Set-Theoretic update on Topology

Alan Dow™

1 Introduction

This is the third in the Recent Progress in General Topology series, and this
is the author’s third contribution with the assigned theme of recent progress
of applications of set-theory to topology. To some (like me) in set-theoretic
topology, this can just seem like being asked to write about applications of
topology to topology. My view is that the focus should be on the new aspects
of the set-theoretic methods and not simply a survey of results that have
a strong set-theoretic flavor. This point of view was reinforced when I saw
preliminary versions of some of the other contributors’ articles because they,
naturally enough, were filled with highly sophisticated set-theoretic results.
It is also reasonable to feel that there is no benefit in trying to provide an
updated explanation of what set-theory in topology is all about. Rather, as
we have in our previous efforts, we make a personal selection of recent ap-
plications of set-theory with the hopes that many of the most up to date
and innovative applications are well represented. The author thanks Istvan
Juhasz for discussions in helping select the topics even though many of his
suggestions were omitted due to my own lack of expertise. The topics se-
lected include applications of the forcing axiom PFA(S) to such problems as
Katétov’s problem about hereditarily normal squares, the P-ideal dichotomy,
the compact small diagonal problem, and we show that compact spaces of
countable tightness are sequentially compact (a partial step related to the
Moore-Mrowka problem). These results are, for the most part due to Todor-
cevic and Larson. We also give a forcing construction of a counterexample to
the Katétov problem based on a CH example given by Gruenhage and Nyikos.
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There is a brief discussion of Efimov spaces (compact spaces containing nei-
ther SN nor a converging sequence) using Koszmider’s notion of a T-algebra.
There is an application of PFA to the structure of compact sequential spaces
related to the question of the maximum possible sequential order, and a re-
view of selectively separable spaces. The final section includes some discussion
of properties of Justin Moore’s L-space. Another word about the focus of the
article. Since the article is about applications of set-theoretic methods, we
have attempted to be quite complete in providing detailed proofs.

2 Katétov’s problem and PFA(S)[S]

Proposition 2.1 ([Kat48]). If X? is hereditarily normal and compact, then
X is hereditarily Lindeldf.

For a set A in a space X, let cap(A) denote the set of complete accumu-
lation points of A, that is, the set of x € X with the property that each
neighborhood of  meets A in a set with cardinality equal to that of A.

Proof. Assume otherwise, and choose open sets {U, : @ € wy} and a point
Ta € Ua \Upco Up- Let H = cap({zata) X {zn :n € w} and K = {z4 1 €
w1} x cap({zy, : n € w}). It is immediate that H N K and H N K are empty.
Let U be an open subset of X2 which contains H. There is an a such that
(24, ,) € U for each n. Clearly then U N K is not empty.

Definition 2.2. A Souslin tree S C w<“* is coherent if sAt = {£ : s(§) #
t(£)} is finite for all s,¢ € S. The axiom PFA(S) is the statement that there
is a coherent Souslin tree and for all proper posets P such that forcing with
P preserves that S is Souslin, for each family © of at most w; dense subsets
of P there is a ®-generic filter on P.

Following [LT10], the notation PFA(S)[S] denotes a generic extension by S
of a model of PFA. In what follows we shall use the phrase “PFA(S)[S] implies
...”7 to express succinctly a certain statement holds in every extension by S
of a model for PFA(S).

We sketch a proof of the following important result.

Theorem 2.3. PFA(S)[S] implies that any compact space with hereditary
normal square is metrizable.

The following non-trivial result is the first step, but we omit the proof
(but see Theorem 7.1).

Proposition 2.4 ([LT02]). PFA(S)[S] implies that a compact hereditarily
Lindelof space is hereditarily separable.
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Definition 2.5. The P-ideal dichotomy, PID, is the statement that when 7
is a P-ideal on a set X, either X is a countable union of sets each of which
is orthogonal to Z, or there is an uncountable subset of X whose countable
subsets are all members of Z.

Here are three important consequences of this forcing axiom. To best illus-
trate the methods, we will prove (in detail) that the P-ideal dichotomy holds.
We recall that OCA (a well known consequence of PFA with an evolving nam-
ing convention) is the statement that if X is an uncountable separable metric
space, and K is an open subset of [X]? (with the natural topology), then there
is a countable cover {X,, : n € w} of X and an uncountable Y C X, such
that either [Y]? C K or, for each n, [X,]?N K = 0.

Lemma 2.6 ([Tod]). PFA(S)[S] implies the P-ideal dichotomy, OCA, and
the equality b = ws.

Proof. We prove that PFA(S) implies that forcing with S gives a model in
which PID holds. To do so, we consider 7 which is an S-name of a P-ideal on
a cardinal v. Let 7+ denote the S-name of the collection of subsets Y of v
which satisfy that [Y]“ N 7 is empty. We suppose that some condition (in
fact the root of S) forces that if {Y; : n € w} are S-names of members of
7', then there is an S-name { such that 1 forces that § ¢ Y, for each n. Our
task is to use PFA(S) to show that there is an S-name Y of an uncountable
set all of whose countable subsets are members of Z. In fact, we will produce
a cub C C wy and a sequence of pairs of S-names {5'7,67 ;v € C} and an
S-name I” for an uncountable subset of C' so that it is forced that b, € Z for
each v € I, and {EC Cel'ny}c l.)ﬂ,.

Since forcing with S adds no new countable sets, the names for 57 can
simply be a pair (s,,by) where s, € S, and b, € [v]“. It will be necessary
that s, IFb, € 7. For simplicity we ignore the need for the more formal (and
correct) notation that this name should be {(s-, b,)}. However we will not be
able to make such a reduction for £,, but we will need that s, forces a value
on ég for all § < 7 in order to ensure the covering property required of b,. In
fact the definition of &, will need to be independent of the choice of s.,. To
assist with this requirement, we fix a regular cardinal 6 so that 2" < # and,
following [Tod], choose a well-ordering <g of H ().

Each v € C will correspond to some M., which is a countable elementary
submodel of (H(#), <g) such that M, Nw;, = . We will choose s, to be any
member of S, (the minimal members of S\ M.,). We leave as a simple exercise
that there is a set b, € [v]* (choose the <j-least) such that s, I- b, € Z and
b, mod finite contains all a € M., such that s, IFa € I. In a similar fashion,
consider the collection {Yn :n € w} of all S-names in M,. Each t € S, will
decide the truth of the statement Yn € 7+ for each n. There is a minimal
By € wy \ 7 such that for each s € Sg_ there is an ordinal {, € v such that
slH& ¢ Y,, for all n such that s IF Y, € Z,,. The set éMW = {(s,fs) 15 €88}
is an S-name such that
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(VY € M,) 1IFY €I+ implies &y, ¢V .

For each countable elementary submodel M of (H(6), <g), let 5 denote the
< least such name. When we choose M., we will let 5-7 be f .- In addition,
for each s € S, fix b(M,,s) as discussed above so that a C* b(M,,,s) for
each a € M, such that sl-a € 7. In this way, once we have selected M, and
s, the choices of £, and b, are automatic.

Now we construct a poset IP which will create the cub C and the selection
of S-names as described above. That is, we will show that PFA(S) can be
applied to P and that a selection of wy-many dense sets and w; many names
with which to invoke the PFA(S) axiom will prove the theorem.

A condition p € P will have the form (F,, M,,S,) where M, is a finite
€-chain of countable elementary submodels of (H(0),<g), F, = {M Nw; :
M e M,} € [wi]<¥, S, = {sh : 6 € F,} is such that s5; € Ss for each § € F,.
Notice that for M € M, and M Nwy, < J € F), sg forces a value on éM. We
define p < ¢ providing

1. M, D Mg,
2. §, 08y, and if
3. Me M\ My, MNwy =6 <7 € Fy, and s5 < s, then s, IF &5 € b,,.

A more elegant presentation of P would be to suppress any mention of F},
and to replace {M,,S,} as the corresponding function sending M, into S.
In later proofs we will adopt that approach but feel it might obscure some of
the intuition in this first introduction.

It is trivial to see that, for each v € wy, the set of p € P with F, \ v # 0 is
dense. Suppose that G C P is a filter that meets each of these dense sets and
let C' = |J{F} : p € G}. There are wy many more dense sets that can be chosen
sufficient to ensure that C is a cub, but actually we do not require that C' is
a cub, only that it is uncountable. Also let {s, : v € C} and {M,, : v € C} be
the assignments where, for each p € G and v € F},, s, = sb and M, € M,,.
We wish to notice here that the last condition in the definition of the ordering
on P ensures that for each v € C, s, I- {5 : 6 € C and s5 < s,} C* b,. The
required S-name I is simply {(sy,%) : v € C}.

It remains only to show that PFA(S) can be applied to P. Let k be a
sufficiently large regular cardinal so that P € H(k) and let P € M < H(k)
be a countable elementary submodel. Let 69 = M Nwy and My = M N H(H).
Choose any sg € Ss,. Let po € PN M.

A somewhat, by now, standard proof to show that P is proper is to show
that the extension p = (F,, U{do}, Mp, U{Mo}, Sp, U{ss, }) is (M, P)-generic.
To show that P is proper and preserves that S is Souslin, we show that for
each so € S5, (s0,p) is an M-generic condition for S x P (see [Miy93]).

Let D C S x P be a dense open set which is a member of M. Choose any
extension (s,q) € S x P which is a member of D. Let {My, M1,...,My_1}
enumerate M, \ M in increasing order. Similarly, let {dg,d1,...,d¢—1} enu-
merate F, \ M. For each i < ¢, let bs, denote b(M;, s ), which we recall will
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be the value of bs,. Since D is open, we can assume that s is not in M,_;
and even that it forces a value on f M,_,- To postpone discussion of one of
the complications, we will first assume that sgo < s.

