Dk is the union of two disjoint closed sets: Cn =⋃{
Vx : x ∈ Dn+1, x � n = 0 � n and x does satisfy condition (†)

}
and Fn =

⋃{
Vx :

x ∈ Dn+1, x � n = 0 � n and x does not satisfy condition (†)
}
.

We must certainly also subtract Fn from [0 � n] \
⋃n

k=1 Dk. Finally then, from
what remains, which is {0} ∪ Cn, we must still delete the points at which f takes
on the values ±2−n.

The internal description of these point is as follows: if y ∈ Cn then f(y) = ±2−n

iff y ∈ E and there is x ∈ Dn+1 that satisfies (†) such that y ∈ Vx (so that its
pattern extends that of x) and such that py(k) = px(1) for k > n + 1

The other points of D. Basic neighbourhoods of the other points of D are copies
of the Un, obtained by shifting and scaling, that is,

Un(x) =
{
(x � Nx) ∗ y : y ∈ Un

}
,

where ∗ denotes concatenation.
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3. Making one Cantor set

We intend to copy the topology τf to many Cantor sets in the plane, or rather,
we intend to construct many Cantor sets and copy τf to each of them. Here we
describe how we will go about constructing just one Cantor set K, together with a
homeomorphism h : C → K, and how to refine the topology of the plane so that
all points but those of h[D] retain their usual neighbourhoods and so that at the
points of h[D] the dimension of K will be 1.

All we need to make a Cantor set are two maps σ : D → R2 and ` : D → ω.
Using these we define W (d) = B(σ(d), 2−`(d)) for each d ∈ D. We want the
following conditions fulfilled:

(1) the sequence 〈σ(e) : e ∈ Dd〉 converges to σ(d), for all d;
(2) cl W (e) ⊆ W (d) \ {d} whenever e ∈ Dd;
(3) {cl W (d) : d ∈ Dn} is pairwise disjoint for all n.

The following formula then defines a Cantor set:

(‡) K =
∞⋂

n=0

cl
(⋃

{W (d) : d ∈ Dn}
)
.

One readily checks that {σ(d) : d ∈ D} is a dense subset and that the map σ
extends to a homeomorphism h : C → K with the property that h[Vd] = K ∩W (d)
for all d ∈ D.

Copying the Kuratowski function from C to K is an easy matter: we let fK =
f ◦ h−1. To copy the topology τf to K and to preserve as much as possible of the
Euclidean topology we use the sets W (d) once more.

The goal is of course to assign neighbourhoods Vn(d) to h(d) that satisfy Vn(d)∩
K = h[Un(d)] for d ∈ D and n ∈ N, where the Un(d) are as defined in the previous
section.

We deal with h(0) first and we mimic the construction of the Un(0) from Sec-
tion 2. First we compute for each n the distance εn between Hn = h

[
[0 � n]

]
and K \ Hn and we set On = B(Hn, ε/3). Then On and cle On have the same
intersection with K, namely Hn. Next we subtract from On what corresponds
to

⋃n
k=1 Dk ∪ Fn ∪ f←

[
{2−n,−2−n}

]
. The first and third parts are easy: we

subtract
⋃n

k=1 h[Dk] ∪ f←K
[
{2−n,−2−n}

]
. For the second part we must subtract

Gn =
⋃n

k=1

⋃
{cle W (d) : d ∈ Dk+1, d � k = 0 � k and d does not satisfy con-

dition (†)
}
. Thus the nth basic neighbourhood of h(0) in the new topology is

Vn = On \
(⋃n

k=1 h[Dk] ∪Gn ∪ f←K
[
{2−n,−2−n}

])
.

The other points of h[D] are dealt with similarly, by shifting and ‘scaling’ this
process. To make Vn(d) for d ∈ D let Hn(d) = h

[
[d�(kd+n)]

]
and determine its dis-

tance εn(d) to its complement K\Hn(d). Then put On(d) = B
(
Hn(d), εn(d)/3

)
and

subtract from it the union of
⋃n

k=1 h[Dkd+k, f←K
[
{f(d) + 2−kd−n, f(d)− 2−kd−n}

]
and

⋃n
k=1

⋃
{cle W (e) : e ∈ Dkd+k+1, e � (kd + k) = (d ∗ 0) � (kd + k) and e � [kd +

1, Ne] does not satisfy condition (†)
}
.

