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1 Introduction

This is the third in the Recent Progress in General Topology series, and this
is the author’s third contribution with the assigned theme of recent progress
of applications of set-theory to topology. To some (like me) in set-theoretic
topology, this can just seem like being asked to write about applications of
topology to topology. My view is that the focus should be on the new aspects
of the set-theoretic methods and not simply a survey of results that have
a strong set-theoretic flavor. This point of view was reinforced when I saw
preliminary versions of some of the other contributors’ articles because they,
naturally enough, were filled with highly sophisticated set-theoretic results.
It is also reasonable to feel that there is no benefit in trying to provide an
updated explanation of what set-theory in topology is all about. Rather, as
we have in our previous efforts, we make a personal selection of recent ap-
plications of set-theory with the hopes that many of the most up to date
and innovative applications are well represented. The author thanks Istvan
Juhasz for discussions in helping select the topics even though many of his
suggestions were omitted due to my own lack of expertise. The topics se-
lected include applications of the forcing axiom PFA(S) to such problems as
Katětov’s problem about hereditarily normal squares, the P-ideal dichotomy,
the compact small diagonal problem, and we show that compact spaces of
countable tightness are sequentially compact (a partial step related to the
Moore-Mrowka problem). These results are, for the most part due to Todor-
cevic and Larson. We also give a forcing construction of a counterexample to
the Katětov problem based on a CH example given by Gruenhage and Nyikos.
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There is a brief discussion of Efimov spaces (compact spaces containing nei-
ther βN nor a converging sequence) using Koszmider’s notion of a T-algebra.
There is an application of PFA to the structure of compact sequential spaces
related to the question of the maximum possible sequential order, and a re-
view of selectively separable spaces. The final section includes some discussion
of properties of Justin Moore’s L-space. Another word about the focus of the
article. Since the article is about applications of set-theoretic methods, we
have attempted to be quite complete in providing detailed proofs.

2 Katětov’s problem and PFA(S)[S]

Proposition 2.1 ([Kat48]). If X2 is hereditarily normal and compact, then
X is hereditarily Lindelöf.

For a set A in a space X, let cap(A) denote the set of complete accumu-
lation points of A, that is, the set of x ∈ X with the property that each
neighborhood of x meets A in a set with cardinality equal to that of A.

Proof. Assume otherwise, and choose open sets {Uα : α ∈ ω1} and a point
xα ∈ Uα \

⋃
β<α Uβ . Let H = cap({xα}α)× {xn : n ∈ ω} and K = {xα : α ∈

ω1} × cap({xn : n ∈ ω}). It is immediate that H ∩K and H ∩K are empty.
Let U be an open subset of X2 which contains H. There is an α such that
(xα, xn) ∈ U for each n. Clearly then U ∩K is not empty.

Definition 2.2. A Souslin tree S ⊂ ω<ω1 is coherent if s∆t = {ξ : s(ξ) 6=
t(ξ)} is finite for all s, t ∈ S. The axiom PFA(S) is the statement that there
is a coherent Souslin tree and for all proper posets P such that forcing with
P preserves that S is Souslin, for each family D of at most ω1 dense subsets
of P there is a D-generic filter on P.

Following [LT10], the notation PFA(S)[S] denotes a generic extension by S
of a model of PFA. In what follows we shall use the phrase “PFA(S)[S] implies
. . . ” to express succinctly a certain statement holds in every extension by S
of a model for PFA(S).

We sketch a proof of the following important result.

Theorem 2.3. PFA(S)[S] implies that any compact space with hereditary
normal square is metrizable.

The following non-trivial result is the first step, but we omit the proof
(but see Theorem 7.1).

Proposition 2.4 ([LT02]). PFA(S)[S] implies that a compact hereditarily
Lindelöf space is hereditarily separable.
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Definition 2.5. The P-ideal dichotomy, PID, is the statement that when I
is a P-ideal on a set X, either X is a countable union of sets each of which
is orthogonal to I, or there is an uncountable subset of X whose countable
subsets are all members of I.

Here are three important consequences of this forcing axiom. To best illus-
trate the methods, we will prove (in detail) that the P-ideal dichotomy holds.
We recall that OCA (a well known consequence of PFA with an evolving nam-
ing convention) is the statement that if X is an uncountable separable metric
space, and K is an open subset of [X]2 (with the natural topology), then there
is a countable cover {Xn : n ∈ ω} of X and an uncountable Y ⊂ X, such
that either [Y ]2 ⊂ K or, for each n, [Xn]2 ∩K = ∅.

Lemma 2.6 ([Tod]). PFA(S)[S] implies the P-ideal dichotomy, OCA, and
the equality b = ω2.

Proof. We prove that PFA(S) implies that forcing with S gives a model in
which PID holds. To do so, we consider İ which is an S-name of a P-ideal on
a cardinal ν. Let İ⊥ denote the S-name of the collection of subsets Y of ν
which satisfy that [Y ]ω ∩ İ is empty. We suppose that some condition (in
fact the root of S) forces that if {Ẏn : n ∈ ω} are S-names of members of
İ⊥, then there is an S-name ξ̇ such that 1 forces that ξ̇ /∈ Ẏn for each n. Our
task is to use PFA(S) to show that there is an S-name Ẏ of an uncountable
set all of whose countable subsets are members of İ. In fact, we will produce
a cub C ⊂ ω1 and a sequence of pairs of S-names {ξ̇γ , ḃγ : γ ∈ C} and an

S-name Γ̇ for an uncountable subset of C so that it is forced that ḃγ ∈ İ for

each γ ∈ Γ̇ , and {ξ̇ζ : ζ ∈ Γ̇ ∩ γ} ⊂∗ ḃγ .

Since forcing with S adds no new countable sets, the names for ḃγ can
simply be a pair (sγ , bγ) where sγ ∈ S, and bγ ∈ [ν]ω. It will be necessary

that sγ  bγ ∈ İ. For simplicity we ignore the need for the more formal (and
correct) notation that this name should be {(sγ , b̌γ)}. However we will not be

able to make such a reduction for ξ̇γ , but we will need that sγ forces a value

on ξ̇δ for all δ < γ in order to ensure the covering property required of bγ . In
fact the definition of ξγ will need to be independent of the choice of sγ . To
assist with this requirement, we fix a regular cardinal θ so that 2ν < θ and,
following [Tod], choose a well-ordering <θ of H(θ).

Each γ ∈ C will correspond to some Mγ which is a countable elementary
submodel of (H(θ), <θ) such that Mγ ∩ ω1 = γ. We will choose sγ to be any
member of Sγ (the minimal members of S\Mγ). We leave as a simple exercise

that there is a set bγ ∈ [ν]ω (choose the <θ-least) such that sγ  bγ ∈ İ and

bγ mod finite contains all a ∈Mγ such that sγ  a ∈ İ. In a similar fashion,

consider the collection {Ẏn : n ∈ ω} of all S-names in Mγ . Each t ∈ Sγ will

decide the truth of the statement Ẏn ∈ İ⊥ for each n. There is a minimal
βγ ∈ ω1 \ γ such that for each s ∈ Sβγ there is an ordinal ξs ∈ ν such that

s  ξs /∈ Ẏn for all n such that s  Ẏn ∈ İn. The set ξ̇Mγ
= {(s, ξ̌s) : s ∈ Sβγ}

is an S-name such that
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(∀Ẏ ∈Mγ) 1  Ẏ ∈ İ⊥ implies ξ̇Mγ
/∈ Ẏ .

For each countable elementary submodel M of (H(θ), <θ), let ξ̇M denote the
<θ least such name. When we choose Mγ , we will let ξ̇γ be ξ̇Mγ

. In addition,
for each s ∈ Sγ , fix b(Mγ , s) as discussed above so that a ⊂∗ b(Mγ , s) for

each a ∈Mγ such that s  a ∈ İ. In this way, once we have selected Mγ and
sγ , the choices of ξγ and bγ are automatic.

Now we construct a poset P which will create the cub C and the selection
of S-names as described above. That is, we will show that PFA(S) can be
applied to P and that a selection of ω1-many dense sets and ω1 many names
with which to invoke the PFA(S) axiom will prove the theorem.

A condition p ∈ P will have the form (Fp,Mp,Sp) where Mp is a finite
∈-chain of countable elementary submodels of (H(θ), <θ), Fp = {M ∩ ω1 :
M ∈Mp} ∈ [ω1]<ω, Sp = {spδ : δ ∈ Fp} is such that sδ ∈ Sδ for each δ ∈ Fp.
Notice that for M ∈Mp and M ∩ ω1 < δ ∈ Fp, spδ forces a value on ξ̇M . We
define p < q providing

1. Mp ⊃Mq,
2. Sp ⊃ Sq, and if

3. M ∈Mp \Mq, M ∩ ω1 = δ < γ ∈ Fq, and sδ < sγ , then sγ  ξ̇δ ∈ bγ .

A more elegant presentation of P would be to suppress any mention of Fp
and to replace {Mp,Sp} as the corresponding function sending Mp into S.
In later proofs we will adopt that approach but feel it might obscure some of
the intuition in this first introduction.

It is trivial to see that, for each γ ∈ ω1, the set of p ∈ P with Fp \ γ 6= ∅ is
dense. Suppose that G ⊂ P is a filter that meets each of these dense sets and
let C =

⋃
{Fp : p ∈ G}. There are ω1 many more dense sets that can be chosen

sufficient to ensure that C is a cub, but actually we do not require that C is
a cub, only that it is uncountable. Also let {sγ : γ ∈ C} and {Mγ : γ ∈ C} be
the assignments where, for each p ∈ G and γ ∈ Fp, sγ = spγ and Mγ ∈ Mp.
We wish to notice here that the last condition in the definition of the ordering
on P ensures that for each γ ∈ C, sγ  {ξ̇δ : δ ∈ C and sδ < sγ} ⊂∗ bγ . The

required S-name Γ̇ is simply {(sγ , γ̌) : γ ∈ C}.
It remains only to show that PFA(S) can be applied to P. Let κ be a

sufficiently large regular cardinal so that P ∈ H(κ) and let P ∈ M ≺ H(κ)
be a countable elementary submodel. Let δ0 = M ∩ ω1 and M0 = M ∩H(θ).
Choose any s0 ∈ Sδ0 . Let p0 ∈ P ∩M .

A somewhat, by now, standard proof to show that P is proper is to show
that the extension p = (Fp0

∪{δ0},Mp0
∪{M0},Sp0

∪{sδ0}) is (M,P)-generic.
To show that P is proper and preserves that S is Souslin, we show that for
each s0 ∈ Sδ0 (s0, p) is an M -generic condition for S × P (see [Miy93]).