Simple elementarity will ensure that there are members (5,q) of DN M
such that 5 < s, and F; end-extends F,; N M. The difficult step in the proof
is to overcome the obstruction to ¢ being compatible with g caused by the
requirement that whenever ¢ < ¢ and 5‘1; € Sy is below s5,, we require that

ss, forces that SM € bs,, where M Nw; = ~. This is quite subtle.
To get the flavor, let us consider the collection

Xo={(56):(37€P) (5,q) € D, My end-extends M, N M,
M = min(Mgz\ (M,NM))and 51IF & =€} . (1)

We denote this set as an S-name because we can view it as such. This is a
set of pairs which is a member of M N H(#), and so it is in M. Of course the
pair (s7§ M,) corresponds to a member of Xy from which we conclude that
s Ik Xo is not in Z1. Moreover we have that the statement (3a € [v]“)s IF
acIn [Xo]‘*’ holds and we may assume that for each £ € a, there is an
se < s, such that (s¢,&) € X,. By elementarity (and using that S is ccc),
there is an s € SN M with s’ < s and an @ € M such that s’ IF a € ZN[X(]*
and again that for each ¢ € a, there is an s¢ < s’ such that (s¢, &) € Xo.
For each j < £ such that s’ < ss;, we have that a C* bs,. Therefore there is
some & € aN({bs; : j < and s’ < s5,}. For any such §{, we must select a
corresponding My witnessing that (sg,, &) € Xo.

The next problem is that we want to be able to choose such a &; and
to then continue to choose the next £; corresponding to the next smallest
model in an eventual choice of Mg. This requires that a similar, but more
complicated situation exists for the set

Xieyy ={(5.€): B €P) (5,q) € D, M end-extends {My}U(M,NM),
M =min(Mg\ My) and 5 IF € =€} . (2)

There is a situation in which we do not actually have to even worry about
ensuring that &; is in any of the bs,. First, we choose any v € My so that for
each 1 < ¢, sgi I [¥0,d0) C s; hence all the sgj agree on the interval [yg,dp).
We retroactively assume that 9 € My. Let My Nw; be denoted as dp.

Suppose that there is some a > g such that s(a) # s§ (). The definition
of X@O) can then be modified to ensure that for each (8,&y;) € X<§O> there
is a g € P so that s and ng disagree at some o which is above &y. This will
ensure that for any such dy; and any j < /, ng < s, will fail; and so the
difficult condition in the definition of <p is vacuously satisfied.

On the other hand, if s§ does agree with s on the interval [yo,01) and

(5,¢) € X<§O> is such that § < s (as required) then we will have the require-
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ment that & needs to be in bs,. To have any chance of this we will again
need that ss;, forces that X<5O> is not in Z1. This puts an extra demand on
the choice of & (and each subsequent choice) which is accomplished by start-
ing again and examining ¢ more closely. Since we will use it so often, let P,
denote the set of ¢ € P such that My end-extends M, N M with £ elements,
and for ¢ € Py let {M{, ..., M} |} list this extension in increasing order. We
no longer keep the assumption that s;, < s, but we introduce some standard
notation for this type of proof. For each ¢ < ¢, let o; be the mapping on S
which takes an element s’ of S and changes its initial segment below 7o so as
to agree with ss5,. Notice that o, € My for each i < ¢. Next, let L denote the
set of i < ¢ such that s5, < o;(s) (that is, s and ss5, have no disagreements
above 7p), and let {#, : j < |L|} enumerate L.
Define the collection

T= {{fO?gla s 7£|L|—17‘§} CwiUS: (Elq € Pq) (g’ (7) € D’
for each j < |L|, 0, (5) IF & = EM‘?} (3)

We showed above that the sequence {£] ... 75?@\_1 ,8}isin T (where o, (s) IF
éMiJ = ffj) Following [Tod], let

OT = {t = {&.&,....41/-2,5} : (Fa € [V]*)
iy (s)Faeland (VE€atU{Et €T} (4)

We know that {¢I,...,¢&7 s} € 9T, and thus by elementarity, and the

i? iL|—2’
fact that D is open, there is a 5|71 € M;_1, such that 5 ,_; < s and for
all extensions 5 of 5|z)_1, {&},. .. 76'?\L\727§} € 0T N My_1. Then set

T = {t = {0, -, §r|-3,5} : Ba € [V]*) (VE€a)
i ,(8)IFa €l and tU{¢} € 0T} (5)

By induction, for 0 < k —2 < |L| and 8°T =T,

O ={t={Co,. .., & k,5}: Gac V) (Vca)
O\ —k1(5) IFa € T and tU{¢} € 9" 2T} (6)

and we have that there is a 5;, € M}, such that 5;, < s and, for all extensions
5 of 5, {ffg,...,ﬁfmik,g} € 9FIT. In particular, there is an 5y € M so
that 59 < s and, {50} € O!"IT.

For each j < |L|,let K; ={k € L: 55, < o;j(s)}. Also, for each j < |L],
let b; = (\{bs, : k € K,}. Working in My, we select a witness ag for the
fact that {50} € /YT, and note then that we may choose & € ag N by s0
that {£0,50} € 0/F1-1T. Continuing this recursion, we choose, for j < |L|,
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& € by N My so that {&,&1,...,&,50} € OILI=3—1T . Having chosen t =
{0, &L)=1,80} € T, we choose ¢ € P, witnessing that ¢t € T. We omit
the details that ¢ is compatible with ¢, (So,q) € D, and (80, ¢) is compatible
with (s, q) as required.

Corollary 2.7. PFA(S)[S] implies that a compact first countable space which
18 mot hereditarily Lindelof will contain an uncountable discrete set.

Proof. Let {U, : o € w1} be a family of cozero sets so that for each «a, there
isan 2, € X\ Uﬁ<a Us and an open set V,, such that z, € V, C V, C U,.
Define an ideal Z on the set {x,, : @ € wy} according to a € Z if aNV,, is finite
for all @ € wy. Since b > wy, it is easy to check that 7 is a P-ideal. Assume
that A is an uncountable subset of {z, : & € w1} and choose any complete
accumulation point x of A. Choose any countable a C A which converges
to x. Notice that = ¢ (J,.,, Ua since, for each a, U, N A is countable.

Therefore = ¢ V,, for all «, hence a € Z. By the PID, it follows that there
is an uncountable A such that [A]* C Z. For each « such that z, € A, we
have that V,, is a neighborhood which meets A in a finite set, hence A is an
uncountable discrete set.

Proof (Proof of Theorem 2.3). We assume that X is an S-name of a compact
space with hereditarily normal square. We assume that the tree S is a subtree
of w<¥ and that the base set for X2 is an ordinal. By Proposition 2.1, X is
first countable and hereditarily Lindelof. By Proposition 2.4, we may fix an S-
name D of a countable dense subset of X2. Assume that X2 is forced by some
S0 to not be hereditarily Lindel6f (and so not metrizable). By Corollary 2.7,
there is a set {#, : @ € w;} of S-names of points in X? which is forced to
be discrete. Also, for each a € wy, we may fix a name D,, of a subset of D
which is forced to converge to &,. Fix a cub subset C of w; with the property
that for each § € C and a < 6, each s € Ss above sq forces a value on D,,.
We now define an S-name of a function f : ¢ — 2: for each § € C and
6t = min(C' \ § + 1), each s € Ss+,; forces that f(§) = 0 if and only if
s(6T) =0.

Now we show that sq forces that D U {&s5 : 06 € C'} is not normal. Assume
that U is an S-name of an open subset of X2 with the property that &5 € U
for each & such that f(8) = 0. We prove that there is a § € C and a condition s
above sy which forces that U N Dj is infinite and f() # 0. This is rather
easy. Since forcing with S does not add any new countable sets, there is an s;
above s which forces a value E on UND. Choose any & € C so that there is a
proper extension s of s1 in Ss+. Recall that s forces a value Ds on Ds. Let s°
be the extension of s which as value 0 at §+, and let s' be an extension which
has a value greater than 0. Since s° forces that Ds is mod finite contained
in U , we have that Ds N E is infinite. Therefore, s' is the extension we seek,
since it forces that f(0) # 0 and Ds N U is infinite.
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Counterexamples to Katétov’s problem were constructed in [GN93]. We
modify the CH example from that paper in this next result. It uses a method
of construction of Boolean algebras called being minimal generation.

Theorem 2.8. If w; Cohen reals are added, then there is a counterexample
to Katétov’s problem, namely, there is a compact non-metrizable space whose
square s hereditarily normal.

Proof. We build an w;-increasing chain of (minimally generated) Boolean
algebras by forcing. The rough idea is that we will have a Luzin family {z,, :
a € wy} of points in 2. For each o € wy, we will choose (by forcing, along
with z,, itself) a regular open subset al of 2* (and let a’, denote the regular
open complement). We let By be the usual algebra of clopen subsets of 2%,
and B, will be the Boolean algebra generated, in the regular open algebra
of 2%, by the collection By U {ag : f < a}.

One inductive hypothesis is that, for each 5 < «, the filter of clopen
sets at x3 will generate an ultrafilter on Bg and will generate precisely two
ultrafilters 2,z in the algebra Bgy1 (with ag € 7). Additionally, for all
xz € 29\ {x¢ : £ < B}, the filter of clopen neighborhoods of x will generate
an ultrafilter in Bg, and for all § < 3, the filters a2, z{ from Beyy will
continue to generate ultrafilters in Bgy;. It follows that there is a single
ultrafilter, namely that generated by zg, on Bg which does not generate an
ultrafilter on Bg1. In addition, this single ultrafilter generates just the two
new ultrafilters. It can be shown that this is equivalent to the fact that there
are no proper subalgebras of Bgyq which properly extend Bg (see [Kop89]),
i.e. Bg41 is a minimal extension of Bg.