4. The plan

In this section we outline how we will construct a cosmic topology τ on a subset X
of the plane that satisfies dim(X, τ) = 1 and ind(X, τ) > 2.

We let Q denote the family of all non-trivial line segments in the plane with
rational end points. Our subset X will be R2\A, where A = {〈p+

√
2, q〉 : p, q ∈ Q}.

Note that A is countable, dense and disjoint from
⋃
Q. Also note that, with

respect to the Euclidean topology τe, one has ind(X, τe) = 1: on the one hand
basic rectangles with end points in A have zero-dimensional boundaries (in X),
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so that ind(X, τe) 6 1, and on the other hand, because X is connected we have
ind(X, τe) > 1.

We will construct τ in such a way that its restrictions to X \
⋃
Q and each

element of Q will be the same as the restrictions of τe; this ensures that (X, τ) has
a countable network: take a countable base B for the Euclidean topology of X\

⋃
Q,

then Q∪B is a network for (X, τ). Also, the τe-interior of every open set in (X, τ)
will be nonempty so that

⋃
Q and X \

⋃
Q will be dense with respect to τ .

It what follows cl will be the closure operator with respect to τ and cle will be
the Euclidean closure operator.

The topology. We let {(Uα, Vα) : α < c} numerate all pairs of disjoint open sets
in the plane whose union is dense and for each α we put Sα = cle Uα ∩ cle Vα. We
shall construct for each α a Cantor set Kα in X ∩Sα, unless there is a Qα ∈ Q that
is contained in Sα. The construction of the Kα will be as described in Section 3,
so that we will be able to extend τe to a topology τα whose restriction to Kα is a
copy of the topology τf . For notational convenience we let I be the set of αs for
which we have to construct Kα and for α ∈ c \ I we set τα = τe. As an aside we
mention that c \ I is definitely not empty: if the boundary of Uα is a polygon with
rational vertices then α /∈ I.

Thus we may (and will) define, for any subset J of c a topology τJ : the topology
generated by the subbase

⋃
α∈J τα. The new topology τ will τc.

There will be certain requirements to be met (the first was mentioned already):

(1) The restriction of τ to X \
⋃
Q and each Q ∈ Q must be the same as that

of the Euclidean topology;
(2) Different topologies must not interfere: the restriction of τ to Kα should

be the same as that of τα;
(3) For each α, depending on the case that we are in, the set Kα or Qα must

be part of the τ -boundary of Uα.

If these requirements are met then the topology τ will be as required. We have
already indicated that (1) implies that it has a countable network.

The Inductive dimensions. To see that ind(X, τ) > 2 we take an element O
of τ and show that its boundary is at least one-dimensional. There will be an α
such that cle O = cle Uα: there is O′ ∈ τe such that O ∩

⋃
Q = O′ ∩

⋃
Q and

we can take α such that Uα = int cle O′ and Vα = R2 \ cle U . In case α ∈ I the
combination of (2) and (3) shows that indFrO > ind Kα = 1 and in case α /∈ I we
use (1) and (3) to deduce that indFrO > indQα = 1.

The covering dimension. As ind(X, τ) > 2 it is immediate that dim(X, τ) > 1.
To see that dim(X, τ) 6 1 we consider a finite open cover O. Because (X, τ) is
hereditarily Lindelöf we find that each element of O is the union of countably many
basic open sets. This in turn implies that there is a countable set J such that
O ⊆ τJ . This topology is separable and metrizable and it will suffice to show that
dim(X, τJ) 6 1.

If J is finite then we may apply the countable closed sum theorem: O = X \⋃
α∈J Kα is open, hence an Fσ-set, say O =

⋃∞
i=1 Fi. Each Fi is (at most) one-

dimensional as is each Kα and hence so is X, as the union of countably many
one-dimensional closed subspaces.

