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Abstract. Every first countable pseudocompact Tychonoff space X has the property that

every pseudocompact subspace of X is a closed subset of X (denoted herein by “FCC”).
We study the property FCC and several closely related ones, and focus on the behavior of

extension and other spaces which have one or more of these properties. Characterization,

embedding and product theorems are obtained, and some examples are given which provide
results such as the following. There exists a separable Moore space which has no regular,

FCC extension space. There exists a compact Hausdorff Fréchet space which is not FCC.

There exists a compact Hausdorff Fréchet space X such that X, but not X2, is FCC.

1. Introduction and terminology.
For topological spaces X and Y , C(X, Y ) will denote the family of continuous

functions from X into Y , C(X) will denote C(X, R), and C∗(X) will denote the family
of bounded functions in C(X). A space X is called pseudocompact provided that C(X) =
C∗(X). This definition was first given for Tychonoff spaces, i.e., completely regular T1-
spaces, by E. Hewitt [10].

For terms not defined here, see [5], [6] or [15]. Except where noted otherwise, no
separation axioms are assumed.

Some properties of interest that are closely related to pseudocompactness are listed
in Theorem 1.1.

Theorem 1.1. Let X be a space. Then each statement below implies the next one, and
all of properties (B1)–(B6) are equivalent.

(A) The space X is pseudocompact and completely regular.
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(B1) Every locally finite family of open sets of X is finite.
(B2) Every pairwise disjoint locally finite family of open sets of X is finite.
(B3) Every sequence of nonempty open subsets of X has a cluster point in X.
(B4) If U = {Un : n ∈ N} is a sequence of nonempty open subsets of X such that

Ui ∩ Uj = ∅ whenever i 6= j, then U has a cluster point in X.
(B5) Every countable open filter base on X has an adherent point.
(B6) Every countable open cover of X has a finite subcollection whose union is dense

in X.
(C) X is pseudocompact.

We recall that the adherence of a filter base F on a space X is the intersection of
the closures of the members of F , and by a cluster point of a sequence {Un : n ∈ N} of
subsets of a space X is meant a point p ∈ X such that for every neighborhood V of p,
V ∩ Un 6= ∅ for infinitely many integers n. A sequence denoted {Un : n ∈ N} will be
referred to as a pairwise disjoint sequence provided that Ui ∩ Uj = ∅ whenever i 6= j .

Proofs or references to proofs of the different results in Theorem 1.1 can be found in
[1], [7], [8], [15] or [26]. These properties have been found useful by a number of authors,
especially (B2), which has been referred to in [26] as feebly compact and attributed to S.
Mardešić and P. Papić, and (B1), which was called lightly compact in [1]. I. Glicksberg [8]
noted that every pseudocompact completely regular space satisfies (B2), and every space
satisfying (B2) is pseudocompact.

One immediate corollary to Theorem 1.1 that will be used below is the following.

Corollary 1.2. [8] Let X be a topological space.

(a) The union of finitely many feebly compact subspaces of X is feebly compact.
(b) If X is feebly compact and U is any open subset of X, then U is a feebly compact

subspace of X.
(c) If D is a feebly compact subspace of X and D ⊆ G ⊆ D, then G is feebly compact.

Definition 1.3. We shall call a topological space X feebly compact closed (“FCC”)
provided that X is feebly compact and every feebly compact subspace of X is a closed
subset of X.

Definition 1.4. A space X will be called sequentially feebly compact provided that for
every sequence {Un : n ∈ N} of nonempty open subsets of X there exist a point p ∈ X
and a strictly increasing sequence {ni : i ∈ N} in N such that for every neighborhood V
of p, V ∩ Uni

6= ∅ for all but finitely many i ∈ N.

2 The properties FCC and sequentially feebly compact.
The property FCC has been studied previously (but not named or labeled) by

several authors. It was proved in [23] that every first countable feebly compact Hausdorff
space, and hence every first countable pseudocompact Tychonoff space, is FCC. Then a
proof was given in [14] that if a feebly compact space X is E1, i.e., if every point x of
X is an intersection of countably many closed neighborhoods of x, then X is FCC. The
concept has been used in the study of maximal feeble compactness. By a maximal feebly
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compact space is meant a feebly compact space (X, T ) such that for every feebly compact
topology U on X, if T ⊆ U then U = T . Using the result of D. Cameron [3], that an
FCC, submaximal space (i.e., a space in which every dense set is open) is maximal feebly
compact, and a result of A.B. Raha [17], the authors proved in [16] that a topological
space is maximal feebly compact space if and only if it is FCC and submaximal. Using
the latter, a number of examples of maximal feebly compact spaces are given in [16],
e.g., the well-known Isbell-Mrówka space Ψ described in [6, 5I]and in the proof below
of Theorem 2.12. The property FCC was also considered in the article [9], where the
relationship between countably compact regular spaces which are FCC and those which
are Fréchet was studied.