Let D ⊂ S × P be a dense open set which is a member of M . Choose any
extension (s, q) ∈ S × P which is a member of D. Let {M0,M1, . . . ,M`−1}
enumerate Mq \M in increasing order. Similarly, let {δ0, δ1, . . . , δ`−1} enu-
merate Fq \M . For each i < `, let bδi denote b(Mi, s

q
δi

), which we recall will
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be the value of bδi . Since D is open, we can assume that s is not in M`−1

and even that it forces a value on ξ̇M`−1
. To postpone discussion of one of

the complications, we will first assume that sqδ0 < s.
Simple elementarity will ensure that there are members (s̄, q̄) of D ∩M

such that s̄ < s, and Fq̄ end-extends Fq ∩M . The difficult step in the proof
is to overcome the obstruction to q̄ being compatible with q caused by the
requirement that whenever i < ` and sq̄γ ∈ Sq̄ is below sδi , we require that

sδi forces that ξ̇M̄ ∈ bδi , where M̄ ∩ ω1 = γ. This is quite subtle.
To get the flavor, let us consider the collection

Ẋ0 = {(s̄, ξ) : (∃q̄ ∈ P) (s̄, q̄) ∈ D, Mq̄ end-extends Mq ∩M,

M̄ = min(Mq̄ \ (Mq ∩M)) and s̄  ξ̇M̄ = ξ} . (1)

We denote this set as an S-name because we can view it as such. This is a
set of pairs which is a member of M ∩H(θ), and so it is in M0. Of course the
pair (s, ξ̇M0

) corresponds to a member of Ẋ0 from which we conclude that
s  Ẋ0 is not in İ⊥. Moreover we have that the statement (∃a ∈ [ν]ω)s 
a ∈ İ ∩ [Ẋ0]ω holds and we may assume that for each ξ ∈ a, there is an
sξ < s, such that (sξ, ξ) ∈ Ẋ0. By elementarity (and using that S is ccc),

there is an s′ ∈ S∩M with s′ < s and an a ∈M such that s′  a ∈ İ ∩ [Ẋ0]ω

and again that for each ξ ∈ a, there is an sξ < s′ such that (sξ, ξ) ∈ Ẋ0.
For each j < ` such that s′ < sδj , we have that a ⊂∗ bδj . Therefore there is
some ξ0 ∈ a ∩

⋂
{bδj : j < ` and s′ < sδj}. For any such ξ0 we must select a

corresponding M̄0 witnessing that (sξ0 , ξ0) ∈ Ẋ0.
The next problem is that we want to be able to choose such a ξ0 and

to then continue to choose the next ξ1 corresponding to the next smallest
model in an eventual choice of Mq̄. This requires that a similar, but more
complicated situation exists for the set

Ẋ〈ξ0〉 = {(s̄, ξ) : (∃q̄ ∈ P) (s̄, q̄) ∈ D, Mq̄ end-extends {M̄0}∪(Mq∩M),

M̄ = min(Mq̄ \ M̄0) and s̄  ξ̇M̄ = ξ} . (2)

There is a situation in which we do not actually have to even worry about
ensuring that ξ1 is in any of the bδj . First, we choose any γ0 ∈M0 so that for
each i < `, sqδi � [γ0, δ0) ⊂ s; hence all the sqδi agree on the interval [γ0, δ0).

We retroactively assume that γ0 ∈ M̄0. Let M̄0 ∩ ω1 be denoted as δ̄0.
Suppose that there is some α ≥ δq0 such that s(α) 6= sqδ1(α). The definition

of Ẋ〈ξ0〉 can then be modified to ensure that for each (s̄, ξM̄ ) ∈ Ẋ〈ξ0〉 there

is a q̄ ∈ P so that s̄ and sq̄δM̄ disagree at some α which is above δ̄0. This will

ensure that for any such δM̄ and any j < `, sq̄δM̄ < sδj will fail; and so the
difficult condition in the definition of <P is vacuously satisfied.

On the other hand, if sqδ1 does agree with s on the interval [γ0, δ1) and

(s̄, ξ) ∈ Ẋ〈ξ0〉 is such that s̄ < s (as required) then we will have the require-
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ment that ξ1 needs to be in bδ1 . To have any chance of this we will again
need that sδ1 forces that Ẋ〈ξ0〉 is not in İ⊥. This puts an extra demand on
the choice of ξ0 (and each subsequent choice) which is accomplished by start-
ing again and examining q more closely. Since we will use it so often, let Pq
denote the set of q̄ ∈ P such that Mq̄ end-extends Mq ∩M with ` elements,
and for q̄ ∈ Pq let {M q̄

0 , . . . ,M
q̄
`−1} list this extension in increasing order. We

no longer keep the assumption that sδ0 < s, but we introduce some standard
notation for this type of proof. For each i < `, let σi be the mapping on S
which takes an element s′ of S and changes its initial segment below γ0 so as
to agree with sδi . Notice that σi ∈M0 for each i < `. Next, let L denote the
set of i < ` such that sδi < σi(s) (that is, s and sδi have no disagreements
above γ0), and let {ij : j < |L|} enumerate L.

Define the collection

T = {{ξ0, ξ1, . . . , ξ|L|−1, s̄} ⊂ ω1 ∪ S : (∃q̄ ∈ P̄q) (s̄, q̄) ∈ D,
for each j < |L|, σij (s̄)  ξj = ξ̇M q̄

ij

} (3)

We showed above that the sequence {ξqi0 , . . . , ξ
q
i|L|−1

, s} is in T (where σij (s) 

ξ̇Mij
= ξqij ). Following [Tod], let

∂T = {t = {ξ0, ξ1, . . . , ξ|L|−2, s̄} : (∃a ∈ [ν]ω)

σi|L|−1
(s)  a ∈ İ and (∀ξ ∈ a)t ∪ {ξ} ∈ T}. (4)

We know that {ξqi0 , . . . , ξ
q
i|L|−2

, s} ∈ ∂T , and thus by elementarity, and the

fact that D is open, there is a s̄|L|−1 ∈ M`−1, such that s̄|L|−1 < s and for
all extensions s̄ of s̄|L|−1, {ξqi0 , . . . , ξ

q
i|L|−2

, s̄} ∈ ∂T ∩M`−1. Then set

∂2T = {t = {ξ0, . . . , ξ|L|−3, s̄} : (∃a ∈ [ν]ω) (∀ξ ∈ a)

σi|L|−2
(s̄)  a ∈ İ and t ∪ {ξ} ∈ ∂T}. (5)

By induction, for 0 < k − 2 < |L| and ∂0T = T ,

∂k−1T = {t = {ξ0, . . . , ξ`−k, s̄} : (∃a ∈ [ν]ω) (∀ξ ∈ a)

σ|L|−k+1(s̄)  a ∈ İ and t ∪ {ξ} ∈ ∂k−2T} (6)

and we have that there is a s̄ik ∈Mk such that s̄ik < s and, for all extensions
s̄ of s̄ik , {ξqi0 , . . . , ξ

q
i|L|−k

, s̄} ∈ ∂k−1T . In particular, there is an s̄0 ∈ M0 so

that s̄0 < s and, {s̄0} ∈ ∂|L|T .
For each j < |L|, let Kj = {k ∈ L : sδij < σj(s)}. Also, for each j < |L|,

let bj =
⋂
{bδk : k ∈ Kj}. Working in M0, we select a witness a0 for the

fact that {s̄0} ∈ ∂|L|T , and note then that we may choose ξ0 ∈ a0 ∩ b0 so
that {ξ0, s̄0} ∈ ∂|L|−1T . Continuing this recursion, we choose, for j < |L|,
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ξj ∈ bj ∩ M0 so that {ξ0, ξ1, . . . , ξj , s̄0} ∈ ∂|L|−j−1T . Having chosen t =
{ξ0, . . . , ξ|L|−1, s̄0} ∈ T , we choose q̄ ∈ Pq witnessing that t ∈ T . We omit
the details that q̄ is compatible with q, (s̄0, q̄) ∈ D, and (s̄0, q̄) is compatible
with (s, q) as required.

Corollary 2.7. PFA(S)[S] implies that a compact first countable space which
is not hereditarily Lindelöf will contain an uncountable discrete set.

Proof. Let {Uα : α ∈ ω1} be a family of cozero sets so that for each α, there
is an xα ∈ X \

⋃
β<α Uβ and an open set Vα such that xα ∈ Vα ⊂ Vα ⊂ Uα.

Define an ideal I on the set {xα : α ∈ ω1} according to a ∈ I if a∩Vα is finite
for all α ∈ ω1. Since b > ω1, it is easy to check that I is a P-ideal. Assume
that A is an uncountable subset of {xα : α ∈ ω1} and choose any complete
accumulation point x of A. Choose any countable a ⊂ A which converges
to x. Notice that x /∈

⋃
α<ω1

Uα since, for each α, Uα ∩ A is countable.

Therefore x /∈ Vα for all α, hence a ∈ I. By the PID, it follows that there
is an uncountable A such that [A]ω ⊂ I. For each α such that xα ∈ A, we
have that Vα is a neighborhood which meets A in a finite set, hence A is an
uncountable discrete set.

Proof (Proof of Theorem 2.3). We assume that Ẋ is an S-name of a compact
space with hereditarily normal square. We assume that the tree S is a subtree
of ω<ω1 and that the base set for Ẋ2 is an ordinal. By Proposition 2.1, Ẋ is
first countable and hereditarily Lindelöf. By Proposition 2.4, we may fix an S-
name Ḋ of a countable dense subset of Ẋ2. Assume that Ẋ2 is forced by some
s0 to not be hereditarily Lindelöf (and so not metrizable). By Corollary 2.7,
there is a set {ẋα : α ∈ ω1} of S-names of points in Ẋ2 which is forced to
be discrete. Also, for each α ∈ ω1, we may fix a name Ḋα of a subset of Ḋ
which is forced to converge to ẋα. Fix a cub subset C of ω1 with the property
that for each δ ∈ C and α < δ, each s ∈ Sδ above s0 forces a value on Ḋα.
We now define an S-name of a function ḟ : C → 2: for each δ ∈ C and
δ+ = min(C \ δ + 1), each s ∈ Sδ++1 forces that ḟ(δ) = 0 if and only if
s(δ+) = 0.

Now we show that s0 forces that Ḋ ∪ {ẋδ : δ ∈ C} is not normal. Assume
that U̇ is an S-name of an open subset of Ẋ2 with the property that ẋδ ∈ U̇
for each δ such that ḟ(δ) = 0. We prove that there is a δ ∈ C and a condition s
above s0 which forces that U̇ ∩ Ḋδ is infinite and ḟ(δ) 6= 0. This is rather
easy. Since forcing with S does not add any new countable sets, there is an s1

above s0 which forces a value E on U̇∩Ḋ. Choose any δ ∈ C so that there is a
proper extension s of s1 in Sδ+ . Recall that s forces a value Dδ on Ḋδ. Let s0

be the extension of s which as value 0 at δ+, and let s1 be an extension which
has a value greater than 0. Since s0 forces that Ḋδ is mod finite contained
in U̇ , we have that Dδ ∩E is infinite. Therefore, s1 is the extension we seek,
since it forces that ḟ(δ) 6= 0 and Ḋδ ∩ U̇ is infinite.
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Counterexamples to Katětov’s problem were constructed in [GN93]. We
modify the CH example from that paper in this next result. It uses a method
of construction of Boolean algebras called being minimal generation.

Theorem 2.8. If ω1 Cohen reals are added, then there is a counterexample
to Katětov’s problem, namely, there is a compact non-metrizable space whose
square is hereditarily normal.

Proof. We build an ω1-increasing chain of (minimally generated) Boolean
algebras by forcing. The rough idea is that we will have a Luzin family {xα :Luzin set?
α ∈ ω1} of points in 2ω. For each α ∈ ω1, we will choose (by forcing, along
with xα itself) a regular open subset a0

α of 2ω (and let a1
α denote the regular

open complement). We let B0 be the usual algebra of clopen subsets of 2ω,
and Bα will be the Boolean algebra generated, in the regular open algebra
of 2ω, by the collection B0 ∪ {aβ : β < α}.