If J is infinite we numerate it as {αn : n ∈ N} and set Jn = {αi : i 6 n}. Then
(X, τJ) is the inverse limit of the sequence

〈
(X, τJn

) : n ∈ N
〉
, where each bonding

map in : (X, τJn+1) → (X, τJn
) is the identity. By Nagami’s theorem ([5], see also

[3, Theorem 1.13.4]) it follows that dim(X, τJ) 6 1.



COSMIC DIMENSIONS 7

5. The execution

The construction will be by recursion on α < c. At stage α, if no Qα can be found,
we take our cue from Section 3 and construct maps σα : D → Sα and `α : D → ω, in
order to use the associated balls Wα(d) = B(σα(d), 2−`α(d)) in formula (‡) to make
the Cantor set Kα. We also get a homeomorphism hα : C → Kα as an extension
of dα and use this to copy Kuratowski’s function to Kα: we set fα = f ◦ h−1

α . We
then use the procedure from the end of Section 3 to construct the topology τα.

5.1. The partial order. We construct σα and `α by an application of Martin’s
Axiom to a partial order that we describe in this subsection. To save on notation
we suppress α for the time being. Thus, S = Sα, σ = σα, etc.

To begin we observe that
⋃
Q ∩ S is dense in S: if x ∈ S and ε > 0 then

there are points a and b with rational coordinates in B(x, ε) that belong to U
and V respectively. The segment Q = [a, b] belongs to Q, is contained in B(X, ε)
and meets S. Actually, Q ∩ S is nowhere dense in Q because no subinterval of Q
is contained in S — this is where we use the assumption that no element of Q
is contained in S. There is therefore even a point y in Q ∩ S that belongs to
cl(Q ∩ U) ∩ cl(Q ∩ V ): orient Q so that a is its minimum, then y = inf(Q ∩ V ) is
as required. It follows that the set S′ of those y ∈ S for which there is Q ∈ Q such
that y ∈ cl(Q ∩ U) ∩ cl(Q ∩ V ) is dense in S. We fix a countable dense subset T
of S′. We also fix a numeration {an : n ∈ N} of A, the complement of our set A.

The elements p of our partial order P have four components:

(1) a finite partial function σp from D to T ,
(2) a finite partial function `p from D to ω,
(3) a finite subset Fp of α ∩ I,
(4) a finite subset Qp of Q.

We require that domσp = dom `p and we abbreviate this common domain as dom p.
It will be convenient to have dom p downward closed in D, by which we mean that
if e ∈ dom p ∩Dd then d ∈ dom p.

The intended interpretation of such a condition is that σp and `p approximate
the maps σ and ` respectively; therefore we also write Wp(d) = B(σp(d), 2−`p(d)).
The list of requirements in Section 3 must be translated into conditions that we
can impose on σp and `p.

(1) ‖σp(e) − σp(d)‖ < 2−Ne whenever d, e ∈ dom p are such that e ∈ Dd, this
will ensure that 〈σ(e) : e ∈ Dd〉 will converge to σ(d);

(2) cle Wp(e) ⊆ Wp(d) \ {d} whenever d, e ∈ dom p are such that e ∈ Dd; and
(3) for every n the family {cle Wp(d) : d ∈ Dn ∩ dom p} is pairwise disjoint.

The order on P will be defined to make p force that for β ∈ Fp and Q ∈ Qp the
intersection {σ(d) : d ∈ D} ∩ (Kβ ∪ Q) is contained in the range of σp, and even
that when d /∈ dom p the intersection cle W (d) ∩ (Kβ ∪Q) is empty. We also want
p to guarantee that K ∩ {ai : i 6 |dom p|} = ∅.

Before we define the order, however, we must introduce an assumption on our
recursion that makes our density arguments go through with relatively little effort;
unfortunately it involves a bit of notation.