The next lemma provides conditions each of which implies or is implied by, or under
suitable restrictions is equivalent to, the property FCC. Let us recall that a space X is
called semiregular provided that that the regular open sets (i.e., sets having the form
int(cl(A)), where A is an open subset of X) form a base for the topology on X.

Lemma 2.1. Let X be a topological space, and consider the conditions below.

(F1) Every feebly compact subspace of X is a closed subset of X.
(F2) For every feebly compact subspace S of X, dense subset D of S, and point p ∈

S \D, there exists a pairwise disjoint sequence K = {Kn : n ∈ N} of nonempty
open subsets of D such that for every neighborhood V of p in S, V ⊇ Kn for all
but finitely many n ∈ N.

(F3) Every feebly compact subspace of X with dense interior is a closed subset of X.
(F4) For every open subset S of X and point p ∈ S \S, there exists a pairwise disjoint

sequence K = {Kn : n ∈ N} of nonempty open subsets of S such that K has no
cluster point in X \ {p}, and for every neighborhood V of p in S, V ⊇ Kn for all
but finitely many n ∈ N.

Then the following hold.

(a) Property (F1) implies (F2) and (F3), and if X is a Hausdorff space then (F2)
implies (F1).

(b) Property (F4) implies (F3), and if X is feebly compact then (F3) implies (F4).
(c) If S is semiregular then in each of the statements (F2) and (F4), the containment

“V ⊇ Kn” may be replaced by “V ⊇ Kn.”
(d) If X is Fréchet, Hausdorff and scattered, then it has property (F1).
(e) If X is Fréchet and Hausdorff and has a dense set of isolated points, then it has

property (F3).

Proof. We prove (b). The proof of (a) is similar.
(F4) implies (F3). Suppose (F3) is false. Then there exist an open subset S of X,

a feebly compact subspace F of X with S ⊆ F ⊂ S, and a point p ∈ F \ F . It would
follow that S = F and thus p ∈ S \ S. By Corollary 1.2 (c), the feeble compactness of
F , and the relation F ⊆ S \ {p} ⊆ F , the subspace S \ {p} would be feebly compact. By
Theorem 1.1, every sequence K = {Kn : n ∈ N} of nonempty open subsets of X such
that each Kn ⊂ S would have a cluster point in S \ {p}. Therefore, (F4) would not hold.
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Suppose X is feebly compact and (F3) holds. Let S and p be as in the hypothesis
of (F4). It follows from (F3) and the characterizations in Theorem 1.1 that there exists
a pairwise disjoint sequence W of nonempty open sets of the space S \ {p} such that
W has no cluster point in S \ {p}. Define K = {Kn : n ∈ N}, where for each n ∈ N,
Kn = Wn ∩ S. Since S is dense in S \ {p} and open in X, it follows from the properties
of W that K is a pairwise disjoint sequence of nonempty open subsets of X, as well as
of S, which has no cluster point in X \ {p}. By the feeble compactness of X, K must
have a cluster point, so p is the unique cluster point of K in X. If there were an infinite
subset J of N and a neighborhood V of p in S such that Kj \ V 6= ∅ for every j ∈ J ,
then {Kj \ V : j ∈ J} would be an infinite locally finite family of open subsets of X, in
contradiction of Theorem 1.1.

Statement (c) is obvious. Let us prove (d). The proof of (e) is similar. Suppose
Y ⊆ X is feebly compact and p ∈ Y . Let I be the set of isolated points of the space Y .
Then clY I = Y since X is scattered, and thus p ∈ I. As X is Fréchet, there is a sequence
{xn : n ∈ N} in I which converges to p. Then {{xn} : n ∈ N} is a sequence of nonempty
open sets of the feebly compact Hausdorff space Y which has only p as a cluster point.
Hence p ∈ Y . Therefore, Y is a closed subset of X. �

Theorem 2.2. Let X be a topological space. Then the following hold.
(a) If X is a feebly compact space which is either (i) E1, or (ii) compact Hausdorff

and either hereditarily metacompact or hereditarily realcompact, or (iii) Fréchet,
Hausdorff and scattered, then it is FCC.

(b) If X is FCC, then it is a feebly compact T1-space and has the properties (F1)–(F4).
(c) If X is a countably compact FCC space, then it is (i) (Y. Tanaka) Fréchet and

(ii) sequentially compact.
(d) If X is feebly compact and either (i) has property (F3) or (ii) is a sequential space,

then X is sequentially feebly compact. In particular, FCC implies sequentially
feebly compact.

(e) If X is feebly compact, Fréchet and Hausdorff and has a dense set of isolated
points, then it has properties (F3)–(F4).

(f) If X is sequentially feebly compact, then it is feebly compact.