One inductive hypothesis is that, for each β < α, the filter of clopen
sets at xβ will generate an ultrafilter on Bβ and will generate precisely two
ultrafilters x0

β , x
1
β in the algebra Bβ+1 (with ȧβ ∈ x0

β). Additionally, for all
x ∈ 2ω \ {xξ : ξ ≤ β}, the filter of clopen neighborhoods of x will generate
an ultrafilter in Bβ+1, and for all ξ < β, the filters x0

ξ , x
1
ξ from Bξ+1 will

continue to generate ultrafilters in Bβ+1. It follows that there is a single
ultrafilter, namely that generated by xβ , on Bβ which does not generate an
ultrafilter on Bβ+1. In addition, this single ultrafilter generates just the two
new ultrafilters. It can be shown that this is equivalent to the fact that there
are no proper subalgebras of Bβ+1 which properly extend Bβ (see [Kop89]),
i.e. Bβ+1 is a minimal extension of Bβ .

We will, recursively, define a finite support iteration sequence {Pα, Q̇α :
α ∈ ω1}. For each α < ω1, Q̇α is the Pα-name of a countable atomless poset,
hence the poset Pω1

will be isomorphic to adding ω1 Cohen reals. In addition,
we will define a Pα+1-name, ȧα, of a regular open subset of 2ω.

The definition of Q̇α is {(u0, u1) : u0 ∈ B0, u1 ∈ Bα, u0∩u1 = ∅}. We define
(u0, u1) < (v0, v1) if u0 ⊂ v0 and u1 \ v0 = v1. If q ∈ Q̇α, then let (q0, q1)
denote the coordinates of q. The definition of ẋα will be that q  ẋα ∈ q0. The
definition of ȧ0

α will be that q  a0
α\q0 = q1. That is, if Gα+1 is Pα+1-generic,

then the definition of aα is
⋃
{u1 : (∃p, u0) (p, (u0, u1)) ∈ Gα+1}.

For each α ≤ ω1, and β ≤ α, if Gα is Pα-generic, it should be clear that
the Stone space of Bβ can be regarded as a compact metric topology on
Xβ = {x0

ξ , x
1
ξ : ξ < β} ∪ 2ω \ {xξ : ξ < β}. Let X denote the Stone space

of Bω1
in V [Gω1

]. It is well known that if G is Pω1
-generic, then the set

{ẋα : α ∈ ω1} is a Luzin set; it is interesting how this plays a role in ensuring
that the square is hereditarily normal.

Now suppose that Ḣ and K̇ are P-names of subsets H,K of X2 and assume
that some p ∈ P forces that H ∩K = ∅ = H ∩K, i.e., they are separated. Let
M be a countable elementary submodel with Ḣ, K̇, and {P, Qα : α ∈ ω1}
all in M . Let δ = M ∩ ω1 and let ḢM and K̇M be the Pδ-names Ḣ ∩M
and K̇ ∩M respectively. In the final model, let f denote the canonical map
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from X ×X onto Xδ ×Xδ (of course this just means that points of the form
(xeξ, y) or (xeξ, x

j
ζ) with ξ, ζ ≥ δ are sent to the points (xξ, y) or (xξ, xζ). We

view f as being the identity map on Hδ = valG(ḢM ) and Kδ = valG(K̇M ).
We show that, in Xδ, Hδ is dense in f [H], Kδ is dense in f [K], and, most
surprisingly, f [H] and f [K] are separated in Xδ.

Let x ∈ 2ω \ {xα : α ∈ ω1} and α ≤ β < ω1. We consider the points
y = (x, xeβ) and x = (xiα, x

e
β) and to determine if f(x) or f(y) is in f [H]\Hδ,

and similarly if f(x) or f(y) is in f [K]∩Hδ. By symmetry this will be enough.
The handling of the x case where α < δ is really no different than the proof
for y since {x0

α, x
1
α} are in M . Therefore we assume that δ ≤ α.

Assume first that a condition p ∈ Pω1
forces that x is a member of Ḣ. Let

b1 and b2 be members of Bδ that are in the ultrafilters corresponding to xiα
and xeβ ∩ Bδ respectively. We may assume that each of b1 and b2 are simply
clopen subsets of 2ω, hence they are members of M . Then by elementarity,
we certainly have that b1 × b2 meets Hδ. This proves that f(x) is in Hδ.

Now we assume that y is in K, then there are basic clopen neighbor-
hoods b1 and b2 of x and xβ respectively, and a forcing condition p, such that

p forces that Ḣ ∩ (b1× (b2∩aeβ)) is empty. By symmetry, we will assume that

xeβ = x0
β . By shrinking b2 and extending p, we may assume that p(β)0 = b2.

We claim that p forces that Ḣ ∩ b1× b2 is empty. If this is not the case then,
by elementarity, there is a value x′ ∈ M and an extension q of p � δ which
forces that x′ is in Ḣ ∩ (b1 × b2). Let v be a proper clopen subset of b2 such
that (by possibly extending q) q Pδ x′ ∈ b1×v. Finally, extend the condition
p∪ q to p̄ so that p̄(β)1 contains v. This is a contradiction since p̄ forces that
Ḣ ∩ (b1 × (b2 ∩ a0

β) contains x′. Therefore we must have that p forces that

Ḣ ∩M is disjoint from b1 × b2, i.e. f(y) /∈ Hδ as required.
Next assume that p ∈ Pω1 is such that (b1 ∩ aiα)× (b2 ∩ aeβ) is forced by p

to be disjoint from Ḣ, b1 = p(α)0, b2 = p(β)0, and that x = (xiα, x
e
β) ∈ K̇.

If α < β, the argument is very similar to the one given for y. So we suppose
that α = β and that b1 = b2. If, by extending p and shrinking b1, we can
arrange that p forces that Ḣ is disjoint from b1 × b1, then we have that p
forces that f(x) /∈ Hδ as required. Otherwise we have, as above, that there
is some q ∈ M and x′ ∈ (b1 × b2) ∩M such that q  x′ ∈ Ḣ. Again if x′ is
not on the diagonal of Xδ, then we can find disjoint v1 and v2 in Bδ, each
contained in b1 and an extension q of p � δ forcing that x′ ∈ (v1×v2)∩H. We
can then define an extension p̄ of p and q satisfying that p̄1 ∩ (v1 ∪ v2) is any
of {∅, v1, v2, v1 ∪ v2)} as needed to ensure that x′ ∈ Ḣ ∩ (b1 ∩ aiβ)× (b1 ∩ aeβ)
and the desired contradiction. Finally, we have the case that p forces that
(b1× b1) is disjoint from Ḣ \∆X . Here is where we use the Luzin property to
show that it is also the case that p forces that b1×b1 is disjoint from Ḣ∩∆X .
In fact, since p � M has the property that for all a ∈ Bδ with a ⊂ b1, there
is an extension (of p) which forces some element of K̇ (namely x) in a × a,
it follows that the closure of K̇ contains (b1 × b1) ∩∆X . Since K̇ and Ḣ are
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(forced to be) separated, we have that Ḣ is forced to be disjoint from b1× b1.
This completes the proof that f(x) is not in the closure of Hδ.

Now that we have shown that f [H] and f [K] are separated in the metric
space X2

δ , we have that H and K are separated by disjoint open sets in X2.
This shows that X2 is hereditarily normal, and of course, we have that X is
not metrizable since it has uncountable weight.

3 On compact spaces with small diagonal

Another potential metrization theorem has generated considerable interest
of late (see Gruenhage’s article this volume) concerns compact spaces with
a small diagonal. A compact space has a small diagonal if for each collection
{{xα, yα} : α ∈ ω1} of pairs from the space, there is an open set which meets
uncountably many of the pairs in a single point. The ideas for this next result
come from [DH12].

Theorem 3.1. PFA(S)[S] implies that a compact sequentially compact space
with a small diagonal is metrizable.

Proof. Actually we will just use OCA. We have a copy of ω embedded in a
compact spaceX such that the closure is not metrizable. Fix a well-ordering≺
on X and let A denote the collection of disjoint ordered pairs (a, b) of subsets
of ω such that a and b converge to points xa ≺ xb. Define 〈(a, b), (a′, b′)〉 ∈ K0

providing (a ∩ b′) ∪ (a′ ∩ b) is not empty. Assume we have an uncountable
collection {(aα, bα) : α ∈ ω1} which is K0 homogeneous. Let xα = xaα and
yα = xbα and assume there is an open set W such that xα ∈W and yα /∈W
for all α in some uncountable set I ⊂ ω1. As usual, we may assume there
is an m so that aα \W ⊂ m and bα ∩W ⊂ m for all α ∈ I. Now choose
distinct α, β ∈ I so that bα ∩m = bβ ∩m, and we have a contradiction, since
aα ∩ bβ ⊂ m and aα ∩ bβ ∩m = aβ ∩ bβ ∩m = ∅.

To complete the proof we assume that {An : n ∈ ω} are subsets of A and
that [An]2 ∩ K0 is empty. Choose a countable elementary submodel M of
some H(θ) so that {X, {An : n ∈ ω}} ∈ M . Since ω is not metrizable, there
is a pair of points u, v satisfying that for each open set U ∈ M such that
u ∈ U we also have that v ∈ U .

For a set Y ⊂ ω, let Y 1 = Y and Y 0 = ω \ Y . Let {Yn : n ∈ ω} enumerate
M ∩ [ω]ω and recursively define a sequence {`n : n ∈ ω} so that u is in the
interior of the closure of Y `00 ∩ · · · ∩ Y `nn for each n. Of course it then follows
that v is also in the closure of each such set. Let U and W be neighborhoods
of u and v respectively which have disjoint closures. It follows then that each
of {Y `nn ∩ U : n ∈ ω} and {Y `nn ∩W : n ∈ ω} have the finite intersection
property. Choose any infinite set a ⊂ ω such that a ⊂∗ Y `nn ∩ U for all n,
and an infinite set b ⊂ ω such that b ⊂∗ Y `nn ∩W for all n. By shrinking
the sets (since X is sequentially compact) we may assume that a and b each
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converge and (by symmetry) that xa ≺ xb. Assume now that there is some k
so that (a, b) ∈ Ak. Choose n ∈ ω so that Yn =

⋃
{a′ : ∃b′(a′, b′) ∈ Ak}.

Evidently, a ⊂ Yn, hence `n = 1. On the other hand, for each (a′, b′) ∈ Ak,
{(a′, b′), (a, b)} /∈ K0 and so we have that a′ ∩ b is empty. This contradicts
that b ⊂∗ Y `nn .

Compact space with a small diagonal can not contain a converging ω1-
sequence, and compact spaces of uncountable tightness contain such a se-
quence ([JS92]). This leads to the following useful conclusion.

Proposition 3.2. Compact spaces with a small diagonal have countable
tightness.

Although Todorcevic has proven that PFA(S)[S] implies that compact
spaces of countable tightness are sequential, this result has not yet been pub-
lished. Therefore we prove a weaker result which suffices for the application
to compact spaces with small diagonal.

Theorem 3.3 ([Tod, 8.2]). PFA(S)[S] implies that compact spaces of count-
able tightness are sequentially compact.