For x ∈
⋃
Q set Ix = {β ∈ I : x ∈ σβ [D]}. For each β ∈ Ix let dβ = σ←β (x) and

write Dx,β = Ddβ
. If it so happens that q ∈ P and x = σq(d) for some d ∈ D and if

e ∈ Dd \ dom q then we must be able to choose an extension p of q with e ∈ dom p,
without interfering too much with the sets Wβ(a), where β ∈ Ix and a ∈ Dx,β . The
following assumption enables us to do this (and we will be able to propagate it):
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(∗) If x ∈
⋃
Q then for every finite subset F of Ix ∩ α there is an ε > 0 such

that the family WF,ε = {cle Wβ(a) : β ∈ F, a ∈ Dx,β and σ(a) ∈ B(x, ε)} is
pairwise disjoint.

It is an elementary exercise to verify that in such a case the difference B(x, ε) \⋃
WF,ε is connected.
We define p 4 q if
(1) σp extends σq and `p extends `q,
(2) Fp ⊇ Fq and Qp ⊇ Qq,
(3) if d ∈ dom p \ dom q and i 6 |dom q| then ai /∈ cle Wp(d).
(4) if d ∈ dom p \ dom q and J ∈ Qq ∪ {Kβ : β ∈ Fp} then cle Wp(d) is disjoint

from J .
(5) if d ∈ dom q and x = σq(d) and if e ∈ dom p\dom q is such that e ∈ Dd then

cle Wp(e) is disjoint from cle Wβ(a) whenever β ∈ Fq ∩Ax and a ∈ Dx,β

It is clear that p and q are compatible whenever σp = σq and `p = `q; as there
are only countably many possible σs and `s we find that P is a σ-centered partial
order.

5.2. Dense sets. In order to apply Martin’s Axiom we need, of course, a suitable
family of dense sets.

For β < α the set {p : β ∈ Fp} is dense. Given p and β extend p by adding β to Fp.

For Q ∈ Q the set {p : Q ∈ Qp} is dense. Given p and Q extend p by adding Q
to Qp.

For n ∈ N the set {p : |dom p| > n} is dense. This follows from the density of the
sets below.

For e ∈ D the set {p : e ∈ dom p} is dense. Here is where we use assumption (∗).
Since every e ∈ D has only finitely many predecessors with respect to the relation
“Dd 3 q” it will suffice to consider the case where q ∈ P and e ∈ Dd \ dom q for
some d ∈ dom q.

We extend q to a condition p by setting Fp = Fq, Qp = Qq, dom p = {e}∪dom q
and by defining dp(e) and `p(e) as follows. Let x = σq(d), put n = ke and consider
H =

⋃
{cle Wq(a) : a ∈ Dn+1 ∩ dom p ∩Dd}.

Fix ε1 6 2−Ne so that B(x, 2ε1) is disjoint from H, this is possible because of
condition (2) in the defintion of the elements of P. Observe that if we choose σp(e)
and `p(e) in such a way that cle Wp(e) ⊆ B(x, ε1) then p is an element of P.

Next, using (∗), find ε2 6 ε1 that works for the finite set Fq ∩ Ix. The set
W = {x}∪

⋃
WF,ε2 is closed and does not separate the ball B(x, ε2), the set S does

separate this ball because the latter meets both U and V . Therefore we can find a
point y in S∩B(x, ε2)\W ; we choose δ > 0 so small that cle B(y, δ) ⊆ B(x, ε2)\W .

The set S ∩ B(y, δ) separates B(y, δ), hence it is (at least) one-dimensional,
The union of the Kβ (for β ∈ Fq) together with the Q ∩ S (for Q ∈ Qq) is zero-
dimensional because each individual set is: each Kβ is a Cantor set and each Q∩S
is nowhere dense in Q and hence zero-dimensional. This means that, finally, we
can choose σp(e) in T ∩ B(y, δ) but not in this union and then we take `p(e) so
large that cle Wp(e) is a subset of B(y, δ) minus that union. Also, at this point we
ensure that ai /∈ cle Wp(e) for i 6 |dom q|: this is possible because σp(e) /∈ A.

We have chosen Wp(e) to meet requirements (3), (4) and (5) in the definition
of p 4 q.