We will, recursively, define a finite support iteration sequence {P,, Qu :
a € wy }. For each a < wy, Q. is the Py-name of a countable atomless poset,
hence the poset P,,, will be isomorphic to adding w; Cohen reals. In addition,
we will define a P,1-name, a,, of a regular open subset of 2¢.

The definition of Q. is {(uo,u1) : ug € Bo,u1 € By, ugNuy = 0}. We define
(uo,u1) < (vo,v1) if ug C vy and uy \ vo = v1. If ¢ € Qq, then let (go,q1)
denote the coordinates of g. The definition of &, will be that ¢ IF &, € go. The
definition of @, will be that ¢ I+ a% \ go = q1. That is, if G411 is Pay1-generic,
then the definition of a, is [J{u1 : (3p,wo) (P, (uo,u1)) € Gat1}-

For each a < wq, and 8 < a, if G, is P,-generic, it should be clear that
the Stone space of B can be regarded as a compact metric topology on
Xp = {ad,xg : £ < BYU2Y\ {z¢ : £ < B}. Let X denote the Stone space
of By, in V[G,,]. It is well known that if G is P,,-generic, then the set
{&q : @ € w1} is a Luzin set; it is interesting how this plays a role in ensuring
that the square is hereditarily normal.

Now suppose that H and K are P-names of subsets H, K of X2 and assume
that some p € P forces that HNK = () = HN K, i.e., they are separated. Let
M be a countable elementary submodel with H, K, and {P,Qq : a € w;}
all in M. Let 6 = M Nw; and let HM and KM be the Ps-names HnM
and K N M respectively. In the final model, let f denote the canonical map
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from X x X onto X5 x X5 (of course this just means that points of the form
(xg,y) or (xg,zé) with £, ¢ > § are sent to the poi.nts (x¢,y) or (:zzg,xg).. We
view f as being the identity map on Hs = valg(Hps) and K5 = valg(Kay).
We show that, in Xy, Hy is dense in f[H], K;s is dense in f[K], and, most
surprisingly, f[H] and f[K] are separated in X;.

Let v € 29\ {2y : @ € w1} and o < B < w;. We consider the points
y = (z,23) and x = (zf, zj3) and to determine if f(x) or f(y) is in flH]\ Hs,
and similarly if f(x) or f(y) is in f[K]NH;s. By symmetry this will be enough.
The handling of the x case where o < § is really no different than the proof
for y since {20, xl} are in M. Therefore we assume that 6 < a.

Assume first that a condition p € P,,, forces that x is a member of H. Let
by and by be members of Bs that are in the ultrafilters corresponding to %,
and zj N Bs respectively. We may assume that each of by and by are simply
clopen subsets of 2%, hence they are members of M. Then by elementarity,
we certainly have that by x by meets Hy. This proves that f(x) is in Hs.

Now we assume that y is in K, then there are basic clopen neighbor-
hoods b; and by of x and x respectively, and a forcing condition p, such that
p forces that H N (b1 % (b2NaB)) is empty. By symmetry, we will assume that
zh = x%. By shrinking by and extending p, we may assume that p(3)o = bs.

We claim that p forces that H by x by is empty. If this is not the case then,
by elementarity, there is a value x’ € M and an extension ¢ of p | § which
forces that x’ is in H N (b1 X ba). Let v be a proper clopen subset of by such
that (by possibly extending q) ¢ IFp; x” € by X v. Finally, extend the condition
pUgq to p so that p(5); contains v. This is a contradiction since p forces that
Hn (b1 x (b2 N a%) contains x’. Therefore we must have that p forces that
H N M is disjoint from by x by, i.e. f(y) ¢ Hs as required.

Next assume that p € P, is such that (b1 Naf,) x (b2 Na$) is forced by p
to be disjoint from H, by = p(a)o, by = p(B)o, and that x = (z},,24) € K.
If o < B, the argument is very similar to the one given for y. So we suppose
that o = 8 and that by = bs. If, by extending p and shrinking by, we can
arrange that p forces that H is disjoint from b; X by, then we have that p
forces that f(x) ¢ Hs as required. Otherwise we have, as above, that there
is some ¢ € M and x’ € (by x by) N M such that ¢ |- x’ € H. Again if x’ is
not on the diagonal of Xy, then we can find disjoint v; and ve in Bs, each
contained in by and an extension g of p | § forcing that x’ € (v; X vo) N H. We
can then define an extension p of p and ¢ satisfying that p; N (v1 Uws) is any
of {0, vy, v, v1 Uvy)} as needed to ensure that x’ € H N (b N afz) x (b1 Naf)
and the desired contradiction. Finally, we have the case that p forces that
(by x by) is disjoint from H \ Ax. Here is where we use the Luzin property to
show that it is also the case that p forces that by x by is disjoint from HQAX.
In fact, since p | M has the property that for all a € Bs with a C by, there
is an extension (of p) which forces some element of K (namely x) in a X a,
it follows that the closure of K contains (b1 x b1) N Ax. Since K and H are
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(forced to be) separated, we have that H is forced to be disjoint from by X by.
This completes the proof that f(x) is not in the closure of Hy.

Now that we have shown that f[H] and f[K] are separated in the metric
space X§7 we have that H and K are separated by disjoint open sets in X?2.
This shows that X2 is hereditarily normal, and of course, we have that X is
not metrizable since it has uncountable weight.

3 On compact spaces with small diagonal

Another potential metrization theorem has generated considerable interest
of late (see Gruenhage’s article this volume) concerns compact spaces with
a small diagonal. A compact space has a small diagonal if for each collection
{{ZasYa} : @ € w1} of pairs from the space, there is an open set which meets
uncountably many of the pairs in a single point. The ideas for this next result
come from [DH12].

Theorem 3.1. PFA(S)[S] implies that a compact sequentially compact space
with a small diagonal is metrizable.

Proof. Actually we will just use OCA. We have a copy of w embedded in a
compact space X such that the closure is not metrizable. Fix a well-ordering <
on X and let A denote the collection of disjoint ordered pairs (a, b) of subsets
of w such that a and b converge to points x, < xp. Define ((a,b), (a/,V")) € Ky
providing (a N'b') U (¢’ N'b) is not empty. Assume we have an uncountable
collection {(aq,bqa) : @ € wy} which is Ky homogeneous. Let z, = z,, and
Yo = xp, and assume there is an open set W such that =, € W and y,, ¢ w
for all & in some uncountable set I C wi. As usual, we may assume there
is an m so that ao, \ W C m and b, N W C m for all & € I. Now choose
distinct «, 5 € I so that b, Nm = bg N'm, and we have a contradiction, since
ao Nbg Cm and a, NbgNm =agNbgNm = 0.

To complete the proof we assume that {A4,, : n € w} are subsets of A and
that [A,]?> N Ky is empty. Choose a countable elementary submodel M of
some H(#) so that {X,{A, : n € w}} € M. Since @ is not metrizable, there
is a pair of points w,v satisfying that for each open set U € M such that
u € U we also have that v € U.

Foraset Y Cw,let Y! =Y and Y® =w\ Y. Let {Y,, : n € w} enumerate
M N [w]¥ and recursively define a sequence {¢,, : n € w} so that u is in the
interior of the closure of Y3 N---N Y for each n. Of course it then follows
that v is also in the closure of each such set. Let U and W be neighborhoods
of u and v respectively which have disjoint closures. It follows then that each
of {Yi»NU :n € w} and {V,'» "W : n € w} have the finite intersection
property. Choose any infinite set a C w such that a C* Y,» N U for all n,
and an infinite set b C w such that b c* Y~ N W for all n. By shrinking
the sets (since X is sequentially compact) we may assume that a and b each
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converge and (by symmetry) that z, < x,. Assume now that there is some k
so that (a,b) € Ag. Choose n € w so that Y,, = J{a’ : I/ (a', V') € Ax}.
Evidently, a C Y, hence £,, = 1. On the other hand, for each (a’,V') € Ay,
{(a’, V), (a,b)} ¢ Ky and so we have that a’ N'b is empty. This contradicts
that b C* Y,!n.

Compact space with a small diagonal can not contain a converging wi-
sequence, and compact spaces of uncountable tightness contain such a se-
quence ([JS92]). This leads to the following useful conclusion.

Proposition 3.2. Compact spaces with a small diagonal have countable
tightness.

Although Todorcevic has proven that PFA(S)[S] implies that compact
spaces of countable tightness are sequential, this result has not yet been pub-
lished. Therefore we prove a weaker result which suffices for the application
to compact spaces with small diagonal.

Theorem 3.3 ([Tod, 8.2]). PFA(S)[S] implies that compact spaces of count-
able tightness are sequentially compact.

Proof. We assume that we have an S-name of a compactification K of the
set w, in which no infinite subset of w converges. Let {fa ©a € wo} be
an enumeration of all the (nice) S-names satisfying that 1 forces that fo is
a function from w into [0,1] which has a continuous extension to K. For
each t € S, we will let F; denote the set of f € [0,1]“ such that ¢ forces that
f has a continuous extension to all of K. Say that a C w is split by F; if
there is an f € F} such that the set {f(n) : n € a} does not converge.