Proof. We assume that we have an S-name of a compactification K of the
set ω, in which no infinite subset of ω converges. Let {ḟα : α ∈ ω2} be
an enumeration of all the (nice) S-names satisfying that 1 forces that ḟα is
a function from ω into [0, 1] which has a continuous extension to K. For
each t ∈ S, we will let Ft denote the set of f ∈ [0, 1]ω such that t forces that
f has a continuous extension to all of K. Say that a ⊂ ω is split by Ft if
there is an f ∈ Ft such that the set {f(n) : n ∈ a} does not converge.

We show there is a t and a b ⊂ ω such that each a ⊂ b is split by Ft.
Otherwise, working in PFA(S) (a model of p = c), fix any well-ordering of S
in order type ω1 and recursively choose a mod finite, length ω1 chain of
infinite subsets {at : t ∈ S} of ω so that at is not split by Ft. Choose any a
which is mod finite contained in at for all t ∈ S. It is easy to see that t forces
that a is a converging sequence in K.

Now fix t and b ⊂ ω so that Ft splits every infinite subset of b. Fix the
embedding of ω into [0, 1]Ft and let X denote the closure of this embedded
copy of ω. It follows that t forces that K maps continuously onto the closure
of X. If we prove that X has uncountable tightness in the PFA(S) model,
then there will be an ω1 free sequence {xα : α ∈ ω1} with a unique complete
accumulation point x. It is easily checked that this sequence remains a free
sequence in the closure of X in the forcing extension by S (use basic open
sets to witness the disjoint closures). It then would follow that K does not
have countable tightness.

We must define a proper poset P which forces an uncountable free sequence
in X (as in the Moore-Mrowka proof) and satisfies that S remains Souslin
after forcing with P.
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Since ω is completely divergent in X and p = c, the cardinality of X is 2c.
Let Y be any dense countably compact subset of X of cardinality at most c.
We may also assume Y is elementary in the sense that if two countable subsets
of Y have a common limit point in X, then they do so in Y as well. Choose
any z ∈ X \Y , let F be a maximal filter of closed subsets of Y such that z ∈ F
for all F ∈ F. We first note that if H ∈ F+, then there is a countable H0 ⊂ H
such that H0 contains a member of F. Indeed, if this were not the case, then
inductively choose hα ∈ Fα ∈ F so that {hβ : β < α}∩Fα is empty. Since we
may assume that X is countably tight and by our elementarity assumption
on Y , it follows that {hβ : β < α} and Fα have disjoint closure in X. Thus,
we have constructed the desired free sequence.

Since X is forced to have countable tightness in the forcing extension by
S, the above construction can be conducted in the forcing extension as well
(and no new countable sets are added), hence we have the following claim.

Claim. If Ḣ is an S-name of a subset of Y and t ∈ S forces that Ḣ ∈ F+, then
there is a β ∈ ω1 such that for each t < s ∈ Sβ , the closure of {y : s  y ∈ Ḣ}
is in F.

For each y ∈ Y , choose open sets Vy, Uy of X so that y ∈ Vy ⊂ Vy ⊂ Uy
and z /∈ Uy. It follows that Y \ Uy ∈ F. Let κ be a large enough regular
cardinal so that X,Y,F are in H(κ). As usual, the conditions in the poset P
consist of functions p where dom p = Mp is a finite elementary ∈-chain of
countable elementary models of H(κ) and the range is a subset of Y . For each
M ∈ Mp, the set {X,Y, {Vy, Uy : y ∈ Y },F} ∈ M , and p(M) is an element
of
⋂

(F ∩M).
For each p ∈ P and M ∈ Mp, we define the neighborhood W (p,M)

of p(M) as
⋂
{Vp(Q) : Q ∈ Mp and p(M) ∈ Vp(Q)}. We define p < q if

q ⊂ p, and for each M ∈ Mp \ Mq such that Mq \M 6= ∅, we have that
p(M) ∈W (q,Q) where Q is the minimal element of Mq \M .

A somewhat, by now, standard proof will show that P is proper. And in
essence, to see that P preserves that S is ccc, we show that if M ≺ H(θ) and
s ∈ Sδ and M0 = M ∩H(κ) ∈ dom(p) then (s, p) is an M -generic condition
for S × P (see [Miy93]). This will be easier than many of the proofs using
PFA(S)[S] because the conditions in P do not depend on S.

Let D ∈M be a dense open subset of S×P and choose any extension (s̄, p̄)
in D extending (s, p). Let Mp̄ \M = {M0,M1, . . . ,M`−1} be enumerated in
increasing order. Since D is open and dense it follows that (t, p̄) ∈ D for
extensions t of s̄. Thus we may assume that s̄ /∈ M`−1. Let p̄(Mi) = xi for
each i < `, x = (x0, . . . , x`−1), and define, for t ∈ S,

Tt = {(y0, y1, . . . , y`−1) = (q(Q0), q(Q1), . . . , q(Q`−1)) :

(∃(t, q) ∈ D)(∃Q ∈Mq)p ∩M0 = q ∩Q and

Mq \Q0 = {Q0 ∈ Q1 ∈ · · · ∈ Q`−1}}. (7)
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Each y ∈ Tt is simply a function with domain `, and so we may easily
define, for each k < ` and each t ∈ S, Tt,k = {y � k : y ∈ Tt}. For y ∈ Tt,`−1,

we define the S-name Ḣy = {(s, y̌) : y_〈y〉 ∈ Ts}. Then define Tt,`−1(F) =

{y ∈ Tt,`−1 : t  Ḣy ∈ F+}. Next, by induction, for y ∈ Tt,`−k−1, define

Ḣy = {(s, y̌) : y_〈y〉 ∈ Ts,`−k(F)} and Tt,`−j−1(F) = {y ∈ Tt,`−j−1 : t 
Ḣy ∈ F+}.

Of course we have that x ∈ Ts̄ and we show by induction that x � k is
in Ts̄,k(F) for k = ` − 1, ` − 2, . . . , 0. We have that x � k ∈ Mk and, also in
Mk, we can define the set A = {t ∈ S : x � k /∈ Tt,k(F)}. The set of minimal
elements of A will be contained in Mk, so if s̄ ∈ A, then there is a predecessor
t ∈ Mk of s̄ which is in A. However, there is then an F ∈ F ∩Mk which is
forced by s̄ to be disjoint from Ḣx�k (i.e. {y : x � k_〈y〉 ∈ Tt,`−j(F)}), which
contradicts that xk is forced by s̄ to be in each of those sets.

Now we have that there is a predecessor t0 of s̄ inM0 such that ∅ ∈ Tt0,0(F).
By Claim 1, and by possibly extending t0, we may assume that the closure
of Y0 = {y ∈ M0 : t0  y ∈ Ḣ∅} will be in F ∩M0. Set W = W (p̄,M0) and
choose y0 in W ∩ Y0. Let y0 = 〈y0〉 and apply Claim 1 again, to extend t0 to
t1 < s̄ so that Y1 = {y ∈ M0 : t1  y ∈ Ḣy0

} meets W . Continuing in this
way, we inductively construct {y0, y1, . . . , y`−1} ⊂W ∩M0 and t` < s̄ in M0

so that that (y0, y1, . . . , y`−1) ∈ Tt` . By elementarity, there is a q ∈ P ∩M0

so that (t`, q) ∈ D witnessing that (y0, y1, . . . , y`−1) ∈ Tt` . It is now easy to
verify that (t`, q) is compatible with (s̄, p̄) as required.

4 Efimov problem

An Efimov space (if there is one) is an infinite compact space containing no
converging sequence and no copy of βN. A Moore-Mrowka space is a compact
space of countable tightness which is not sequential. Efimov spaces have been
shown to exist in a number of models (e.g. any model of CH [Fed77]) while
the existence of a Moore-Mrowka space is known to be independent of ZFC
(Fedorchuk and Ostaszewski from ♦ [Fed75, Ost76] and Balogh proved they
do not exist if PFA holds [Bal89]). An analysis of the constructions has led
to the formulation of minimal Boolean algebras [Kop89] and to a refinement
[Kos99] which will be called T-algebras.

Definition 4.1. A T-algebra is a Boolean algebra B ⊂ P(X) (for some set
X) for which there is a tree T ⊂ 2<κ (for some cardinal κ) and a generating
set {at : t ∈ T} for B such that the following hold:

1. all non-maximal nodes of T are branching,
2. for each non-successor node t ∈ T , at = X
3. for each successor node t ∈ T , at† = X − at where t† ∩ t is the predecessor

of both t and t†, (for convenience, let t† = t when t does not have an
immediate predecessor)
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4. for each t ∈ T , the collection {as : s < t} generates a non-degenerate filter
ut, and for each s < t, at − as is a member of the Boolean algebra B≤s
generated by {ar : r ≤ s}. Let Bs denote the Boolean algebra generated
by {ar : r < s}.

For any maximal branch b of T we also let ub be the filter generated by
{as : s ∈ b} and Bb the Boolean algebra generated by {as : s ∈ b}.

Two quite surprising properties of T-algebras are the following.

Proposition 4.2. Let B be a T-algebra with generating set {at : t ∈ T ⊂
2<κ}, and let b be a maximal branch of T , then

1. ub is an ultrafilter on B,
2. Bb is a superatomic Boolean (sub-)algebra and its Stone space is equal to
{ub} ∪ {ut† : t ∈ b a successor}.

Corollary 4.3. If A∪ {b} is a set of maximal branches of T for a T-algebra
B with generating family {at : t ∈ T}, then ub is a limit of {ux : x ∈ A}
in the Stone space S(B) if, and only if, ub ∩ Bb is a limit of the collection
{ux ∩ Bb : x ∈ A} in the Stone space S(Bb). For each x ∈ A, ux ∩ Bb is the
ultrafilter ut† where t is the minimal element of b \ x.

This next construction is quite similar to that used in the Katětov example
(2.8), but the example there was not a T-algebra (we leave it as an exercise
that it could not be a T-algebra). The analogous result using Cohen forcing
was given in [PM10]. The construction, from the hypothesis b = c, of a T-
algebra whose Stone space is an Efimov space was announced in [DS12].

Theorem 4.4. If κ = 2ω and G is Mκ-generic, then V [G] models that there
is a T-algebra B ⊂ P(ω) with generating family {at : t ∈ 2<ω1}, such that
S(B) has countable tightness and no converging sequences. That is, S(B) is
a Moore-Mrowka Efimov space.

Proof. It is well-known that the Random real poset factors readily. For each
set I ⊂ κ, Mκ is (forcing) isomorphic to MI ∗Mκ\I . Let {ṫξ : ξ ∈ κ} be a

listing of nice names ṫ such that for each ξ ∈ κ

1. there is a countable set Iξ ⊂ ξ + ω such that ṫξ is an MIξ -name,

2. there is a δξ such that 1  ṫ ∈ 2δξ ,
3. for all ζ < ξ, 1  ṫξ 6= ṫζ ,
4. 1  {ṫξ � α : α ∈ dom(tξ)} ⊂ {ṫγ : γ ≤ ξ},
5. 1  2<ω1 = {ṫξ : ξ ∈ κ}

For each ω ≤ α ∈ ω1, let gα be a bijection from ω onto α. To start the
induction, let {Cn : n ∈ ω} be any independent family of infinite subsets
of ω, and for t ∈ 2<ω, define at_1 = C|t| ∩

⋂
{as : s ⊆ t} and at_0 is the

complement of at_1. Notice that at_0 \ as is empty for each s ≤ t, and so
at_1 \ as = ω \ as for each s ≤ t. The algebra generated by {at : t ∈ 2<ω} is
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a T-algebra which is equal to the algebra generated by {Cn : n ∈ ω}. Thus
its Stone space is the Cantor set.