Proof. As noted above, part (i) of (a) is obtained in [14]. Since by results of E. Hewitt [10]
and S. Watson [28], every realcompact and every metacompact pseudocompact Tychonoff
space is compact, one obtains (ii) of (a). Statement (iii) follows from Lemma 2.1 (d).

Obviously (b) holds. In [9] a proof was given that a statement like (c) (i) holds for
regular spaces, and the author of [9] attributed the result to Y. Tanaka. Here is a similar
proof that does not require regularity of the space X: Suppose A ⊂ X and x ∈ A \ A.
Since A \ {x} is not feebly compact and has A as a dense subset, there exists a pairwise
disjoint sequence U = {Un : n ∈ N} of nonempty open subsets of A which has no cluster
point in A \ {x}. Choose xn ∈ Un for each n ∈ N. Then the set C = {xn : n ∈ N} is a
discrete subspace of the countably compact T1-space C = C ∪{x}, and consequently, the
sequence {xn} in A must converge to x. The statement (c) (ii) follows from the easily
verified fact that every countably compact T1 Fréchet space is sequentially compact.
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We prove (d). Let U = {Un : n ∈ N} be a sequence of nonempty open subsets of
the space X. We wish to show that there exist a point p ∈ X and a strictly increasing
sequence {ni : i ∈ N} in N such that for every neighborhood V of p, V ∩ Uni

6= ∅ for all
but finitely many i ∈ N (or equivalently, there exist a point p ∈ X and an infinite subset
J of N such that V ∩ Uj 6= ∅ for all but finitely many j ∈ J).

Suppose first that the hypothesis of (d) (i) holds. Let us consider two cases.
Case 1: suppose there are an infinite subset J of N and a point p ∈ X such that

p ∈ Uj for every j ∈ J . Then p and J have the required properties.
Case 2: suppose that Case 1 does not hold. Since X is feebly compact, the sequence

U has a cluster point p. There exists k ∈ N such that for every integer n > k, the point
p /∈ Un. Define S =

⋃
n≥k+1 Un, and for each i ≥ k + 1, let Si =

⋃i
n=k+1 Un. Note that

p ∈ S\S and Si ⊆ S\{p} for every i ≥ k+1. As every feebly compact subspace of X with
dense interior is closed, it follows from Lemma 2.1 that there exists a pairwise disjoint
sequence K = {Kn : n ∈ N} of nonempty open subsets of X such that each Kn ⊆ S, K
has no cluster point in X \ {p}, and for every neighborhood V of p, V ⊇ Kn for all but
finitely many n ∈ N. Since each Si is feebly compact (by Corollary 1.2), then for each
i ≥ k + 1, Si ∩Kn 6= ∅ for at most finitely many n ∈ N. By mathematical induction one
can find strictly increasing sequences {mi : i ∈ N} and {ti : i ∈ N} in N such that for
each i ∈ N:

Kmi
∩ Uk+ti

6= ∅; and if i > 1, then Km ∩ Sti−1+k = ∅ for every m ≥ mi.

Define ni = k + ti for each i ∈ N. Then the sequence {ni : i ∈ N} and the point p have
the properties required in the definition of sequentially feebly compact.

Next, we assume the hypothesis of (d) (ii) holds. Consider again the two cases
named above. The proof in Case 1 proceeds as above.

Assume Case 2 holds. Then as in Case 2 above, there are a cluster point q of U and
and k ∈ N so that for every integer n > k, the point q /∈ Un. Then the set T =

⋃
n≥k+1 Un

is not a closed set since q ∈ T \ T . Because X is a sequential space, it follows that there
exists a sequence {xn : n ∈ N} in T which converges to a point p ∈ X \ T . For each
integer n ≥ k +1, note that since p /∈ Un then xm ∈ Un for at most finitely many m ∈ N.
Thus, there are strictly increasing sequences {mi : i ∈ N} and {ti : i ∈ N} such that for
each i ∈ N, one has xmi

∈ cl(Uk+ti
). Therefore, the sequence {ni = k + ti : i ∈ N} and

point p satisfy the definition of sequentially feebly compact.
Statement (e) follows from Lemma 2.1, and statement (f) follows from the charac-

terizations in Theorem 1.1 and the appropriate definitions. �

The next result will be used in §5.

Corollary 2.3. Let X be a feebly compact space which has property (F3). Suppose
U = {Un : n ∈ N} is a sequence of nonempty open subsets of X such that Um ∩ Un = ∅
whenever m 6= n. Then there are a point p in X, an infinite subset J of N, and a sequence
of nonempty open sets P = {Pn : n ∈ J} such that Pn ⊆ Un for each n ∈ J , and for
every neighborhood O of p, O contains Pn for all but finitely many n ∈ J .
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Proof. This follows from the proof of Case 2 of statement (d) (i) in Theorem 2.2. �

Here are some examples illustrating that these properties are distinct.