We show there is a t and a b C w such that each a C b is split by F;.
Otherwise, working in PFA(S) (a model of p = ¢), fix any well-ordering of S
in order type w; and recursively choose a mod finite, length w; chain of
infinite subsets {a: : t € S} of w so that a; is not split by F;. Choose any a
which is mod finite contained in a; for all t € S. It is easy to see that ¢ forces
that a is a converging sequence in K.

Now fix t and b C w so that F; splits every infinite subset of b. Fix the
embedding of w into [0,1]%* and let X denote the closure of this embedded
copy of w. It follows that ¢ forces that K maps continuously onto the closure
of X. If we prove that X has uncountable tightness in the PFA(S) model,
then there will be an w free sequence {z, : @ € wy } with a unique complete
accumulation point z. It is easily checked that this sequence remains a free
sequence in the closure of X in the forcing extension by S (use basic open
sets to witness the disjoint closures). It then would follow that K does not
have countable tightness.

We must define a proper poset P which forces an uncountable free sequence
in X (as in the Moore-Mrowka proof) and satisfies that S remains Souslin
after forcing with P.



346 Alan Dow

Since w is completely divergent in X and p = ¢, the cardinality of X is 2°.
Let Y be any dense countably compact subset of X of cardinality at most c.
We may also assume Y is elementary in the sense that if two countable subsets
of Y have a common limit point in X, then they do so in Y as well. Choose
any z € X \Y, let § be a maximal filter of closed subsets of Y such that z € F
for all F € §. We first note that if H € §T, then there is a countable Hy C H
such that Hy contains a member of §. Indeed, if this were not the case, then
inductively choose hq, € F, € § so that {hg : 8 < a} N F, is empty. Since we
may assume that X is countably tight and by our elementarity assumption
on Y, it follows that {hs : f < a} and F, have disjoint closure in X. Thus,
we have constructed the desired free sequence.

Since X is forced to have countable tightness in the forcing extension by
S, the above construction can be conducted in the forcing extension as well
(and no new countable sets are added), hence we have the following claim.

Claim. If H is an S-name of a subset of Y and ¢ € S forces that H € §+, then
there is a f € wy such that for each t < s € S, the closure of {y : sl-y € H}
isin §.

For each y € Y, choose open sets V,,U, of X so that y € V,, C V,, C U,
and z ¢ @ It follows that Y \ U, € §. Let k be a large enough regular
cardinal so that X,Y,§ are in H(x). As usual, the conditions in the poset P
consist of functions p where domp = M,, is a finite elementary €-chain of
countable elementary models of H(x) and the range is a subset of Y. For each
M e M,, the set {X,Y,{V,,U, : y € Y},§F} € M, and p(M) is an element
of N(F N M).

For each p € P and M € M,, we define the neighborhood W(p, M)
of p(M) as ({Vpo) : @ € M, and p(M) € Vpq)}. We define p < ¢ if
g C p, and for each M € M, \ M, such that M, \ M # 0, we have that
p(M) € W(q, Q) where Q is the minimal element of M, \ M.

A somewhat, by now, standard proof will show that P is proper. And in
essence, to see that P preserves that S is ccc, we show that if M < H(6) and
s € Ss and My = M N H(k) € dom(p) then (s,p) is an M-generic condition
for S x P (see [Miy93]). This will be easier than many of the proofs using
PFA(S)[S] because the conditions in P do not depend on S.

Let D € M be a dense open subset of S x P and choose any extension (5, p)
in D extending (s, p). Let Mz \ M = {My, M, ..., M;_1} be enumerated in
increasing order. Since D is open and dense it follows that (¢,p) € D for
extensions t of 5. Thus we may assume that § ¢ M,_;. Let p(M;) = x; for
each i < ¢, x = (xq,...,x¢—1), and define, for ¢t € S,

Tt = {(y()aylv cee 7y€71) = (q(QO); Q(Ql), ey q(Qlfl)) :
(3(t,q) € D)(FQ € My)pn Mo =¢NQ and
M\ Qo={QoecQ1€---€Qu1}} (7)
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Each y € T; is simply a function with domain ¢, and so we may easily
define, for each k < f and each t € S, Ty, ={y [ k:y € T;}. Fory € T} o_1,
we define the S-name Hy = {(s,7) : y ~(y) € Ti}. Then define T} ;1 (F) =
{yeTip_r:t 1k Hy € §1}. Next, by induction, for y € Ty _p_1, define
Hy = {(S,g) : yA<y> € Ts,ffk(g)} and Tt,ffjfl(s") = {y € Tt,zfjfl t -
H, e §}.

Of course we have that x € T5 and we show by induction that x | k is
in T5 () for k =¢—1,£—2,...,0. We have that x [ kK € M}, and, also in
My, we can define the set A={t € S:x [k ¢ T, 1(F)}. The set of minimal
elements of A will be contained in M, so if 5 € A, then there is a predecessor
t € My of 5 which is in A. However, there is then an F' € F N M which is
forced by 5 to be disjoint from Hy, (i.e. {y : x [ k™ (y) € Tyo—;(F)}), which
contradicts that xzy is forced by 5 to be in each of those sets.

Now we have that there is a predecessor ¢ of §in My such that § € T}, o(F).
By Claim 1, and by possibly extending ¢y, we may assume that the closure
of Yo = {y € My : o IF y € Hy} will be in F N My. Set W = W (p, My) and
choose yg in W NYy. Let yo = (yo) and apply Claim 1 again, to extend ¢y to
t; <Fsothat Y1 = {y € My : t; |-y € Hy,} meets W. Continuing in this
way, we inductively construct {yo,y1,...,ye—1} C W N My and ¢, < § in M
so that that (yo,y1,...,y¢—1) € Tt,. By elementarity, there is a ¢ € PN M,
so that (tg,q) € D witnessing that (yo,y1,...,y—1) € Tt,. It is now easy to
verify that (t¢,¢) is compatible with (3, p) as required.

4 Efimov problem

An Efimov space (if there is one) is an infinite compact space containing no
converging sequence and no copy of SN. A Moore-Mrowka space is a compact
space of countable tightness which is not sequential. Efimov spaces have been
shown to exist in a number of models (e.g. any model of CH [Fed77]) while
the existence of a Moore-Mrowka space is known to be independent of ZFC
(Fedorchuk and Ostaszewski from < [Fed75, Ost76] and Balogh proved they
do not exist if PFA holds [Bal89]). An analysis of the constructions has led
to the formulation of minimal Boolean algebras [Kop89] and to a refinement
[Kos99] which will be called T-algebras.

Definition 4.1. A T-algebra is a Boolean algebra B C P(X) (for some set
X) for which there is a tree T' C 2<% (for some cardinal ) and a generating
set {a¢ : t € T'} for B such that the following hold:

1. all non-maximal nodes of T' are branching,

2. for each non-successor node t € T', a; = X

3. for each successor node t € T, a;+ = X — a; where t' Nt is the predecessor
of both t and t', (for convenience, let t' = ¢ when ¢ does not have an
immediate predecessor)
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4. for each ¢t € T, the collection {as : s < t} generates a non-degenerate filter
u¢, and for each s < t, a; — a, is a member of the Boolean algebra B«
generated by {a, : r < s}. Let By denote the Boolean algebra generated
by {a, : r < s}.

For any maximal branch b of T" we also let u;, be the filter generated by
{as : s € b} and By, the Boolean algebra generated by {as : s € b}.

Two quite surprising properties of T-algebras are the following.

Proposition 4.2. Let B be a T-algebra with generating set {a; : t € T C
2<%} and let b be a mazimal branch of T, then

1. up is an ultrafilter on B,
2. By is a superatomic Boolean (sub-)algebra and its Stone space is equal to
{up} U{uyi : t € b a successor}.

Corollary 4.3. If AU{b} is a set of mazimal branches of T for a T-algebra
B with generating family {a; : t € T}, then up is a limit of {u, : x € A}
in the Stone space S(B) if, and only if, uy N By, is a limit of the collection
{uy N By : © € A} in the Stone space S(By). For each x € A, u, N By, is the
ultrafilter u,s where t is the minimal element of b\ x.

This next construction is quite similar to that used in the Katétov example
(2.8), but the example there was not a T-algebra (we leave it as an exercise
that it could not be a T-algebra). The analogous result using Cohen forcing
was given in [PM10]. The construction, from the hypothesis b = ¢, of a T-
algebra whose Stone space is an Efimov space was announced in [DS12].

Theorem 4.4. If k = 2% and G is M-generic, then V|G| models that there
is a T-algebra B C P(w) with generating family {a; : t € 2<“1}, such that
S(B) has countable tightness and no converging sequences. That is, S(B) is
a Moore-Mrowka Efimov space.

Proof. Tt is well-known that the Random real poset factors readily. For each
set [ C K, M, is (forcing) isomorphic to My * M. Let {t¢ : £ € } be a
listing of nice names # such that for each ¢ € k

there is a countable set Iz C £ + w such that ig is an M -name,
there is a d¢ such that 1 I- t € 20,

for all { <&, 11Fte # e,

LIF {fe | a:a € dom(te)} C {t, 17 < €&},

LIk 25wt = {{¢ : € € K}

U b =

For each w < a € wy, let g, be a bijection from w onto . To start the
induction, let {C, : n € w} be any independent family of infinite subsets
of w, and for ¢t € 2, define a;~1 = Cjyy N(Was : s C t} and ag~o is the
complement of a;~1. Notice that a;~¢ \ as is empty for each s < ¢, and so
ai~1 \ as = w \ as for each s < t. The algebra generated by {a; : t € 2<¥} is
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a T-algebra which is equal to the algebra generated by {C,, : n € w}. Thus
its Stone space is the Cantor set.
By induction on £ € s, we define dt’go and dt‘gl as follows. Let M be a

countable elementary submodel such that &, {f; : ( € k} and {a; : ¢ €&} are
in M. For each ¢ < &, let J; be a countable set such that dic is an M -name.
Choose f¢ to be a minimal limit ordinal in & such [¢, f¢ +w) is disjoint from
MU U<<g J¢. Let 75, denote the random real added by Mg, g, 4.,). That is,
for each k € w, the basic clopen set [(8¢ + k, e)] forces that 75, (k) = e.