By induction on ξ ∈ κ, we define ȧṫ_ξ 0 and ȧṫ_ξ 1 as follows. Let M be a

countable elementary submodel such that ξ, {ṫζ : ζ ∈ κ} and {ȧṫζ : ζ ∈ ξ} are
in M . For each ζ < ξ, let Jζ be a countable set such that ȧṫζ is anMJζ -name.

Choose βξ to be a minimal limit ordinal in κ such [βξ, βξ+ω) is disjoint from
M ∪

⋃
ζ<ξ Jζ . Let ṙβξ denote the random real added byM[βξ,βξ+ω). That is,

for each k ∈ ω, the basic clopen set [(βξ + k, e)] forces that ṙβξ(k) = e.

We use gδξ+1 to enumerate the predecessors of ṫξ (including ṫξ itself) which
are at successor levels as {sn : n ∈ ω}. The family {

⋂
j<k asj \ ask : k ∈ ω}

is a partition of ω (where
⋂
j<0 asj = ω). We define ȧṫ_ξ 0 as the union of the

collection {
⋂
j<k asj \ ask : ṙβξ(k) = 0}. Of course ȧṫ_ξ 1 is the complement,

and is also (forced to be) equal to the union of the collection {
⋂
j<k asj \ask :

ṙβξ(k) = 1}. Notice that for k ∈ ω, aṫ_ξ e \ ask is equal to the finite join of

sets of the form a \ ask for a ∈ Bṫξ , and so, by induction on ξ, are in B≤sk .

Claim. If J ⊂ κ is disjoint from [βξ, βξ + ω), and if Ẏ is a MJ -name of an
infinite subset of {s < ṫξ : s is a successor}, then it forced that either there

is a t < ṫξ such that at /∈ us† for infinitely many s ∈ Ẏ , or for each e = 0, 1,

{s ∈ Ẏ : ȧṫ_ξ e ∈ us†} is infinite.

Claim. If {ḃγ : γ ∈ ω1} areMκ-names of maximal branches of T (i.e. each ḃγ
is forced to be a member of 2ω1) then there is a δ ∈ ω1 such that the closure
of {uḃγ : γ ∈ δ} contains ḃγ for all γ.

It follows directly from Claim 1 that S(B) has no converging sequences,
and from Claim 2 that it is hereditarily separable.

We remark that it was shown in [DF07] that there is an Efimov space in
extensions by random reals.

Proposition 4.5. If random reals are added, then the Stone space of the
ground model P(N) has no converging sequences. Therefore, if more than c
random reals are added, it is an Efimov space.

Another wonderful example of a T-algebra based solution is

Proposition 4.6 ([JKS09]). Let T be the tree consisting of those t ∈ 2<ω2

such that if there is an α ∈ dom(t) with t(α) = 1, then dom(t) < α + ω
(t is a finite extension of the first place it is non-zero). There is a proper
forcing extension in which there is a T-algebra with generating set {at : t ∈
T} such that the Stone space is a Moore-Mrowka space with a single point
of uncountable character and the complement of that point is initially ω1-
compact.
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5 Sequential order

In a space X and for a set A ⊂ X, we recursively define the sequential order of
elements in the sequential closure of A. We use the notation A(α) to denote
the set of all elements that have sequential order at most α. In particular
A(0) is simply A, and A(1) is the set of all elements x of X for which there
is a sequence from A converging to x (including constant sequences). For
any limit ordinal α, A(α) will simply equal

⋃
β<αA

(β), and for successor

α + 1, A(α+1) = (A(α))(1). For n ∈ ω, a point has sequential order n if n is
minimal such that x ∈ A(n). For α ≥ ω, x will have sequential order α if α
is minimal such that x ∈ A(α+1) \ A(α). We denote this sequential order as
s.o.(x,A) = α+ 1.

The fundamental open problem about sequential order is that we do not
know how large the sequential order of compact sequential spaces can be.
The known limits presently are: in ZFC there is an example with sequential
order 2, CH implies there is an example with sequential order ω1, in the Cohen
model there is an example with sequential order ω1, and b = c implies there
is an example with sequential order 4.

More progress has been made when restricted to a natural subclass of
compact sequential spaces. Say that a compact space is CB-sequential (for
Cantor-Bendixson) if the space is scattered, sequential, and the sequential
order of each element with respect to the set of isolated points naturally co-
incides with the scattering level of the point. The crucial idea is the following
new PFA result, which uses a Luzin family in its proof. An almost disjoint
family A = {aα : α ∈ ω1} of subsets of ω is called a Luzin family if for each
α ∈ ω1 and n ∈ ω, the set {β < α : aβ ∩ aα ⊂ n} is finite.

Theorem 5.1 (PFA). Suppose that X is a compact sequential space contain-
ing a countable set which we identify with ω. If a point z is not in ω(1), but
it is in the closure of ω, then z is the unique complete accumulation point
of some set of size ω1 from ω(1). Notice then that every point of ω is in the
radial closure of ω(1). Thus we can say that the radial order of every compact
sequential space is at most 2.

Proof. We assume we have a compact space X with ω a dense subset of X
and z /∈ ω(1). LetW be any ultrafilter on ω with the property that z ∈W for
all W ∈ W. Assume that A is a Luzin family of converging subsequences of ω
and, for α ∈ ω1, let xα ∈ ω(1) be the limit. Assume that every neighborhood
of z contains uncountably many of the xα’s. It then follows that z is the
unique complete accumulation point of {xα : α ∈ ω1}. Indeed, if z ∈ W and
W is open, then aα ⊂∗ W for uncountably many α. Since A is Luzin, W ∩aα
is infinite for all but countably many α, hence W contains all but countably
many xα.

We use PFA to produce A. We use the method in [Dow11]. Let A denote
any maximal almost disjoint family of infinite subsets of ω with the property
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that for each a ∈ A, a converges to some point xa ∈ X. For a finite set t ⊂ ω,
let At = {a ∈ A : t ⊂ a}. Say that a subfamily C of A is W-large if for
each countable W̃ ⊂ W, there is an a ∈ C such that a ∩W is infinite for all
W ∈ W̃ .

Claim. If C is an almost disjoint family which is W-large, then the set of `
such that C{`} is W-large is in W.

Proof (of claim). Assume that W = {` : C{`} is not W − large} is in W.
For each ` ∈ W , select countable W` ⊂ W witnessing that C{`} is not W-
large. Using that C is W-large, choose a ∈ C so that a ∩W ′ is infinite for
all W ′ ∈

⋃
`W` ∪ {W}. Choose any ` ∈ a ∩W , and observe that a ∈ C{`}

violating that W` is supposed to witness that this collection is not W-large.

We define a poset where p ∈ P if p is a finite function whose domain
dom(p) is a finite ∈-chain, Mp, of countable elementary submodels of some
suitable H(κ), with each containing {z,X,W,A}. For each M ∈ Mp the
value p(M) is a member of A that meets each member of W ∩M . We define
p < q if p ⊃ q and for each M ∈ Mp \Mq and each Q ∈ Mq with M ∈ Q
the intersection p(M) ∩ p(Q) is not contained in |q|. The canonical name of
the desired family AG is simply the collection {p(M) : p ∈ G,M ∈ Mp}. If
P is proper, this requirement on extension will ensure that this collection in
Luzin. We need an additional argument that there is a family of ω1-dense
sets that will ensure that z will be a complete accumulation point.

First we show that P is proper and that the existence of the W-large
families of the form At is critical for this. Let P ∈ H(θ) and let q,P be
elements of a countable M ≺ H(θ). Choose any a ∈ A which meets each
member of W ∩M in an infinite set. We prove that if q ⊂ p and M0 = M ∩
H(κ) ∈Mp, then p is (M,P)-generic. As usual, let {M0, . . . ,M`} enumerate
Mp \M0 in increasing order. Most of the argument is relatively standard
in that we use elementarity to find a p̄ ∈ M0 which reflects the relationship
between p∩M0 and p. However a new idea is needed to ensure that p̄(Qj)∩
p(Mi) is not contained in |p| whereMp̄ \Mp = {Q0, . . . , Q`} is also listed in
increasing order.

Let D ∈M be dense in P and define a tree T ⊂ A`+1, where 〈a0, . . . , a`〉 ∈
T providing there is a condition r ∈ D such that Mr is an end extension of
p∩M0,Mr \Mp ∩M0 = {Q0, . . . , Q`} is listed in increasing order, and ai =
r(Qi) for 0 ≤ i ≤ `. Naturally T ∈M0. Notice that for a = 〈a0, . . . , a`〉 ∈ T ,
and with r as given, the collection Ca�` = {a : a � `_〈a〉 ∈ T} is W-large.
The reason this is so is that if it were not W-large, then there would be no
set in Ca�` which met each member of W ∩Q`. But of course, r(Q`) is such a
set. By induction, for each j ≤ `, Ca�j is also W-large, where Ca�j is the set
of a ∈ A for which there is a a′ ∈ T extending a � j_〈a〉. In particular, C∅ is
W-large and is an element of M0. By Claim 1, for each t ∈ [ω]<ω and almost
disjoint family C ∈ M0 such that Ct is W-large, and each 0 ≤ i ≤ `, there is
a t′ ⊃ t such that Ct′ is W-large and (t′ \ t)∩ p(Mi) is not empty (recall that
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p(Mi) meets every member of Mi ∩W). Therefore, by a recursion of length
` + 1, there is a finite set t0 such that (C∅)t0 is W-large and t0 ∩ p(Mi) has
cardinality greater than |p| for each 0 ≤ i ≤ `. Choose any a0 ∈ (C∅)t0 which
is in M0. Recall that C〈a0〉 is W-large. Thus we can recursively choose finite
sets ti+1 so that (C〈a0,...,ai〉)ti+1

is W-large and ti+1 ∩ p(Mj) has size greater
than |p| for each j. Then choose ai+1 ∈ (C〈a0,...,ai〉)ti+1

and continue.
Finally we have that there is some r ∈ D ∩ M0 which witnesses that

〈a0, . . . , a`〉 ∈ T , and we have ensured that ai∩p(Mj) has cardinality greater
than |p| for each i, j ≤ `. It follows that r is compatible with p and completes
the proof that P is proper.

Finally we prove that there is a set D of ω1-many dense subsets of P such
that each D-generic filter G will result in z being a complete accumulation
point of the family {xa : a ∈ AG}. The new idea is to remember that PFA
implies that every compact sequential space has a dense set of points of
countable character [Dow88, 6.3] (but this does not follow from Martin’s
Axiom [Kos99]). Fix any p ∈ P and M ∈Mp. Fix an increasing cofinal chain
{W` : ` ∈ ω} of the countable subsets of W which are members of M . Also
let {tj : j ∈ ω} enumerate those t ∈ [ω]<ω such that At is W-large. For each
j ≤ ` ∈ ω, let Aj,` denote the (still W-large collection of) members of Atj
which meet every member of W`. Let Yj,` = {xa : a ∈ Aj,`}. Since Aj,` is
W-large, it follows that z is a limit of Yj,`. Therefore, since z ∈ M and X
has countable tightness, z is a limit point of Yj,` ∩M for all j, ` ∈ ω. Define
the closed set K(p,M) to be the intersection of the family {Yj,` : j, ` ∈ ω}.