Example 2.4. Let X be the one-point compactification of some uncountable discrete
space. Then X is a scattered, Fréchet, compact Hausdorff, and hence FCC, space (by
Theorem 2.2 (a) (iii)) which is not first countable (or E1).

Example 2.5. There exists a space X which is a countable, compact, maximal feebly
compact, and hence FCC, space which is not Hausdorff: in [16, 2.12] a proof is given that
a certain countable, non-Hausdorff, maximal compact space due to V.K. Balachandran
is also maximal feebly compact.

Example 2.6. Let X be any feebly compact Hausdorff space which contains a non-
isolated P -point p. Then X cannot have property (F3): if U = {Un : n ∈ N} were any
pairwise disjoint sequence of nonempty open subsets of X \ {p} and one chose, for each
n ∈ N, a nonempty open set Vn ⊆ Un with p /∈ Vn, then the sequence {Vn : n ∈ N} would
have a cluster point in X \ {p}, and hence U would also, i.e., X \ {p} would be feebly
compact. The next two spaces are of this type.

Example 2.7. Let X = ω1 + 1, the set of ordinals ≤ ω1, with the order topology.
The space X is a sequentially compact, and hence sequentially feebly compact, compact
Hausdorff space which does not have property (F3).

Example 2.8. Let T be the Tychonoff plank, T = (ω1 + 1) × (ω0 + 1) \ {(ω1, ω0)}.
Then T is a locally compact Hausdorff space that does not have property (F3) and is
not sequentially compact [5], [6]. Since T has a dense, sequentially compact subspace,
namely T \ {(ω1, α) : α < ω0}, it follows easily that T is sequentially feebly compact.

Example 2.9. Let βN be the Stone-Čech compactification of N, where N has the discrete
topology, and let X be any dense, pseudocompact subspace of βN. Then X is a feebly
compact Tychonoff space that is not sequentially feebly compact, and hence is not FCC:
it is well-known that no nontrivial sequence in βN is convergent [6], and so for any infinite
subset J of N and sequence U = {{j} : j ∈ J}, there would exist no point p ∈ X and
infinite subset K of J with every neighborhood of p containing all but finitely many of
the sets {{k} : k ∈ K}.

Example 2.10. Let X = N ∪ {−∞,∞}, where a subset T of X is defined to be open
iff T ⊆ N or X \ T is finite. Then X is a first countable, scattered, compact T1-space
satisfying property (F2), but none of (F1), (F3) and (F4).

The properties first countable, E1, Fréchet and sequential are well-known to be
closely related to one another. We shall give some examples illustrating further similari-
ties and, in some cases, differences between these properties and the properties FCC and
sequentially feebly compact. One such is the following familiar space.

Example 2.11. Let (X,S) be [0,1], with its usual topology, and let T be the topology
on X generated by S and the family of co-countable subsets of X. Then (X, T ) is an
FCC space which is E1, but not a sequential space. The latter follows from the fact that
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no infinite subset of (X, T ) is countably compact. It is also known that for every set
T ∈ T , clT T = clST , and consequently every open filter base on (X, T ) has an adherent
point. Thus (X, T ) has the stated properties.

Example 2.11 also illustrates the observation that for any FCC space (X,S), if T
is any feebly compact topology on X such that S ⊆ T , then (X, T ) is also FCC. More
generally, see Theorem 3.2 (d) below.

A previously defined family of spaces related to FCC spaces was studied in [11],
where M. Ismail and P. Nyikos called a space X C-closed if every countably compact
subspace of X is a closed subset of X. They proved that (a) a sequential Hausdorff space
is C-closed, and (b) a sequentially compact, C-closed Hausdorff space is a sequential
space. In their statement (b), if one replaces “sequentially compact, C-closed Hausdorff”
by “countably compact FCC,” then (as noted above in 2.2 (c)), one can replace their
conclusion by “Fréchet and sequentially compact.” The next result shows that in (a),
even for feebly compact symmetrizable spaces, one cannot replace “C-closed” by “FCC.”
(A space (X, T ) is called symmetrizable in the sense of A.V. Arhangel′skĭı if there exists
a symmetric d on X which induces T , where by a symmetric on X one means a function
d : X ×X → [0,∞) which vanishes exactly on the diagonal and satisfies the symmetric
property, d(x, y) = d(y, x) for all x, y ∈ X.)

Before stating the result, let us first recall that an almost disjoint (“AD”) family P
on a set X is a collection P ⊆ [X]ω such that P ∩P ′ is finite whenever P , P ′ are distinct
members of P. An AD family M on X (such that M ⊆ Q ⊆ [X]ω) is called a maximal
almost disjoint family (“MAD” family) (respectively, maximal almost disjoint subfamily
of Q) provided that M is properly contained in no AD family on X (respectively, no AD
subfamily of Q).

Theorem 2.12. There exists a symmetrizable (therefore, sequential), scattered, C-closed
Hausdorff space (X, T ) which contains a non-isolated point p such that X \ {p} is first
countable, locally compact, feebly compact and zero-dimensional, and hence X is sequen-
tially feebly compact and C-closed but not FCC.