We use gs, +1 to enumerate the predecessors of f¢ (including f¢ itself) which
are at successor levels as {s, : n € w}. The family {(),_ as; \ as, : k € w}
is a partition of w (where (;_; as; = w). We define at?o as the union of the
collection {(;_, as; \ as, : 75, (k) = 0}. Of course at?l is the complement,
and is also (forced to be) equal to the union of the collection {(;_, as; \ as, :
75 (k) = 1}. Notice that for k € w, e \ as, is equal to the finite join of

sets of the form a \ as, for a € B, , and so, by induction on ¢, are in B<, .

Claim. 1f J C r is disjoint from [, B¢ + w), and if Y is a M -name of an
infinite subset of {s < t¢ : s is a successor}, then it forced that either there
is a t < f¢ such that a; ¢ u, for infinitely many s € Y, or for each e = 0,1,
{seY: Q- € Ut } is infinite.

Claim. 1f {b, : v € w1} are M,-names of maximal branches of T (i.e. each b,
is forced to be a member .of 2¥1) then there is a 6 € wy such that the closure
of {ui)7 7 € 6} contains b, for all 7.

It follows directly from Claim 1 that S(B) has no converging sequences,
and from Claim 2 that it is hereditarily separable.

We remark that it was shown in [DF07] that there is an Efimov space in
extensions by random reals.

Proposition 4.5. If random reals are added, then the Stone space of the
ground model P(N) has no converging sequences. Therefore, if more than ¢
random reals are added, it is an Efimov space.

Another wonderful example of a T-algebra based solution is

Proposition 4.6 ([JKS09]). Let T be the tree consisting of those t € 2<%z
such that if there is an o € dom(t) with t(a) = 1, then dom(t) < a + w
(t is a finite extension of the first place it is non-zero). There is a proper
forcing extension in which there is a T-algebra with generating set {a; : t €
T} such that the Stone space is a Moore-Mrowka space with a single point
of uncountable character and the complement of that point is initially wy-
compact.
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5 Sequential order

In a space X and for a set A C X, we recursively define the sequential order of
elements in the sequential closure of A. We use the notation A to denote
the set of all elements that have sequential order at most «. In particular
A is simply A, and A® is the set of all elements z of X for which there
is a sequence from A converging to z (including constant sequences). For
any limit ordinal a, A(® will simply equal Ug a AP and for successor

a+1, ALt = (A For n € w, a point has sequential order n if n is
minimal such that z € A . For o > w, = will have sequential order « if o
is minimal such that z € A+t \ A(® We denote this sequential order as
s.o(x,A) =a+1.

The fundamental open problem about sequential order is that we do not
know how large the sequential order of compact sequential spaces can be.
The known limits presently are: in ZFC there is an example with sequential
order 2, CH implies there is an example with sequential order w1, in the Cohen
model there is an example with sequential order wy, and b = ¢ implies there
is an example with sequential order 4.

More progress has been made when restricted to a natural subclass of
compact sequential spaces. Say that a compact space is CB-sequential (for
Cantor-Bendixson) if the space is scattered, sequential, and the sequential
order of each element with respect to the set of isolated points naturally co-
incides with the scattering level of the point. The crucial idea is the following
new PFA result, which uses a Luzin family in its proof. An almost disjoint
family A = {a, : @ € w1} of subsets of w is called a Luzin family if for each
a €w and n € w, the set {8 < a:agNa, C n} is finite.

Theorem 5.1 (PFA). Suppose that X is a compact sequential space contain-
ing a countable set which we identify with w. If a point z is not in W™V, but
it is in the closure of w, then z is the unique complete accumulation point
of some set of size wy from wY). Notice then that every point of @ is in the
radial closure of wY. Thus we can say that the radial order of every compact
sequential space is at most 2.

Proof. We assume we have a compact space X with w a dense subset of X
and z ¢ w®). Let W be any ultrafilter on w with the property that z € W for
all W € W. Assume that A is a Luzin family of converging subsequences of w
and, for o € wy, let 24 € w™) be the limit. Assume that every neighborhood
of z contains uncountably many of the z,’s. It then follows that z is the
unique complete accumulation point of {z, : @ € w1 }. Indeed, if z € W and
W is open, then a, C* W for uncountably many «. Since A is Luzin, W Na,
is infinite for all but countably many «, hence W contains all but countably
many .

We use PFA to produce A. We use the method in [Dowl1]. Let A denote
any maximal almost disjoint family of infinite subsets of w with the property
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that for each a € A, a converges to some point x, € X. For a finite set ¢ C w,
let Ay = {a € A:t C a}. Say that a subfamily C of A is W-large if for
each countable W' C W, there is an a € C such that a N W is infinite for all
WeW.

Claim. If C is an almost disjoint family which is W-large, then the set of ¢
such that Cygy is W-large is in W.

Proof (of claim). Assume that W = {{ : Cyy is not W — large} is in W.
For each ¢ € W, select countable W, C W witnessing that Cyy is not W-
large. Using that C is W-large, choose a € C so that a N W’ is infinite for
all W' e [J,We U {W}. Choose any £ € a N W, and observe that a € Cyg
violating that W; is supposed to witness that this collection is not W-large.

We define a poset where p € P if p is a finite function whose domain
dom(p) is a finite €-chain, M, of countable elementary submodels of some
suitable H(x), with each containing {z, X, W, A}. For each M € M, the
value p(M) is a member of A that meets each member of WN M. We define
p < qif p D g and for each M € M, \ M, and each Q € M, with M € Q
the intersection p(M) N p(Q) is not contained in |g|. The canonical name of
the desired family A is simply the collection {p(M) : p € G,M € M,}. If
P is proper, this requirement on extension will ensure that this collection in
Luzin. We need an additional argument that there is a family of wj-dense
sets that will ensure that z will be a complete accumulation point.

First we show that P is proper and that the existence of the W-large
families of the form A; is critical for this. Let P € H(f) and let ¢,P be
elements of a countable M < H(f). Choose any a € A which meets each
member of W N M in an infinite set. We prove that if ¢ C p and My = M N
H(k) € M,, then p is (M, P)-generic. As usual, let {Moy, ..., M,} enumerate
M, \ My in increasing order. Most of the argument is relatively standard
in that we use elementarity to find a p € My which reflects the relationship
between p N My and p. However a new idea is needed to ensure that p(Q;) N
p(M;) is not contained in |p| where Mz \ M, = {Qo, ..., Q,} is also listed in
increasing order.

Let D € M be dense in P and define a tree T' C A", where (ao, ..., as) €
T providing there is a condition r» € D such that M, is an end extension of
pN My, M\ MpN My ={Qo,...,Q} is listed in increasing order, and a; =
r(Q;) for 0 < ¢ < /. Naturally T € M. Notice that for a = {(ag,...,as) € T,
and with r as given, the collection Cape = {a : a [ £7(a) € T} is W-large.
The reason this is so is that if it were not W-large, then there would be no
set in Cape which met each member of WN Q,. But of course, r(Q,) is such a
set. By induction, for each j < /¢, Cq); is also W-large, where Ca); is the set
of a € A for which there is a a’ € T extending a [ 77 (a). In particular, Cy is
W-large and is an element of My. By Claim 1, for each ¢ € [w]<“ and almost
disjoint family C € M such that C; is W-large, and each 0 <14 < ¢, there is
a t’ Dt such that Cp is W-large and (¢’ \ t) N p(M;) is not empty (recall that
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p(M;) meets every member of M; N W). Therefore, by a recursion of length
£+ 1, there is a finite set ¢o such that (Cp)s, is W-large and to N p(M;) has
cardinality greater than [p| for each 0 < ¢ < £. Choose any ag € (Cp)t, which
is in My. Recall that C(,,) is W-large. Thus we can recursively choose finite
sets t;1 80 that (Ciay,....a,))t:4, 15 W-large and t; 1 N p(M;) has size greater
than [p| for each j. Then choose a;;1 € (Cq,,....a,) )¢, and continue.

Finally we have that there is some r € D N My which witnesses that
(ag,...,ar) € T, and we have ensured that a; Np(M;) has cardinality greater
than [p| for each i,j < £. It follows that r is compatible with p and completes
the proof that IP is proper.

Finally we prove that there is a set D of w;-many dense subsets of P such
that each D-generic filter G will result in z being a complete accumulation
point of the family {z, : a« € Ag}. The new idea is to remember that PFA
implies that every compact sequential space has a dense set of points of
countable character [Dow88, 6.3] (but this does not follow from Martin’s
Axiom [Kos99]). Fix any p € P and M € M,,. Fix an increasing cofinal chain
{W, : £ € w} of the countable subsets of W which are members of M. Also
let {t; : j € w} enumerate those ¢t € [w]<“ such that A, is W-large. For each
Jj <l € w,let Aj, denote the (still WW-large collection of) members of A;,
which meet every member of Wy. Let Y, = {z, : a € Aj,}. Since A;, is
W-large, it follows that z is a limit of Yj,. Therefore, since z € M and X
has countable tightness, z is a limit point of ¥; , N M for all j,¢ € w. Define
the closed set K (p, M) to be the intersection of the family {Y;, : j,¢ € w}.