Let y ∈ K(p,M) be any point that has a countable relative local base
in K(p,M). Let {Un : n ∈ ω} be open subsets of X such that the family
{Un ∩K(p,M) : n ∈ ω} is a base for y in K(p,M). For each j, `, n

D(y, j, `, n) = {r ∈ P : (∃M ′ ∈Mr ∩M) r(M ′) = a ∈ Aj,` and xa ∈ Un}.

We show that D(y, j, `, n) is predense below p. To see this, suppose that
p̄ < p. As in the proof that p̄ is an (M,P)-generic condition there is a finite
set t ⊃ tj which meets p̄(Q) in size at least |p̄| for each Q ∈ Mp̄ \M , and
so that (At is still W-large. There is a j′ so that t = tj′ . Let Q̄ ≺ H(κ)
be a countable member of M satisfying that Mp̄ ∩M ∈ Q̄, and choose ` so
that Q̄ ∩W ⊂ W`. Since y is in the closure of Yj′,` ∩M , there is an a ∈ At
which meets every member of Q̄ ∩ W, and so that xa ∈ Un. It follows that
r = p̄ ∪ {(Q̄, a)} (i.e. r(Q̄) = a) is a member of P which extends p̄ and is in
D(y, j, `, n).

Let p ∈ G be a filter on P which meets each D(y, j, `, n). For each j, `, let
YG = {xa : (∃r ∈ G) (∃Q ∈ Mr)r(Q) = a}. Clearly the family {Un ∩ YG ∩
Yj,`∩M : j, `, n ∈ ω} has the finite intersection property. It follows then that
YG has limit points in K(p,M) which are in Un for each n, i.e. that y is a
limit of YG. Finally, to find such a family for z, simply choose a countable
set of y ∈ K(p,M), each of countable relative character, which accumulates
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to z. It should now be clear that there is a family of ω1 many dense subsets
of P sufficient to ensure that z is a complete accumulation point of YG.

Corollary 5.2. PFA implies there is no CB-sequential space of sequential
order greater than ω.

Proof. Assume that X is such a space. Let X0 be the dense set of isolated
points. Since the sequential order is assumed to be greater than ω, there must
be an infinite set {wn : n ∈ ω} of points with sequential order of each wn
equaling ω with respect to X0. For each n, choose a sequence {zn,m : n+ 1 <
m ∈ ω} which converges to wn and such that s.o.(zn,m, X0) is between m
and ω. Since X is CB-sequential, it follows that s.o.(zn,m, Xn) ≥ m − n for
each n,m. Apply Theorem 5.1, and select an uncountable set {xn,m,α : α ∈
ω1} ⊂ Xn+1 so that zn,m is the unique complete accumulation point of this
set.

Choose any countable elementary submodel M0 which contains all the sets
defined in the previous paragraph. The poset P(ω)/fin is a countably closed,
hence proper, poset. Choose any infinite set I0 which is (M0,P(ω)/fin)-
generic. Let I0,M0 be elements of another countable elementary submodel
M1. Continue choosing an elementary ∈-chain of models Mα and Iα ∈Mα+1

which is (Mα,P(ω)/fin)-generic so that Iα ⊂∗ Iβ for all β < α. For limit α,
the chain {Iβ : β ∈ α} is already an (Mα,P(ω)/fin)-generic filterbase where
Mα =

⋃
β<αMβ .

Let M =
⋃
α∈ω1

Mα, and choose any I ⊂ ω which is mod finite contained
in each Iα. Also, choose any f ∈ ωω so that for all h ∈ ωω ∩M , we have
that h <∗ f . By possibly shrinking I, we may assume that the sequence
{zn,f(n) : n ∈ I} converges to some point w. Of course we have that w ∈ Xω.
For each n, choose clopen Wn ∈M such that {wn} = Wn ∩Xω. Also choose
clopen W so that {w} = W ∩Xω. It is routine to check that for each n ∈ I
we may assume that zn,f(n) ∈ W \

⋃
k<nWk, and there is an αn ∈ ω1 such

that xn,f(n),α ∈ W for all α > αn. Choose any α ∈ ω1 which is larger than
each such αn. Now we work briefly in Mα+1 since {xn,m,α : n,m ∈ ω} is
an element of Mα+1. For each n, there is a maximal antichain An ∈ Mα+1

of subsets a of ω satisfying that {xn,m,α : m ∈ a} converges. It follows
that, for each n, there is an an ∈ An such that Iα+1 ⊂∗ an. The sequence
{an : n ∈ ω} is in Mα+2. For each n, let yn denote the limit of the sequence
{xn,m,α : m ∈ an}. Note that yn ∈ Wn ∩ Xn+2. By the same reasoning,
there is a z ∈ M such that the sequence {yn : n ∈ Iα+3} converges to z
and z ∈ Xω. There is clopen Wz ∈ M such that Wz ∩ Xω = {z}, and we
may assume that yn ∈ Wz for all n ∈ Iα+3. There is an h ∈ M ∩ ωω such
that {xn,m,α : h(n) < m} ⊂ Wz for all n ∈ Iα+3. By removing a finite set
from I, we then have that {xn,f(n),α : n ∈ I} is contained in Wz. Notice
also that, since wn /∈ Wz for each n, there is another function h1 ∈ M ∩ ωω
satisfying that zn,m /∈Wz for all m > h1(n) for all n. Of course h1 <

∗ f and
so now we have that w 6= z, and {xn,f(n),α : n ∈ I} ⊂ Wz ∩Ww. This is
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a contradiction since this infinite set must have limit point in Xω while the
closed set Wz ∩Ww does not meet Xω.

6 Selective separability

The notion of Selectively Separable, or M-separable, is an interesting selection
principle which significantly strengthens the notion of a space being separable.
It was formulated by Scheepers in [Sch99].

Definition 6.1. A space S is M-separable if for each sequence {Dn : n ∈ ω}
of dense subsets of S, there is a selection {En : n ∈ ω} of finite sets with
dense union satisfying that En ⊂ Dn for all n.

It is strongly motivated by the connection to the Cp-theory of function
spaces. It is immediate that each dense subset of an M-separable space is
separable.

Proposition 6.2. If X is a σ-compact space, then every separable subspace
of Cp(X) is M-separable.

In fact, the more general result holds for spaces X which have the property
that each their finite powers in Menger (hence the name M-separable). A
space X is Menger if for every sequence {Un : n ∈ ω} of open covers of X,
there is a sequence of finite subcollections Wn ⊂ Un satisfying that

⋃
nWn

is itself a cover. Of course Cp(X) is not separable unless X has countable
weight. We have the following very interesting result based on an earlier
result of Arhangel’skii (see [BBMT08, 2.9]).

Proposition 6.3. For a separable metric space X, Cp(X) is M-separable, if
and only if, Xn has the Menger property for each n ∈ ω.

There are countable dense subsets of 2c which are M-separable (in 22N
),

and there are those that are not M-separable (in 2N
ω

).
A variant of M-separable was introduced in [BD11] which can be called

strategically M-separable (or SS+). A space S is strategically M-separable if
Player II has a winning strategy in the following game. The game lasts for
ω moves, at stage n, player I choose a dense subset Dn of S and player II
selects a finite subset En of Dn. Player II wins the play of the game if the
collection {En : n ∈ ω} has dense union. This next result, which comes
from [GS11] and [BD12] respectively, shows a surprising distinction between
the two properties. In particular there is an M-separable countable space
which is not strategically M-separable.

Theorem 6.4. The property of being M-separable is finitely additively, but
there is a countable space which in not strategically M-separable but which is
the union of two dense strategically M-separable subspaces.
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In proving the previous result, a useful equivalence to being M-separable
was introduced.

Proposition 6.5. A separable space S is M-separable if for each x ∈ S and
each descending sequence {Dn : n ∈ ω} of dense sets, there is a selection
{En : n ∈ ω} of finite sets with En ⊂ Dn, such that x is in the closure of the
union.

Proof. Assume that S has the property as in the statement and let {Dn : n ∈
ω} be any sequence of dense subsets of S. Let {xk : k ∈ ω} enumerate a dense
subset of S. For each n let D̃n =

⋃
{Dk : n ≤ k}. Of course the sequence

{D̃n : n ∈ ω} is a descending sequence of dense sets. For each k ≤ n ∈ ω, let
E(k, n) be a finite subset of Dn such that xk is in the closure of

⋃
k≤nE(k, n).

For each n ∈ ω, let Ẽn =
⋃
{E(k, n) : k ≤ n}. Since xk ∈

⋃
k≤n Ẽn for each k,

it follows that the sequence {Ẽn : n ∈ ω} has dense union. Similarly, the
sequence {Dn ∩

⋃
k≤n Ẽk : n ∈ ω} has the same union and witnesses that

S is M-separable.

Another unexpected but useful result about M-separable is that every
separable Frechet space is M-separable [BD11]. The most interesting question
about M-separable spaces is whether or not the property is (consistently)
finitely productive. Interestingly it is independent if there are two countable
Frechet spaces whose product is not M-separable.

Proposition 6.6 ([Bab09]). CH implies there are metric spaces X and Y
such that (X ∪Y )2 is not Menger, but Xn and Y n are Menger for all n ∈ ω.
Therefore, there are countable dense subsets A and B of Cp(X) and Cp(Y )
that are M-separable, while the space A×B ⊂ Cp(X ∪ Y ) is not.

Proposition 6.7 ([GS11, BD11]). Martin’s Axiom for countable posets
implies there are countable M-separable spaces whose product is not M-
separable.

Proposition 6.8 ([BD11]). CH implies there are two countable Frechet
spaces whose product is not M-separable.

We end the discussion of M-separable by establishing the following appli-
cation of OCA which improves the result in [BD12].

Theorem 6.9. OCA implies that the product of two countable Frechet spaces
is again M-separable.

Proof. Assume that A and B are countable Frechet spaces. Fix any x ∈ A
and y ∈ B and descending sequence {Dn : n ∈ ω} of dense subsets of A×B.
We prove that A×B is M-separable by verifying the condition in Proposition
6.5. We leave as an exercise the case when either x or y is in the closure of a
set of isolated points. Thus we may assume that there are no isolated points
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and therefore that for each x′ ∈ X and y′ ∈ Y , there is an n such that Dn is
disjoint from {x′} × Y and X × {y′}. By passing to a subsequence, we may
assume that Dn \Dn+1 is infinite for each n, and let {d(n, i) : i ∈ ω} be an
enumeration of this set.

Assume that a ⊂ A converges to x and b ⊂ B converges to y. By our
assumption on Dn, it follow that if dn ∈ Dn ∩ (a × b) for each n ∈ ω, then
{dn : n ∈ ω} converges to (x, y). Therefore we may now also assume that for
each such a, b, there is an n such that Dn ∩ (a× b) is empty.