Proof. Let Ψ be the Isbell-Mrówka space described in [6, 5I]: Let M be an infinite MAD
family on N and Ψ = N ∪ M, where a subset U of Ψ is defined to be open provided
that for any set M ∈ M, if M ∈ U then there is a finite subset F of M such that
{M}∪M \F ⊆ U . The space Ψ is then a first countable pseudocompact locally compact
Hausdorff space that is not countably compact [6]. List in a 1-1 manner as {Mn : n ∈ N}
the members of an infinite subset I of M, choose a point p /∈ Ψ, and define X = Ψ∪{p}.
Next, define d : X ×X → [0,∞) as follows: d(p, Mn) = d(Mn, p) = 1/n for each Mn ∈ I
and d(p, y) = d(y, p) = 1 for each y ∈ N ∪ (M \ I); for each n ∈ N and y ∈ Ψ \ {n},
d(n, y) = d(y, n) = 1/n whenever n ∈ y ∈ M, and d(n, y) = d(y, n) = 1 whenever either
y ∈ M with n /∈ y or y ∈ N \ {n}; and d(x, x) = 0 for all x ∈ X. Let T be the topology
induced on X by d, i.e., define T to be the collection of all subsets T of X such that for
each point t ∈ T there exists ε > 0 such that T contains the “ball” {x ∈ X : d(t, x) < ε}.

It is straightforward to show that d is a symmetric for the space (X, T ), and (X, T )
has the stated properties. Furthermore, it is known and not difficult to prove that every
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symmetrizable space is sequential. �

Example 2.13. If one lets X be as in the proof above, but weakens the topology T
on X by choosing the topology S for which (X,S) is the one-point compactification
of Ψ, then it was noted in [12] that Eric van Douwen and Peter Nyikos had noticed
previously the resulting compact Hausdorff space (X,S) was sequential but not Fréchet.
Like (X, T ), the space (X,S) is not FCC, and since Ψ ∈ S, these spaces do not even
have the property (F3). Since every symmetrizable compact Hausdorff space is known
to be metrizable, and every scattered Fréchet feebly compact space is FCC, then S 6= T
and (X, T ) is not Fréchet either. While (X, T ) fails to be countably compact, the space
(X,S) is known to be sequentially compact and C-closed.

It is natural to ask if the word “scattered” can be removed from the statement in
Theorem 2.2 (a) (iii). In [9] a very nice proof was given that, assuming [MA], there exists
a compact Hausdorff Fréchet space which is not FCC.

The next result, which does not require any special axioms beyond ZFC, shows
that there is a compact Hausdorff Fréchet space X which is not FCC. Its proof is an
elaboration on one due to Reznichenko that was outlined in 3.6 of [12]. The authors are
grateful to Peter Nyikos for calling Reznichenko’s space to our attention. In addition,
we shall show that X can be used to construct a compact Hausdorff and Fréchet space
A(X) which is not FCC, but which has property (F3) and also has a dense set of isolated
points.

Theorem 2.14. There is a compact Hausdorff Fréchet space which is not FCC.

Proof. Let κ denote the cardinality of continuum.
We first define a compact 0-dimensional Fréchet topology on T = κ≤ω, i.e., T

consists of the functions into κ which have domain either a nonnegative integer or the
entire set of nonnegative integers.

For any t ∈ κ<ω and α ∈ κ, we will let tα denote the function obtained by extending
the domain of t by one and setting the final value to α. For n ∈ ω and t : n → κ, we
occasionally denote t by 〈t0, . . . , tn−1〉.

Recall that T forms a tree when ordered by simple inclusion, i.e., for s, t ∈ T , s ⊆ t
if dom(s) ≤ dom(t) and s = t � dom(s). Now T is endowed with the following topology.
Simply for each s ∈ κ<ω, the set

[s] = {t ∈ T : s ⊆ t}

is defined to be clopen. Thus a neighborhood basis for s ∈ κ<ω is the family

{[s] \
⋃
i<n

[sαi] : n ∈ ω and α0 < α1 < · · · < αn−1 < κ} .

Furthermore, for f ∈ T ∩ κω, the family {[f � n] : n ∈ ω} forms a neighborhood
base at f , and hence each such f is a point of countable character in T .

We leave as an exercise that T is compact, and thus for each s ∈ κ<ω, the clopen set
[s] is compact. One can note that {[sα] : α ∈ κ}, is a pairwise-disjoint family of clopen
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sets, and [s] is the one-point compactification of
⋃
{[sα] : α ∈ κ}. It follows easily then

that T is a Fréchet space.
Next, for each n ∈ ω, let Tn denote the clopen set [〈n〉], i.e., all functions t ∈ T

such that t(0) = n. We will construct a compactification, X, of
⋃

n Tn.
Our base space for X will be

⋃
n Tn ∪ κ ∪ {∞}. We will define a locally compact

topology on
⋃

n Tn ∪ κ in which
⋃

n Tn with the above topology is open and dense, and
X will just be the one-point compactification. We will work to ensure that X \ {∞} is
feebly compact, thus ensuring that X is not FCC.