Let y € K(p, M) be any point that has a countable relative local base
in K(p,M). Let {U,, : n € w} be open subsets of X such that the family
{UpnNK(p, M) :n € w} is a base for y in K(p, M). For each j,¢,n

D(y,j,t,n)={reP:(3M e M, N M) r(M')=a€ Aj, and z, € Uy, }.

We show that D(y,j,¢,n) is predense below p. To see this, suppose that
P < p. As in the proof that p is an (M, P)-generic condition there is a finite
set ¢ D t; which meets p(Q) in size at least |p| for each @ € M;\ M, and
so that (A; is still W-large. There is a j’ so that t = t;. Let Q < H(k)
be a countable member of M satisfying that Mz N M € @, and choose ¢ so
that Q N W C W,. Since y is in the closure of Yy e N M, there is an a € A,
which meets every member of Q N W, and so that z, € U,. It follows that
r=pU{(Q,a)} (i.e. r(Q) = a) is a member of P which extends p and is in
D(y,j,4,n).

Let p € G be a filter on P which meets each D(y, j, ¢, n). For each j, ¢, let
Yo ={z,: (FreG) (3Q € M,)r(Q) = a}. Clearly the family {U, NYs N
Y; N M :j,¢,n € w} has the finite intersection property. It follows then that
Y& has limit points in K (p, M) which are in U, for each n, i.e. that y is a
limit of Y. Finally, to find such a family for z, simply choose a countable
set of y € K(p, M), each of countable relative character, which accumulates
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to z. It should now be clear that there is a family of w; many dense subsets
of IP sufficient to ensure that z is a complete accumulation point of Y.

Corollary 5.2. PFA implies there is no CB-sequential space of sequential
order greater than w.

Proof. Assume that X is such a space. Let Xy be the dense set of isolated
points. Since the sequential order is assumed to be greater than w, there must
be an infinite set {w, : n € w} of points with sequential order of each w,
equaling w with respect to Xy. For each n, choose a sequence {zy, m : n+1 <
m € w} which converges to w,, and such that s.0.(z,m,Xo) is between m
and w. Since X is CB-sequential, it follows that s.0.(zp, m, X,) > m — n for
each n,m. Apply Theorem 5.1, and select an uncountable set {zy m.o : @ €
w1} C Xpt1 so that z, ., is the unique complete accumulation point of this
set.

Choose any countable elementary submodel My which contains all the sets
defined in the previous paragraph. The poset P(w)/ fin is a countably closed,
hence proper, poset. Choose any infinite set Iy which is (My, P(w)/fin)-
generic. Let Iy, My be elements of another countable elementary submodel
M. Continue choosing an elementary €-chain of models M, and I, € M1
which is (M, P(w)/ fin)-generic so that I, C* Ig for all 8 < «. For limit «,
the chain {Ig : 8 € a} is already an (M, P(w)/ fin)-generic filterbase where
M, =U s<a Ms.

Let M = UweW1 M,,, and choose any I C w which is mod finite contained
in each I,. Also, choose any f € w® so that for all h € w® N M, we have
that h <* f. By possibly shrinking I, we may assume that the sequence
{zn’f(n) :n € I} converges to some point w. Of course we have that w € X,.
For each n, choose clopen W,, € M such that {w,} = W,, N X,,. Also choose
clopen W so that {w} = W N X,,. It is routine to check that for each n € I
we may assume that z, ¢,y € W\ Uy, Wk, and there is an «,, € w; such
that 2, f(n),o € W for all & > ay,. Choose any a € w; which is larger than
each such «,,. Now we work briefly in M, since {Znmao : n,m € w} is
an element of M, 1. For each n, there is a maximal antichain A,, € M,
of subsets a of w satisfying that {z, .. : m € a} converges. It follows
that, for each n, there is an a, € A, such that I,y; C* a,. The sequence
{an :n € w}is in My1o. For each n, let y,, denote the limit of the sequence
{Zn.ma : m € ay}. Note that y, € W,, N X,,12. By the same reasoning,
there is a z € M such that the sequence {y, : n € I,13} converges to z
and z € X,,. There is clopen W, € M such that W, N X, = {z}, and we
may assume that y, € W, for all n € I,43. There is an h € M N w* such
that {Zn,m,a : R(n) < m} C W, for all n € I,43. By removing a finite set
from I, we then have that {z, )« : n € I} is contained in W.. Notice
also that, since w,, ¢ W, for each n, there is another function h; € M Nw*
satisfying that z, ,, ¢ W, for all m > hqy(n) for all n. Of course hy <* f and
so now we have that w # 2, and {2y f(n),o : 7 € I} C W, N W,,. This is



354 Alan Dow

a contradiction since this infinite set must have limit point in X,, while the
closed set W, N W,, does not meet X,,.

6 Selective separability

The notion of Selectively Separable, or M-separable, is an interesting selection
principle which significantly strengthens the notion of a space being separable.
It was formulated by Scheepers in [Sch99).

Definition 6.1. A space S is M-separable if for each sequence {D,, : n € w}
of dense subsets of S, there is a selection {E,, : n € w} of finite sets with
dense union satisfying that E, C D,, for all n.

It is strongly motivated by the connection to the Cj,-theory of function
spaces. It is immediate that each dense subset of an M-separable space is
separable.

Proposition 6.2. If X is a o-compact space, then every separable subspace
of Cp(X) is M-separable.

In fact, the more general result holds for spaces X which have the property
that each their finite powers in Menger (hence the name M-separable). A
space X is Menger if for every sequence {U,, : n € w} of open covers of X,
there is a sequence of finite subcollections W,, C U,, satisfying that (J, W,
is itself a cover. Of course Cp,(X) is not separable unless X has countable
weight. We have the following very interesting result based on an earlier
result of Arhangel’skii (see [BBMT08, 2.9]).

Proposition 6.3. For a separable metric space X, Cp(X) is M-separable, if
and only if, X™ has the Menger property for each n € w.

There are countable dense subsets of 2¢ which are M-separable (in 22N),
and there are those that are not M-separable (in 2V°).

A variant of M-separable was introduced in [BD11] which can be called
strategically M-separable (or SS+). A space S is strategically M-separable if
Player II has a winning strategy in the following game. The game lasts for
w moves, at stage n, player I choose a dense subset D,, of S and player 11
selects a finite subset E,, of D,,. Player II wins the play of the game if the
collection {F, : n € w} has dense union. This next result, which comes
from [GS11] and [BD12] respectively, shows a surprising distinction between
the two properties. In particular there is an M-separable countable space
which is not strategically M-separable.

Theorem 6.4. The property of being M-separable is finitely additively, but
there is a countable space which in not strategically M-separable but which is
the union of two dense strategically M-separable subspaces.
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In proving the previous result, a useful equivalence to being M-separable
was introduced.

Proposition 6.5. A separable space S is M-separable if for each x € S and
each descending sequence {D,, : n € w} of dense sets, there is a selection
{E, :n € w} of finite sets with E,, C Dy, such that x is in the closure of the
UNLON.

Proof. Assume that S has the property as in the statement and let {D,, : n €
w} be any sequence of dense subsets of S. Let {x), : k € w} enumerate a dense
subset of S. For each n let D, = U{Dx : n < Ek}. Of course the sequence
{En :n € w} is a descending sequence of dense sets. For each k < n € w, let
E(k,n) be a finite subset of D,, such that x, is in the closure of | J,,, E(k,n).

For each n € w, let E,, = U{E(k,n) : k < n}. Since z, € ngn E,, for each k,
it follows that the sequence {En : n € w} has dense union. Similarly, the

sequence {D,, N U<, Ex : n € w} has the same union and witnesses that
S is M-separable.

Another unexpected but useful result about M-separable is that every
separable Frechet space is M-separable [BD11]. The most interesting question
about M-separable spaces is whether or not the property is (consistently)
finitely productive. Interestingly it is independent if there are two countable
Frechet spaces whose product is not M-separable.

Proposition 6.6 ([Bab09]). CH implies there are metric spaces X and Y
such that (X UY)? is not Menger, but X" and Y™ are Menger for alln € w.
Therefore, there are countable dense subsets A and B of C,(X) and Cp(Y)
that are M-separable, while the space A x B C C,(X UY') is not.

Proposition 6.7 ([GS11, BD11]). Martin’s Aziom for countable posets
implies there are countable M-separable spaces whose product is mot M-
separable.

Proposition 6.8 ([BD11]). CH implies there are two countable Frechet
spaces whose product is not M-separable.

We end the discussion of M-separable by establishing the following appli-
cation of OCA which improves the result in [BD12].

Theorem 6.9. OCA implies that the product of two countable Frechet spaces
is again M-separable.

Proof. Assume that A and B are countable Frechet spaces. Fix any x € A
and y € B and descending sequence {D,, : n € w} of dense subsets of A x B.
We prove that A x B is M-separable by verifying the condition in Proposition
6.5. We leave as an exercise the case when either z or y is in the closure of a
set of isolated points. Thus we may assume that there are no isolated points
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and therefore that for each ' € X and ¢ € Y, there is an n such that D, is
disjoint from {z’'} x Y and X x {y'}. By passing to a subsequence, we may
assume that D,, \ D, is infinite for each n, and let {d(n,?) : i € w} be an
enumeration of this set.

Assume that a C A converges to x and b C B converges to y. By our
assumption on D, it follow that if d,, € D,, N (a x b) for each n € w, then
{d,, : n € w} converges to (x,y). Therefore we may now also assume that for
each such a, b, there is an n such that D,, N (a x b) is empty.