Let A be the set of all infinite sequences converging to x, let B be the set
of all infinite sequences converging to y, and let F ⊂ ωω be the family of all
strictly increasing functions. In preparation for applying OCA, consider the
family X = {(a, b, f) : (∀n)(∀i < f(n)) d(n, i) /∈ a× b}. There is a separable
metric topology on X where for each point (x′, y′, (n, j)) ∈ A × B × ω2, the
set {(a, b, f) ∈ X : x′ ∈ a, y′ ∈ b, and f(n) = j} is clopen. Define K0 ⊂ [X ]2

by putting {(a, b, f), (a′, b′, f ′)} ∈ K0 providing there is an (n, i) such that
i < min(f(n), f ′(n)) and d(n, i) is in one of a× b′ or a′ × b.

Assume that {(aα, bα, fα) : α ∈ ω1} is an uncountable subset of X with the
property that all pairs are inK0. Since b > ω1, we may pass to an uncountable
subset so that there is a function f ∈ ωω such that fα < f for all α. For each n,
set En = {d(n, i) : i < f(n)}. We show that (x, y) is in the closure of

⋃
nEn.

Let U and W be open sets in A and B containing x and y respectively. Again
pass to an uncountable family and choose any m so that there are fixed finite
sets FA, FB satisfying that aα \U = FA and bα \W = FB for all α. Choose m
so that Dm is disjoint from FA ×B and A× FB . Next, by further thinning,
we can assume that (aα × bα) ∩ {d(n, i) : n < m and i < f(n)} is the same
for all α. Choose distinct α, γ and pick d(n, i) with i < min{fα(n), fγ(n)}
witnessing that {(aα, bα, fα), (aγ , bγ , fγ)} ∈ K0. By symmetry, assume that
d(n, i) ∈ aα × bγ . It follows that n ≥ m and d(n, i) ∈ (aα \ FA) × (bγ \ FB);
which implies that U ×W meets En.

Therefore, by OCA, we are finished if we can show that X can not be
expressed as a countable union of sets Y with the property that [Y]2 is disjoint
from K0. We follow the approach in [BD12], but also note there is a similar
argument in [Tod03, Theorem 2]. Fix a sequence {xn : n ∈ ω} converging to
x and a sequence {ym : m ∈ ω} converging to y. Let W be any ultrafilter
on ω × ω with the property that for each W ∈ W, the set {n : {m : (n,m) ∈
W} is infinite} is infinite. Assume that X is equal to Xn (n ∈ ω). For each
n,m ∈ ω and t ∈ ωm, define

Xn,m,t = {(a, b) : (∀k ∈ ω)(∃f)(a, b, f) ∈ Xn, t ⊂ f, and f(m) > k} .

We leave the reader to check that for all (a, b, f) ∈ X , there are n,m, t such
that (a, b) ∈ Xn,m,t (every unbounded set of f will diverge to infinity at
some m).

Let {(nk,mk, tk) : k ∈ ω} be an enumeration of ω× ω× ω<ω. Let A0 = A
and B0 = B. By induction on k, we choose Ak+1 ⊂ Ak and Bk+1 ⊂ Bk
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so that we retain the property that for each ` ∈ ω, {(n,m) : (xn, ym) ∈
D` ∩ (Ak × Bk)} is a member of W. The choice of Ak+1, Bk+1 must also
satisfy that either, for all (a, b) ∈ Xnk,mk,tk , a∩Ak+1 is finite or, for all (a, b) ∈
Xnk,mk , b∩Bk+1 is finite. Having chosen Ak, Bk, choose define Ik =

⋃
{a\ ` :

(∃b)(a, b) ∈ Xnk,mk,tk and d(n, i) /∈ ((a\ `)×B) for all n < mk, i < t(n)} and
Jk =

⋃
{b \ ` : (∃a)(a, b) ∈ Xnk,mk,tk and d(n, i) /∈ (A × (b \ `)) for all n <

mk, i < t(n)}. We check that Ik×Jk is disjoint from Dmk . Suppose otherwise,
and that d(n, i) ∈ Ik × Jk for some n ≥ mk. There must be (a, b) and
(a′, b′) in Xnk,mk,tk so that d(n, i) ∈ a× b′. Therefore, there are f, f ′ so that
i < f(n), f ′(n) and (a, b, f), (a′, b′, f ′) are in Xnk . This however shows that
{(a, b, f), (a′, b′, f ′)} ∈ K0.

It now follows immediately that one of (Ak \ IK)× Bk or Ak × (Bk \ Jk)
will have meet each Dm is a set which has W-large closure. This completes
the induction.

Choose a sequence {(jk, `k) : k ∈ ω} so that, for each k, k ≤ jk ≤ `k and
(xjk , y`k) is in the closure of Dk ∩ (Ak ×BK). Now we will use that A,B are
Frechet. For each k, choose a sequence {a(k, i) : i ∈ ω} converging to xjk such
that Dk ∩ ({a(k, i)} × Bk) 6= ∅ for each i. Similarly choose {b(k, i) : i ∈ ω}
converging to y`k such that Dk ∩ (Ak × {b(k, i)}) is not empty for each i.
It follows that x is in the closure of

⋃
k{a(k, i) : i ∈ ω}, and so there is an

a ⊂
⋃
k{a(k, i) : i ∈ ω} which is in A. Also a ∩ {a(k, i) : i ∈ ω} is finite

for each k, hence a ⊂∗ Ak for all k. Similarly there is a b ⊂∗ Bk for all k
such that b ∈ B. Choose f and Dm so that d(n, i) /∈ a× b for all n ≥ m and
i < f(n). Remove a finite subset from each of a and b so that (a, b, f) ∈ X .
This shows that (a, b, f) ∈ X \ Xn for all n.

7 Minimal walks and L-spaces

Three major results are reviewed in this final section. The first was mentioned
and used in the section on Katětov’s problem, which shows the consistency
of the non-existence of a first-countable L-space. Of course an L-space is a
regular space which is hereditarily Lindelöf but not hereditarily separable.
Justin Moore showed that there is an L-space [Moo08] and the L-space he
constructs (defined below) has character ω1. The method of minimal walks
([Tod07]) is used in the construction of the L-space and is of great importance
in a number of results.

Theorem 7.1 ([Sze80]). MA(ω1) implies there is no first-countable L-space.

In fact the principle K2(rec) suffices, see [LT02, 5.1].

Proof. Suppose that X is a first-countable space which is hereditarily Lin-
delöf. We assume, for a contradiction, that X is not separable. Choose a
sequence {xα : α ∈ ω1} ⊂ X with the property that xα is not in the closure
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of {xβ : β < α}. For each α, choose an open neighborhood Uα of xα with the

property that Uα is disjoint from {xβ : β < α}. For convenience, identify xα
with the singleton α.

We define a poset P that is designed to force an uncountable discrete
subset of {xα : α ∈ ω1} as witnessed by the neighborhood assignment we
just made. Thus, p ∈ P if p ∈ [ω1]<ω and for α < β in p, β /∈Wα. The union
of any uncountable subset of P of pairwise compatible elements would be a
discrete subset of X. Since that would contradict the assumption that X is
hereditarily Lindelöf, and we are assuming MA(ω1), it follows that P is not
ccc.

Let {pξ : ξ ∈ ω1} ⊂ P be an antichain. By a standard ∆-system argument
we may assume that that max pξ < min pη whenever ξ < η and that there is
an ` ∈ ω such that |pη| = ` for all η. For each ξ ∈ ω1, let Wξ =

⋃
{Uα : α ∈

pξ}. We have that for ξ < η, Wξ ∩ pη is not empty since this is what makes
pξ ⊥ pη. The next step in the proof is very clever. Choose `′ ≤ ` minimal sovery clever, but what

is Wξ ∩ P ′η supposed
to be? Empty?

that there are uncountable A,B ⊂ ω1 and {p′η ∈ [pη]`
′

: η ∈ B} such that for
all ξ ∈ A, the set {η ∈ B : Wξ ∩ p′η =} is countable.

Of course we fix such an `′ and the requisite sequences. The property we
now need is that if D ⊂ Y =

⋃
{p′η : η ∈ B} is uncountable, then the set

{ξ ∈ A : |Wξ∩D| < ω1} is countable. Otherwise, we could shrink A and show
that for some uncountable B′ ⊂ B, the family {p′η \D : η ∈ B′} contradicts
the minimality of `′. Since Y is hereditarily Lindelöf, we may assume that
it has no countable open subsets. Fix any y ∈ Y and let {On : n ∈ ω} be a
neighborhood base with On+1 ⊂ On for each n ∈ ω. For all but countably
many ξ ∈ A, there is an n such that On ∩Wξ is empty. There is an n and
an uncountable A′ ⊂ A such that On is disjoint from Wξ for all ξ ∈ A′.
Let B′ = {η : On ∩ p′η 6= ∅}. But now we have that {Wξ : ξ ∈ A′} and
{p′η \On : η ∈ B′} contradicts the minimality of `′.

An important fundamental tool is the notion of a minimal walk which
is such a powerful tool that a person could write an entire book about it
([Tod07]). For each limit ordinal α ∈ ω1, let Cα 3 0 be an increasing ω-
sequence cofinal in α. For each α = β+ 1 in ω1, let Cα = {0, β}. For α < β <
ω1, the walk from β to α is defined recursively by letting β1 = min(Cβ \ α)
be the first step (hence β1 = α if β = α + 1) and continuing with the walk
from β1 to α. The first consequence we recall is that it very naturally gives
rise to a coherent sequence.

Definition 7.2. A coherent sequence of finite-to-one functions is a sequence
〈eβ : β ∈ ω1〉 such that

1. for each β ∈ ω1, eβ is a finite-to-one function from β into ω,
2. if β < γ ∈ ω1, then eβ(α) = eγ(α) for all but finitely many α ∈ β.

To define such a sequence we first define ρ1(α, β) for α < β by recursion
as follows:
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ρ1(α, β) = max{|Cβ ∩ α|, ρ1(α,min(Cβ \ α))}.

Suppose that β is a limit and let 〈βkK < ω〉 be the increasing enumeration
of Cβ . Note that ρ1(α, β) ≥ |Cβ ∩ α| ≥ k whenever α ≥ βk. Thus, for a
fixed k, we have {α < β : ρ1(α, β) < k} ⊆

⋃
j≤k{α < βj : ρ1(α, βj) < k} and

so, by induction, it follows that the former set is finite.
If β = γ + k for some limit γ and integer k then one readily verifies that

ρ1(γ + j, β) = 1 for j < k and ρ1(α, β) = ρ1(α, γ) when α < γ.
Thus the functions eβ : β → ω defined by eβ(α) = ρ1(α, β) are all finite-

to-one.
We verify the second condition by induction on γ. Let k = |Cγ ∩ β| and

γ1 = minCγ \β. As |Cγ ∩α| ≤ k for α < β we must have ρ1(α, γ) = ρ1(α, γ1)
whenever ρ1(α, β) > k. Thus the α for which ρ1(α, β) 6= ρ1(α, γ) are among
those for which ρ1(α, γ) ≤ k or ρ1(α, β) 6= ρ1(α, γ1) and there are only finitely
many of these.

As explained in [Tod07] the function ρ1 and variants thereof can be used to
code many combinatorial structures on ω1; one can write down an Aronszajn
tree in terms of the eβ as follows:

T =
⋃
β<ω1

{t ∈ 2β : t = ∗eβ}.

Below we shall see how to build a Countryman line from ρ1, that is, an
uncountable linear order whose square is the union of countably many chains.