For each α ∈ κ, we will select a sequence 〈tαn : n ∈ ω〉 such that for each n, tαn is a
member of Tn ∩ κ<ω and α is in its range. The neighborhood basis for α will be

{U(α, n) = {α} ∪
⋃
n<k

[tαk ] : n ∈ ω},

and hence α will be the point at infinity in the one-point compactification of the union
of the sequence of clopen sets {[tαk ] : k ∈ ω}.

In order to ensure that the space is Hausdorff we will make sure that for β < α < κ,
there will be an n such that U(β, n)∩U(α, n) is empty. This is equivalent to requiring that
for each m larger than this n, [tβm] and [tαm] are disjoint, i.e., tβm and tαm are incomparable
members of T (or Tm).

The sequences are chosen by induction on κ. In order to ensure that X \ {∞} is
feebly compact, it suffices for us to require that for every infinite set I ⊂ ω and every
sequence {sn : n ∈ I} such that sn ∈ Tn ∩ (κ<ω) for n ∈ I, there is an α ∈ κ such
that α is a cluster point of the sequence of clopen sets {[sn] : n ∈ I}. To do so, let
{{sα

n : n ∈ Iα} : α ∈ κ} enumerate the family of all such sequences.
The selection of the sequence {t0n : n ∈ ω} is handled the same as that for any

α. That is, assume that α < κ and that for each β < α we have chosen the sequence
{tβn : n ∈ ω} as described above (so that tβn ∈ Tn and β is in the range of tβn). We
therefore have defined, as above, a topology on the space Xα =

⋃
n Tn∪{β : β < α} with

the neighborhood base {U(β, n) : n ∈ ω} for each β < α.
Fix any γ < κ so large that for each β < α and n ∈ ω, γ is not in the range of tβn.

Observe that the sequence {[〈n, γ〉] : n ∈ ω} is a discrete sequence of clopen sets in the
space Xα. In fact, for each β < α, U(β, 0) is disjoint from each member of the sequence.
If the sequence {[sα

n] : n ∈ Iα} already has a cluster point in the space Xα, we define tαn
to be 〈n, γ, α〉 for each n. Otherwise, the sequence {[sα

n] : n ∈ Iα} is also discrete (hence
each U(β, 0) meets only finitely many of these sets), and we define tαn to be sα

n α for each
n ∈ Iα and set tαn = 〈n, γ, α〉 for n /∈ Iα. It follows easily that for each β < α, there is an
n such that U(β, n) ∩ U(α, 0) is empty.

This completes our construction of the space. It should be clear that the space
Xκ =

⋃
{Xα : α < κ} is locally compact, Hausdorff and feebly compact. Furthermore,

Xκ is easily seen to be Fréchet, for Xκ is first countable at each α ∈ κ, and its open
subspace Xκ \ κ =

⋃
n Tn is also a subspace of the Fréchet space T and hence is Fréchet.

To finish the proof, we verify that the one-point compactification X = Xκ ∪ {∞} of Xκ

is Fréchet.
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Assume that Y ⊆ Xκ does not have compact closure in Xκ. We wish to show that
there is a sequence {yn : n ∈ ω} ⊆ Y which converges to ∞. Since {α : α ∈ κ} is a
closed discrete subset of Xκ, we may assume that Y is contained in

⋃
n Tn. Two cases

are considered.
Case 1: Suppose Y has only finitely many limit points in κ. Then one may intersect

Y with a neighborhood of ∞ which does not have any of those points in its closure, and
obtain a subset Y ′ of Y which still has ∞ in its closure but has no limit points in κ. Any
sequence {yn : n ∈ ω} ⊆ Y ′ such that yn ∈ Y ′ \

⋃
k<n Tk will have no cluster point in Xκ

and hence will converge to ∞.
Case 2: Suppose there is an infinite countable set A ⊂ κ which is contained in the

closure of Y . Since Xκ is Fréchet and A is countable, there is a countable Y ′ ⊆ Y whose
closure contains A. It is easily seen that one can also assume Y ′ ∩ Tn is finite for each
n. Since each member of Y is really a function with range contained in κ, we can let B
denote the set of all β ∈ κ such that β is in the range of some member y of Y ′. If γ is
any member of κ \ B, we claim that U(γ, 0) ∩ Y ′ is empty. Indeed, if y ∈ Y ′ ∩ U(γ, 0),
then there is an n such that y ∈ [tγn], from which it follows that tγn ⊆ y. However, γ is in
the range of tγn but not in the range of y, a contradiction. It follows now that the closure
of Y ′ in Xκ is a countable non-compact set and therefore is not feebly compact. Thus its
dense subspace Y ′ contains a sequence having no cluster point in Xκ, and that sequence
must converge to ∞. �

Before presenting the last example of this section, a lemma is needed.