Let A be the set of all infinite sequences converging to x, let B be the set
of all infinite sequences converging to y, and let F C w* be the family of all
strictly increasing functions. In preparation for applying OCA, consider the
family X = {(a,b, f) : (¥n)(Vi < f(n)) d(n,i) ¢ a x b}. There is a separable
metric topology on X where for each point (2,1, (n,5)) € A x B x w?, the
set {(a,b, f) € X :2' € a,y €b, and f(n) = j} is clopen. Define K, C [X]?
by putting {(a,b, f), (a',V, f)} € Ky providing there is an (n,7) such that
i < min(f(n), f'(n)) and d(n,4) is in one of @ x b’ or a’ x b.

Assume that {(aa, b, fo) : @ € w1} is an uncountable subset of X’ with the
property that all pairs are in K. Since b > w;, we may pass to an uncountable
subset so that there is a function f € w® such that f, < f for all a. For each n,
set E,, = {d(n,?) : ¢ < f(n)}. We show that (x,y) is in the closure of J,, E.
Let U and W be open sets in A and B containing x and y respectively. Again
pass to an uncountable family and choose any m so that there are fixed finite
sets Fa, Fp satisfying that a,, \U = F4 and b, \W = Fp for all a. Choose m
so that D,, is disjoint from F4 x B and A x Fpg. Next, by further thinning,
we can assume that (aq X by) N {d(n,i) : n < m and i < f(n)} is the same
for all o. Choose distinct «, and pick d(n,4) with ¢ < min{f,(n), fy(n)}
witnessing that {(aa,ba, fa); (@, by, fy)} € Ko. By symmetry, assume that
d(n,i) € aq X by. It follows that n > m and d(n,i) € (aq \ Fa) x (by \ FB);
which implies that U x W meets E,.

Therefore, by OCA, we are finished if we can show that X can not be
expressed as a countable union of sets ) with the property that [V]? is disjoint
from K. We follow the approach in [BD12], but also note there is a similar
argument in [Tod03, Theorem 2]. Fix a sequence {z, : n € w} converging to
x and a sequence {y,, : m € w} converging to y. Let W be any ultrafilter
on w X w with the property that for each W € W, the set {n: {m : (n,m) €
W} is infinite} is infinite. Assume that X is equal to X, (n € w). For each
n,m € w and t € w™, define

Xomt ={(a,b) : (Vk € w)(3f)(a,b, f) € Xy, t C f, and f(m) >k} .

We leave the reader to check that for all (a,b, f) € X, there are n, m,t such
that (a,b) € A, m (every unbounded set of f will diverge to infinity at
some m).

Let {(ng, my, tx) : k € w} be an enumeration of w X w x w<“. Let A9 = A
and By = B. By induction on k, we choose Ax11 C Ay and Bpy1 C By
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so that we retain the property that for each ¢ € w, {(n,m) : (xn,ym) €
Dy N (Ag x Bg)} is a member of W. The choice of Agy1, Br11 must also
satisfy that either, for all (a,b) € Xy, m, > 6N Ag41 is finite or, for all (a,b) €
Xy my» 0N By is finite. Having chosen Ay, By, choose define I, = [J{a\ ¢ :
(3b)(a,b) € Xy mpty, annd d(n,4) ¢ ((a\£) x B) for all n < my,i < t(n)} and
Je =U{b\ 2 : (3a)(a,b) € X, mp .t and d(n,i) ¢ (A x (b\¥)) for alln <
my, 1 < t(n)}. We check that Ij, x Jj, is disjoint from D,,,, . Suppose otherwise,
and that d(n,i) € Iy x Jy for some n > my. There must be (a,b) and
(a',b") in Xy, iy 1, SO that d(n,i) € a x V. Therefore, there are f, f' so that
i < f(n), f'(n) and (a,b, f),(a’,V', ') are in X, . This however shows that
{(a’7 b, f)a (al, bla f/)} € Ko.

It now follows immediately that one of (Ax \ Ix) x By or Ap x (B \ Ji)
will have meet each D,, is a set which has W-large closure. This completes
the induction.

Choose a sequence {(j,fr) : k € w} so that, for each k, k < ji < ) and
(xj,.,Ye,) is in the closure of Dy N (A x Bi). Now we will use that A, B are
Frechet. For each k, choose a sequence {a(k, 1) : i € w} converging to x;, such
that D N ({a(k,i)} x By) # 0 for each 4. Similarly choose {b(k,7) : i € w}
converging to yg, such that Dy N (Ax x {b(k,)}) is not empty for each i.
It follows that  is in the closure of | J, {a(k,7) : i € w}, and so there is an
a C Up{a(k,i) : i € w} which is in A. Also a N {a(k,?) : i € w} is finite
for each k, hence a C* A for all k. Similarly there is a b C* By, for all k
such that b € B. Choose f and D,, so that d(n,i) ¢ a x b for all n > m and
i < f(n). Remove a finite subset from each of a and b so that (a,b, f) € X.
This shows that (a,b, f) € X'\ &), for all n.

7 Minimal walks and L-spaces

Three major results are reviewed in this final section. The first was mentioned
and used in the section on Katétov’s problem, which shows the consistency
of the non-existence of a first-countable L-space. Of course an L-space is a
regular space which is hereditarily Lindel6f but not hereditarily separable.
Justin Moore showed that there is an L-space [Moo08] and the L-space he
constructs (defined below) has character wy. The method of minimal walks
([Tod07]) is used in the construction of the L-space and is of great importance
in a number of results.

Theorem 7.1 ([Sze80]). MA(w;) implies there is no first-countable L-space.
In fact the principle K (rec) suffices, see [LT02, 5.1].

Proof. Suppose that X is a first-countable space which is hereditarily Lin-
delof. We assume, for a contradiction, that X is not separable. Choose a
sequence {Z, : @ € wi} C X with the property that x, is not in the closure
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of {zg : p < a}. For each «, choose an open neighborhood U, of z, with the
property that U, is disjoint from {xs : 8 < a}. For convenience, identify z,,
with the singleton a.

We define a poset P that is designed to force an uncountable discrete
subset of {z, : a € w1} as witnessed by the neighborhood assignment we
just made. Thus, p € P if p € [w1]<* and for a < 8 in p, 8 ¢ W,. The union
of any uncountable subset of P of pairwise compatible elements would be a
discrete subset of X. Since that would contradict the assumption that X is
hereditarily Lindelof, and we are assuming MA(w;), it follows that P is not
ccc.

Let {pe : £ € w1} C P be an antichain. By a standard A-system argument
we may assume that that max pe < minp, whenever £ < n and that there is
an ¢ € w such that |p,| = ¢ for all 7. For each £ € wy, let We = J{Us : o €
pe }. We have that for & < n, W¢ N p, is not empty since this is what makes
pe L py. The next step in the proof is very clever. Choose ¢/ < ¢ minimal so
that there are uncountable A, B C w; and {p], € [p,)¢ : m € B} such that for
all § € A, the set {n € B: W¢ Np; =} is countable.

Of course we fix such an ¢’ and the requisite sequences. The property we
now need is that if D C Y = [J{p;, : n € B} is uncountable, then the set
{€ € A:|WeND| < w1} is countable. Otherwise, we could shrink A and show
that for some uncountable B’ C B, the family {p; \ D : n € B’} contradicts
the minimality of ¢'. Since Y is hereditarily Lindelof, we may assume that
it has no countable open subsets. Fix any y € Y and let {O,, : n € w} be a
neighborhood base with O, 11 C O,, for each n € w. For all but countably
many { € A, there is an n such that O, N W¢ is empty. There is an n and
an uncountable A’ C A such that O, is disjoint from W for all £ € A’
Let B’ = {n : O, Np, # 0}. But now we have that {W : £ € A’} and
{p;, \ On :m € B'} contradicts the minimality of ¢'.

An important fundamental tool is the notion of a minimal walk which
is such a powerful tool that a person could write an entire book about it
([Tod07]). For each limit ordinal @ € wq, let C, > 0 be an increasing w-
sequence cofinal in a.. For each « = f+1 in wyq, let C, = {0, 5}. For a < 8 <
w1, the walk from § to « is defined recursively by letting £ = min(Cs \ @)
be the first step (hence f; = a if 8 = @+ 1) and continuing with the walk
from [y to a. The first consequence we recall is that it very naturally gives
rise to a coherent sequence.

Definition 7.2. A coherent sequence of finite-to-one functions is a sequence
(eg : B € wy) such that

1. for each 8 € wy, eg is a finite-to-one function from # into w,
2.if f <y € wy, then eg(a) = ey (a) for all but finitely many o € 5.

To define such a sequence we first define p1(«, 8) for a < 8 by recursion
as follows:
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pr(e, B) = max{|Cp N al, p1 (e, min(Cs \ a))}.

Suppose that £ is a limit and let (8x K < w) be the increasing enumeration
of Cs. Note that p1(a,8) > |Cg Na| > k whenever a« > f. Thus, for a
fixed k, we have {a < 8 : pi(a, B) <k} C U < {e < Bj: p1(a, Bj) <k} and
so, by induction, it follows that the former set is finite.

If 8 = v+ k for some limit v and integer k£ then one readily verifies that
p1(v+4,8) = 1for j <k and pi(a, ) = p1(e, ) when o <.

Thus the functions eg : 8 — w defined by eg(a) = pi(a, ) are all finite-
to-one.

We verify the second condition by induction on ~. Let & = |C, N | and
7 =minC,\ f. As |C,Na| <k for a < § we must have py (o, v) = p1(a, 1)
whenever py(«, 5) > k. Thus the « for which pi (o, 8) # p1(c,7y) are among
those for which p1 (o, v) < k or p1(«, 8) # p1(a, 1) and there are only finitely
many of these.