5.3. A generic filter. Let G be a filter on P that meets all of the above dense
sets. Then σα =

⋃
{σp : p ∈ G} and `α =

⋃
{`p : p ∈ G} are the sought after maps.

We define Wα and Kα as in Section 3.
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5.3.1. Assumption (∗) is propagated. In verifying this we only have to worry about
the points in σα[D] of course.

Therefore let x ∈ σα[D] and let F be a finite subset of Ix ∩ α; we have to find
an ε for F ′ = F ∪ {α}. First fix ε1 that works for F itself. Next take p ∈ G
such that dα ∈ dom p and F ⊆ Fp. Using condition (5) in the definition of 4
and a density argument we find that cle Wα(e) is disjoint from cle Wβ(a) whenever
e ∈ Dx,α \ dom p, β ∈ F and a ∈ Dx,β . Now choose ε smaller than ε1 and all
distances ‖x− σα(e)‖, where e ∈ Dx,α ∩ dom p. Then WF ′,ε is pairwise disjoint.

5.3.2. Kα meets Kβ (β < α) in a finite set. Let β ∈ α ∩ I and take p ∈ G such
that β ∈ Fp. Choose n such that dom p ⊆

⋃
k6n Dk. By formula (‡) we know that

Kα ⊆ cle
(⋃

{Wd : d ∈ Dn+1}
)

the latter closure is equal to
⋃

k6n Dk ∪
⋃
{Wd : d ∈

Dn+1} and the intersection of this set with Kβ is contained in dom p; this follows
from condition 4 in the definition of 4.

5.3.3. Kα meets each Q ∈ Q in a finite set. The proof is identical to the previous
one: take p ∈ G with Q ∈ Q.

6. The remaining properties of the topologies

We check conditions (1), (2) and (3) from Section 4.
A useful observation is that a typical new basic neighbourhood B, in the topol-

ogy τα, at a point of σα[D] is of the form O \ F , where F is such that F ⊆ cle F ⊆
F ∪ σα[D]. To see this refer to the end of Section 3. In the case where B = Vn the
set F is the union of

•
⋃n

k=1 hα[Dk], which is closed in τe;
• a subfamily of {cle Wα(e) : e ∈

⋃n
k=1 Dk+1}, which accumulates at the

points above, and
• f←α

[
{2−n,−2−n}

]
, which has its extra adherent points in σα[D] (see Propo-

sition 1.2).

6.1. X \
⋃
Q retains its Euclidean topology. This immediate from the descrip-

tion of the basic neighbourhoods given above as the intersection F ∩ X \
⋃
Q is

closed in the Euclidean topology of X \
⋃
Q.

6.2. Each Q ∈ Q retains its Euclidean topology. We should show that B ∩Q
is open in the natural topology of Q. But this, again, is immediate: in the present
case Kα ∩Q is finite, hence F ∩Q is closed in Q.

6.3. τα and τβ do not interfere. The same argument as above applies: if β 6= α
then Kα ∩Kβ is finite. Therefore B ∩Kβ is open in the natural topology of Kβ .

6.4. Qα is still in the boundary of Uα. For notation we refer to the discussion
around assumption (∗). Let x ∈ Qα and assume Ix 6= ∅ (if Ix = ∅ then x has no new
neighbourhoods and there is nothing to prove). A typical new basic neighbourhood
of x in the full topology τ contains a set of the form Oε = B(x, ε)\

⋃
WF,ε. By our

construction, if ε is taken small enough we have
⋃
WF,ε∩Qα = ∅. This means that

Oε is a Euclidean neighbourhood of many points of Qα and hence that it meets
both Uα and Vα.

6.5. Kα is still in the boundary of Uα. Let x ∈ Kα and assume Ix 6= ∅.
If α /∈ Ix then the same argument as above will work: any Oε is a Euclidean

neighbourhood of many points of Kα.
If α ∈ Ix then we assume α ∈ F and observe that Oε is a Euclidean neighbour-

hood of many points of Sα \
⋃
{cle Wα(a) : a ∈ Dx,α}.
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