Lemma 2.15. If X is Fréchet and Hausdorff, then the Alexandroff double, A(X), is
Fréchet and Hausdorff, and A(X) has property (F3).

Proof. It suffices to prove that the double of a Fréchet space is Fréchet (which is probably
well-known), for by Lemma 2.1 (e) we already know that a Fréchet Hausdorff space
with a dense set of isolated points has property (F3), and it is well-known that the
double of a Hausdorff space is Hausdorff. But let us check. Let A(X) be the usual
X×{0, 1} with X×{0} open and discrete, and neighborhood base for (x, 1) be the usual
(U×{0, 1})\{(x, 0)} for open U ⊆ X containing x. If (x, 1) is in the closure of A ⊆ A(X)
then clearly there is a subsequence of A converging to (x, 1) if (x, 1) is in the closure of
A ∩ (X × {1}) since this subspace is homeomorphic to X. But just as easily we see that
if A ⊆ X × {0}, then there is some A′ ⊆ X such that A = A′ × {0} and x is a limit of
A′. Any subsequence of A′ which converges to x will yield a corresponding subsequence
of A which converges to (x, 1). �

Theorem 2.16. There is a compact Hausdorff Fréchet space which is not FCC, but
which has a dense set of isolated points and hence has property (F3).

Proof. Just take the space X as constructed in 2.14 and apply 2.15 on A(X). �

3. Subspaces and images.
We consider next whether these properties are or can be inherited by subspaces, or

preserved or reflected by continuous maps.
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Some inheritance results hold that are analogous to the well-known ones concerning
feeble, countable or sequential compactness. These are stated next.

Theorem 3.1. Let X be a topological space.
(a) If X is FCC and A is a feebly compact subspace of X, then A is FCC.
(b) If X is FCC (respectively, sequentially feebly compact) and A is an open subset

of X, then A is FCC (respectively, sequentially feebly compact).
(c) If X has a dense, sequentially feebly compact subspace, then X is sequentially

feebly compact.

The Tychonoff plank witnesses that sequential feeble compactness, as well as feeble
compactness, is not closed hereditary. If every countable closed subset of a space X is
pseudocompact (and the space X is T1), then every countably infinite subset of X has a
limit point (and X is countably compact).

Before stating some mapping theorems, we recall that a mapping f : X → Y is
called Z-closed (closed) provided that for every zero-set F (closed subset F ) of X, f(F )
is a closed subset of Y . In case a mapping f : X → Y satisfies f(F ) is a proper closed
subset of Y for every proper closed subset F of X, then f is called irreducible. A closed
mapping f : X → Y is called perfect (quasi-perfect) provided that for every point y ∈ Y ,
the fiber f−1(y) is compact (countably compact).

Some known theorems are these ([5], [20]): (a) if f ∈ C(X, Y ) and X is feebly
compact (respectively, sequentially compact, countably compact) then so is f(X); (b) if
f : X → Y is a closed mapping, and Y and each f−1(y), y ∈ Y , are countably compact,
then X is countably compact; and (c) if f is a Z-closed open mapping of a Tychonoff
space X onto a Tychonoff space Y , and if Y and each f−1(y), y ∈ Y , are pseudocompact,
then so is X. The following also hold.

Theorem 3.2. Let X and Y be topological spaces and f : X → Y a mapping.
(a) If f ∈ C(X, Y ) and X is sequentially feebly compact, then f(X) is sequentially

feebly compact.
(b) If f is an open and Z-closed mapping of X onto Y , and Y and each fiber f−1(y),

y ∈ Y , are pseudocompact, then X is pseudocompact.
(c) If f is an irreducible quasi-perfect mapping of X onto Y , and Y is feebly compact,

then X is feebly compact.
(d) If f is a perfect mapping of X onto Y , and every feebly compact subspace of X is

a closed subset of X, then every feebly compact subspace of Y is a closed subset
of Y .

(e) If X is FCC and f ∈ C(X, Y ) is a perfect mapping of X onto Y , then Y is FCC.
(f) If X is feebly compact and semiregular, Y is FCC, and f ∈ C(X, Y ) is a bijection,

then f is a homeomorphism.

Proof. The proof of (a) is immediate. To verify (b), one can use a Urysohn’s lemma-type
of argument similar to the proof that establishes (b) for Tychonoff spaces.