As explained in [Tod07] the function p; and variants thereof can be used to
code many combinatorial structures on ws; one can write down an Aronszajn
tree in terms of the eg as follows:

T = U {t € 2P .t = xep}.
B<wi

Below we shall see how to build a Countryman line from p;, that is, an
uncountable linear order whose square is the union of countably many chains.

Instrumental in Moore’s construction of an L-space is the lower trace of
the walk.

Definition 7.3. The lower trace L is a function L : [w1]? — [w1]<% such that
forany 0 <a<f<vy<uw

1. L(a, B) is a nonempty subset of «,

2. if max L(3,7v) < min L(a, ), then L(a,v) = L(«, 8) U L(B,7),

3.if B is a limit ordinal then for each £ < f, there is a ( < (8 so that
¢ <minL(a, ) for all ( < a < .

The definition of L(«, §) is
{max(CsNa)} U (L(a,min(Cp \ @)) \ max(Cs N a))

(i.e. follow the minimal walk). Property (1) and (3) of 7.3 are immediate
given that 0 € Cg and Cp is cofinal in 8. To check that property (2) holds,
we use another presentation of L(a, 3). Let {8¢* : i < £} denote the minimal
walk in descending order from 3 to «, hence 5§ = 3 and S = «, and
A1 = min(Cpe \a). Next, let A; = max((J{CpeNa : j < i}) and we will have
that {Ag, ..., A\¢} enumerates L(c, 8) (with possible repetitions) in increasing
order. Now suppose that max L(3,v) < min L(«, 8). Let {v¢ : i < m} denote
the minimal walk from 7 to a. Also, let {)\f : j < ¢} denote L(8,v). By
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induction on j < ¢, we prove that {7y : ¢ < ¢} is actually equal to the
minimal walk from v to 8. Of course 7§ is v, and consider 0 < ¢ < £. By the
induction hypothesis, a > \J > max(Cye M f), and so, min(Cye  \ @) > .
This ensures that min(C,e  \ ) = 7{* as required. From this we can conclude
that the first £ members in the monotone enumeration of L(a,~) is exactly
the same as L(f,v) and that at step ¢ of the walk from 7 to « we are at
the ordinal §. Of course the walk will continue as simply the walk from g
to a. The fact that max L(5,~) < min L(c, 8), ensures also that each of the
members of L(3,7) are added in turn to L(«, ) (and not “cut out” by the
max operation) and so we have that L(«,v) = L(8,7) U L(a, ).
We now turn to the definition of Moore’s L-space.

Definition 7.4. For F € [w;]<¥ and s,t € w’, then
Osc(s,t) = {£ € F\{min F'} : s5(§) > t(§) and s(max(F'N¢)) < t(max(FNE)) .
In practice (and in context) £~ will be used to denote max(F N &) for € €

F\ {min F'}.
Define, for a < g € wy,

osc(a, B) = |Osc(eq | L(a, B),e5 | L(a, B))].
Also, for convenience, let Osc(a, 3) abbreviate Osc (ea I L(a, 8),e5 | L(a, /3’))

Definition 7.5. Fix a rationally independent sequence (, (a € wy) of ele-
ments of T = {¢ € C: |¢| = 1}. For each 8 € wy, define wg € T¥* by

b Cgsc(a7ﬂ)+§ a< B
A 1 B<a€w

Let £ be the subspace of T“! consisting of the set {ws : 8 € w1 }.

It is evident that £ is not separable. Well beyond the scope of this article
is the following celebrated result.

Theorem 7.6 ([Mo0006]). £ is hereditarily Lindeldf.

We will now report on the result from [Moo08] the interesting fact about
the square of L.

We will now report the following interesting fact about the square of £,
from [Moo08].

Theorem 7.7. L has a co-countable subspace X (which is an L-space) whose
square has a o-discrete dense subset.

Before giving the proof we go over the proof of an earlier result that has
the same flavor.
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Proposition 7.8 ([Tod07]). C(p1) = (w1, <p,) is a Countryman line. That
18, the square is a countable union of chains, where

N . p1(,a) C pi(,,P) or
o’ f{eo 1(60) <pu(& ) and (¥ < pi(6,0) = pr(0, B)

We copy the lezicographic order of the set {eg: B € w1} to wi.

Proof. Dg g will be the set {a} together with {€ < a : p1(&, @) # p1(€, 5)}-
Also, A(a, 8) will equal min D,, g.

Nea,g 18 the maximum value {p1(§, @) : £ € Do g\a}U{p1(&,8) : £ € Dapgl;
thus if p1(€, ) # p1(&, B), then both values are at most nq g.

a € F, 3 will be the finite set of n < « such that one of p1 (1, @) or p1(n, B)
is at most n g.

Consider a < 3, v < 6 and o <,, f, further that n = nop = n,s,
e [ Fapmey [ Fys5,e3] Fopr~es!| F,s, then we conclude that v <,, 0.
(which gives us the countably many chains). Let £ = min(A(«, ), A(S,0))
and notice that F, gN& = F, 5 N&. Because of the isomorphism assumption,
we may therefore assume that £ ¢ F, g N F,y 5

If A(a,7y) # A(B,6), then we must have that £ € F,g N Fy5 (e.g. £ =
A(B,96) < A(a,y) will ensure that p;(&, @) = p1(&,y) and so one of pi(&, 5)
and p1 (&, 6) differ, and have value at most n, which then ensures that all have
value at most n).

Therefore we now have that £ = A(a,y) = A(S,9).

Now, if § & Fo,gUE, 5, then p1 (£, B) = p1(§, @) < p1(&, ) = p1(§, ) which
gives f <,, 0 as requlred If ¢ € Fop\ Fys then pl( B) < n < pi(&,0) as
required. Finally, if £ € F, s\ Fa g, then pi(&,v) < n < p1(§, ) which
contradicts that o <, .

We return to Justin. X is £ minus the union of all countable open sets.
Define a dense set D in X2 by a simple induction. Let Us x Vs (6 € wy) be an
enumeration of a base for X?. Choose any point ds = (wg,,w.,) € Us X Vs
such that v, < 85 < 75 for all n < 6. Even though it is not needed for
the proof, we can also choose 35 so that wg; is not in the closure of the set
{wg, :n <0}

Similar to the Countryman proof: we identify countably many isomorphism
types so that each type ensures that the subset of D with that type is discrete.
For each § we associate a rational €5, and integers ns, Ms and ks identified
below.

Lemma 7.9. There is a finite set Fs C Bs such that L(c, B5)\ Fs = L(a, vs)\
Fs whenever a < fs.

Proof. We use property 3 of definition 7.3. Let 19 = 85 and recursively define

Mi+1 < 1, where 7,41 < § < n; implies that L(, 85) U L(£,7vs) C min L(&, ;).
Of course we stop when 1, = 0 and define F5 = | J{L(n;, Bs)UL(n;,vs) : @ < £}.

To Justin? Or to £7
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To verify this works, consider any 0 < a < (5 and fix ¢ < ¢ so that
Nit1 < a < ;. Of course L(n;, B5) \ Fs = L(n;, Bs) \ Fs since both are empty,
so we assume & < 7;. By property 2, each of L(«, 8s5) \ Fs and L(a,~s) \ Fs
are equal to L(a,n;) \ Fy.

Lemma 7.10. There is an integer Ms such that | osc(&, Bs)—osc(&,vs)| < Ms
for all € < Bs.

Proof. recall that Osc(a, 5) = {£ € L(, B) : ea(€7) < eg(§™) and eq(§) >
es(§)}, so & € Osc(w, B5) \ Osc(a,v5) would of course mean that e, (§) #
eps (€) and & € L(a, Bs) AL(x, v5).

Lemma 7.11. There is a rational €5 > 0, such that for each integer i with
[i| < My, and each z € T, with |z — (g,| < €5

|28 — 1] — |25 — 1] > e5

Proof. The value (g; was from a set chosen so that no two rational powers
coincide. Therefore there is an £ > 0 satisfying that ||z*—1|— |zmota — 1| >e
for z = (g, and |i| < Mj;. By continuity then, there is a 6 > 0 such that for all
2 with |2 — (g,| < & we also have that |[2? — 1| — |23 — 1|| > £. Setting e
to be smaller than each of § and § then satisfies the lemma.

Finally, we make the choice of the integer ks = k simply so that k-5 <
(s < (k+1)-es. This ensures that if ks = k,, and e5 = &), then |(5;,—(p, | < €5.

Well, we are not going to say that it is obvious, but we now have that for
each rational £ > 0 and integers M, n and k the set

De pink = {ds = (wg,, wy,) 1 6 <wq and (5, M5, ns, ks) = (e, M,n, k)}

is discrete.
The definition of the neighborhood of d; is

Us = {(z,y) € X ||2(8s) — y(Bs)| — |52 —1]| < &}

It is obvious that Uy is open, but it is not obvious that ds belongs to Us. To
see this note that

osc(Bs, n+i
s, (B5) — way (B5)] = 1 — ¢ = 1 — (372

Since we arranged that d; is not in the closure of the set {d, : n < ¢} simply
by virtue of the first coordinate, it suffices to check that if ds and d,, are in
D. pon g, With 6 < n < ws, then d,, ¢ Us. To see this note that

osc(Bs,0n osc(Bs,vn
[ws, (B5) = w, (B)| = I¢g5 7" = ¢reom)]
— osc(Bs,vn osc(fBs,Brn)—osc R i
=[G, g T < 1 g -] 8)
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for some |i| < M, = M. Of course since Ms = M, we have by Lemma 7.11,
that A 1
GG, — 1] — et — 1] >

completing the verification that d,, ¢ Us.
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