Instrumental in Moore’s construction of an L-space is the lower trace of
the walk.

Definition 7.3. The lower trace L is a function L : [ω1]2 → [ω1]<ω such that
for any 0 < α < β < γ < ω1

1. L(α, β) is a nonempty subset of α,
2. if maxL(β, γ) < minL(α, β), then L(α, γ) = L(α, β) ∪ L(β, γ),
3. if β is a limit ordinal then for each ξ < β, there is a ζ < β so that
ξ < minL(α, β) for all ζ < α < β.

The definition of L(α, β) is

{max(Cβ ∩ α)} ∪ (L(α,min(Cβ \ α)) \max(Cβ ∩ α))

(i.e. follow the minimal walk). Property (1) and (3) of 7.3 are immediate
given that 0 ∈ Cβ and Cβ is cofinal in β. To check that property (2) holds,
we use another presentation of L(α, β). Let {βαi : i < `} denote the minimal
walk in descending order from β to α, hence βα0 = β and βα` = α, and
βαi+1 = min(Cβαi \α). Next, let λi = max(

⋃
{Cβαj ∩α : j ≤ i}) and we will have

that {λ0, . . . , λ`} enumerates L(α, β) (with possible repetitions) in increasing
order. Now suppose that maxL(β, γ) < minL(α, β). Let {γαi : i < m} denote

the minimal walk from γ to α. Also, let {λβj : j < `} denote L(β, γ). By
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induction on j < `, we prove that {γαi : i < `} is actually equal to the
minimal walk from γ to β. Of course γα0 is γ, and consider 0 < i < `. By the

induction hypothesis, α ≥ λβi ≥ max(Cγαi−1
∩ β), and so, min(Cγαi−1

\α) ≥ β.

This ensures that min(Cγαi−1
\β) = γαi as required. From this we can conclude

that the first ` members in the monotone enumeration of L(α, γ) is exactly
the same as L(β, γ) and that at step ` of the walk from γ to α we are at
the ordinal β. Of course the walk will continue as simply the walk from β
to α. The fact that maxL(β, γ) < minL(α, β), ensures also that each of the
members of L(β, γ) are added in turn to L(α, γ) (and not “cut out” by the
max operation) and so we have that L(α, γ) = L(β, γ) ∪ L(α, β).

We now turn to the definition of Moore’s L-space.

Definition 7.4. For F ∈ [ω1]<ω and s, t ∈ ωF , thenYou must mean F \
{minF}

Osc(s, t) = {ξ ∈ F\{minF} : s(ξ) > t(ξ) and s(max(F∩ξ)) ≤ t(max(F∩ξ)) .

In practice (and in context) ξ− will be used to denote max(F ∩ ξ) for ξ ∈
F \ {minF}.

Define, for α < β ∈ ω1,

osc(α, β) =
∣∣Osc

(
eα � L(α, β), eβ � L(α, β)

)∣∣.
Also, for convenience, let Osc(α, β) abbreviate Osc

(
eα � L(α, β), eβ � L(α, β)

)
.

Definition 7.5. Fix a rationally independent sequence ζα (α ∈ ω1) of ele-
ments of T = {ζ ∈ C : |ζ| = 1}. For each β ∈ ω1, define wβ ∈ Tω1 by

wβ =

{
ζ

osc(α,β)+ 1
2

α α < β

1 β ≤ α ∈ ω1

Let L be the subspace of Tω1 consisting of the set {wβ : β ∈ ω1}.

It is evident that L is not separable. Well beyond the scope of this article
is the following celebrated result.

Theorem 7.6 ([Moo06]). L is hereditarily Lindelöf.

We will now report on the result from [Moo08] the interesting fact about
the square of L.Which of these do

you prefer? We will now report the following interesting fact about the square of L,
from [Moo08].

Theorem 7.7. L has a co-countable subspace X (which is an L-space) whose
square has a σ-discrete dense subset.

Before giving the proof we go over the proof of an earlier result that has
the same flavor.
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Proposition 7.8 ([Tod07]). C(ρ1) = (ω1, <ρ1
) is a Countryman line. That

is, the square is a countable union of chains, where

α <ρ1
β if

{
ρ1(., α) ⊂ ρ1(., β) or

(∃ξ)ρ1(ξ, α) < ρ1(ξ, β) and (∀δ < ξ)ρ1(δ, α) = ρ1(δ, β)

We copy the lexicographic order of the set {eβ : β ∈ ω1} to ω1.

Proof. Dα,β will be the set {α} together with {ξ < α : ρ1(ξ, α) 6= ρ1(ξ, β)}.
Also, ∆(α, β) will equal minDα,β .
nα,β is the maximum value {ρ1(ξ, α) : ξ ∈ Dα,β \α}∪{ρ1(ξ, β) : ξ ∈ Dα,β};

thus if ρ1(ξ, α) 6= ρ1(ξ, β), then both values are at most nα,β .
α ∈ Fα,β will be the finite set of η ≤ α such that one of ρ1(η, α) or ρ1(η, β)

is at most nα,β .
Consider α < β, γ < δ and α <ρ1

β, further that n = nα,β = nγ,δ,
eα � Fα,β ≈ eγ � Fγ,δ, eβ � Fα,β ≈ eδ � Fγ,δ, then we conclude that γ <ρ1

δ.
(which gives us the countably many chains). Let ξ = min(∆(α, γ), ∆(β, δ))
and notice that Fα,β ∩ ξ = Fγ,δ ∩ ξ. Because of the isomorphism assumption,
we may therefore assume that ξ /∈ Fα,β ∩ Fγ,δ.

If ∆(α, γ) 6= ∆(β, δ), then we must have that ξ ∈ Fα,β ∩ Fγ,δ (e.g. ξ =
∆(β, δ) < ∆(α, γ) will ensure that ρ1(ξ, α) = ρ1(ξ, γ) and so one of ρ1(ξ, β)
and ρ1(ξ, δ) differ, and have value at most n, which then ensures that all have
value at most n).

Therefore we now have that ξ = ∆(α, γ) = ∆(β, δ).
Now, if ξ /∈ Fα,β∪Fγ,δ, then ρ1(ξ, β) = ρ1(ξ, α) < ρ1(ξ, γ) = ρ1(ξ, δ) which

gives β <ρ1
δ as required. If ξ ∈ Fα,β \ Fγ,δ then ρ1(ξ, β) ≤ n < ρ1(ξ, δ) as

required. Finally, if ξ ∈ Fγ,δ \ Fα,β , then ρ1(ξ, γ) ≤ n < ρ1(ξ, α) which
contradicts that α <ρ1

γ.

We return to Justin. X is L minus the union of all countable open sets. To Justin? Or to L?
Define a dense set D in X 2 by a simple induction. Let Uδ×Vδ (δ ∈ ω1) be an
enumeration of a base for X 2. Choose any point dδ = (wβδ , wγδ) ∈ Uδ × Vδ
such that γη < βδ < γδ for all η < δ. Even though it is not needed for
the proof, we can also choose βδ so that wβδ is not in the closure of the set
{wβη : η < δ}.

Similar to the Countryman proof: we identify countably many isomorphism
types so that each type ensures that the subset of D with that type is discrete.
For each δ we associate a rational εδ, and integers nδ,Mδ and kδ identified
below.

Lemma 7.9. There is a finite set Fδ ⊂ βδ such that L(α, βδ)\Fδ = L(α, γδ)\
Fδ whenever α < βδ.

Proof. We use property 3 of definition 7.3. Let η0 = βδ and recursively define
ηi+1 < ηi, where ηi+1 < ξ ≤ ηi implies that L(ξ, βδ)∪L(ξ, γδ) ⊂ minL(ξ, ηi).
Of course we stop when η` = 0 and define Fδ =

⋃
{L(ηi, βδ)∪L(ηi, γδ) : i < `}.
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To verify this works, consider any 0 < α ≤ βδ and fix i < ` so that
ηi+1 < α ≤ ηi. Of course L(ηi, βδ) \Fδ = L(ηi, βδ) \Fδ since both are empty,
so we assume ξ < ηi. By property 2, each of L(α, βδ) \ Fδ and L(α, γδ) \ Fδ
are equal to L(α, ηi) \ Fδ.

Lemma 7.10. There is an integer Mδ such that | osc(ξ, βδ)−osc(ξ, γδ)| < Mδ

for all ξ < βδ.

Proof. recall that Osc(α, β) = {ξ ∈ L(α, β) : eα(ξ−) ≤ eβ(ξ−) and eα(ξ) >
eβ(ξ)}, so ξ ∈ Osc(α, βδ) \ Osc(α, γδ) would of course mean that eα(ξ) 6=
eβδ(ξ) and ξ ∈ L(α, βδ)∆L(α, γδ).

Lemma 7.11. There is a rational εδ > 0, such that for each integer i with
|i| < Mδ, and each z ∈ T, with |z − ζβδ | < εδ∣∣|zi − 1| − |znδ+ 1

2 − 1|
∣∣ ≥ εδ

Proof. The value ζβδ was from a set chosen so that no two rational powers

coincide. Therefore there is an ε > 0 satisfying that
∣∣|zi−1|−|znδ+ 1

2 −1|
∣∣ ≥ ε

for z = ζβδ and |i| < Mδ. By continuity then, there is a δ > 0 such that for all

z with |z− ζβδ | < δ we also have that
∣∣|zi − 1| − |znδ+ 1

2 − 1|
∣∣ ≥ ε

2 . Setting εδ
to be smaller than each of δ and ε

2 then satisfies the lemma.

Finally, we make the choice of the integer kδ = k simply so that k · εδ <
ζβδ < (k+1)·εδ. This ensures that if kδ = kη and εδ = εη, then |ζβδ−ζβη | < εδ.

Well, we are not going to say that it is obvious, but we now have that forGetting informal are
we? each rational ε > 0 and integers M , n and k the set

Dε,M,n,k = {dδ = (wβδ , wγδ) : δ < ω1 and (εδ,Mδ, nδ, kδ) = (ε,M, n, k)}

is discrete.
The definition of the neighborhood of dδ is

Uδ =
{

(x, y) ∈ X 2 :
∣∣|x(βδ)− y(βδ)| − |ζ

n+ 1
2

βδ
− 1|

∣∣ < ε
}
.

It is obvious that Uδ is open, but it is not obvious that dδ belongs to Uδ. To
see this note that

|wβδ(βδ)− wγδ(βδ)| = |1− ζ
osc(βδ,γδ)
βδ

| = |1− ζn+ 1
2

βδ
|

Since we arranged that dδ is not in the closure of the set {dη : η < δ} simply
by virtue of the first coordinate, it suffices to check that if dδ and dη are in
Dε,M,n,k, with δ < η < ω1, then dη /∈ Uδ. To see this note that

|wβη (βδ)− wγη (βδ)| = |ζ
osc(βδ,βη)
βδ

− ζosc(βδ,γη)
βδ

|

= |ζ− osc(βδ,γη)
βδ

| · |ζosc(βδ,βη)−osc(βδ,γη)
βδ

| = 1 · |ζiβδ − 1| (8)
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for some |i| < Mη = M . Of course since Mδ = M , we have by Lemma 7.11,
that ∣∣|ζiβδ − 1| − |ζn+ 1

2

βδ
− 1|

∣∣ ≥ ε
completing the verification that dη /∈ Uδ.
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