(c). Suppose that the hypotheses in (c) hold. By Theorem 1.1, it suffices for us to
prove that every countable open cover U of X has a finite subcollection whose union is
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dense in X. Let U be a countable open cover of X such that for every finite subcollection
G of U ,

⋃
G ∈ U . Then, by the countable compactness of each fiber f−1(y), it follows that

for each y ∈ Y , there exists U ∈ U such that f−1(y) ⊆ U . Hence {Y \f(X\U) : U ∈ U} is
a countable open cover of Y . By the feeble compactness of Y , there is a finite subcollection
{Ui : i = 1, . . . , n} such that Y =

⋃n
i=1 Y \ f(X \ Ui). Let W =

⋃n
i=1 f−1(Y \f(X \Ui)).

Since f is closed, f(W ) ⊇ f(W ). Because f is onto, f(W ) =
⋃n

i=1 Y \ f(X \ Ui). Thus
f(W ) =

⋃n
i=1 Y \ f(X \ Ui) = Y . As f is irreducible, the latter implies X = W . Since

each f−1(Y \ f(X \ Ui)) ⊆ Ui, then X =
⋃n

i=1 Ui.
(d). Suppose the hypothesis of (d) holds and S is a feebly compact subspace of Y .

Then f |f−1(S) : f−1(S) → S is a perfect surjection (e.g., see [15, 1.8 (f) (2)]). By Zorn’s
lemma [15, 6.5 (c)], there is a closed subset A of the space f−1(S) such that f |A : A → S
is a perfect irreducible surjection. Thus by (c) above, A is feebly compact. Therefore, A
is a closed subset of X, and since f is a closed mapping, then S = f(A) must be a closed
subset of Y .

(e). This is an immediate consequence of (d) and the fact that feeble compactness
is preserved by continuous mappings.

(f). Suppose the hypothesis holds and F is any closed subset of the space X. By the
semiregularity of X, the family R of regular closed subsets of X which contain F satisfies
F =

⋂
R. Each set R ∈ R is a feebly compact subspace of X by Corollary 1.2 (b). Thus

the continuous image f(R) of each such R under the mapping f is a feebly compact,
hence closed, subset of the space Y . As f is one-to-one, f(F ) =

⋂
{f(R) : R ∈ R}, and

hence f(F ) is a closed subset of Y . Therefore, f is a homeomorphism. �

One interesting corollary to 3.2 (f) is the following.

Corollary 3.3. Let S and T be topologies on a set X such that (X, T ) is a feebly compact
semiregular space, (X,S) is FCC, and S ⊆ T . Then T = S.

The next example illustrates that the condition “irreducible” cannot be removed
from the hypothesis of (c) in Theorem 3.2.

Example 3.4. Let Ψ be the Isbell-Mrówka space described in the proof of Theorem
2.12. Let N− be the set of the negative integers, with the discrete topology, and let X
be the discrete union of Ψ and N−. List in a 1-1 manner as {Mn : n ∈ N} the members
of an infinite subset of M, and define f : X → Ψ by the rule: f(x) = x if x ∈ Ψ, and
f(x) = M−x if x ∈ N−. Then X is not pseudocompact, Ψ is FCC, and f : X → Ψ is a
closed, continuous map of X onto Ψ, each of whose fibers is finite.

Example 3.5. This example shows that if f : X → Y is a perfect continuous surjection
and Y is FCC, then X need not be FCC. Moreover, it shows that if Y is a first countable
compact Hausdorff (hence sequentially compact) space, and f is an irreducible, perfect
continuous surjection, then X need not be sequentially feebly compact. Let X = βN and
Y = N∞ be the one-point compactification of N, where N has the discrete topology. Let
f be the Čech mapping in C(βN, N∞) which extends the identity mapping on N. Then
Y has the stated properties, and as noted in Example 2.9, βN is not sequentially feebly
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compact. It follows from 6.11 of [6] that f(βN \ N) = {∞}, and hence f is irreducible,
as well as perfect.

4. Product spaces.
In [8] and [20] it was shown that a number of the properties considered there are

well behaved in the formation of feebly compact product spaces, namely: sequentially
compact; feebly compact and first countable; and feebly compact and locally compact.
We shall show that the property sequentially feebly compact likewise is well behaved in
the formation of feebly compact product spaces. As was done in [8] and [20] for the
product theorem proofs presented in those articles, in several proof outlines below there
will be no loss of generality for us to assume that the sets in Theorem 1.1 (B3) are the
standard basic open sets for the product topology.

Theorem 4.1. The property sequentially feebly compact is productive.

Proof. Let X =
∏

a∈A Xa be a product of sequentially feebly compact spaces. Let U =
{Un : n ∈ N} be a sequence of nonempty basic open sets of X.

The set R = {a ∈ A : pra(Un) 6= Xa, for some n ∈ N} of restricted coordinates
of the members of U is countable. Choose the smallest ordinal number λ such that
λ = |R|. For notational simplicity, and with no loss of generality, we may assume that
R = {α : α < λ} and R 6= ∅. Since each factor space is sequentially feebly compact,
we may use mathematical induction and choose points {pα ∈ Xα : α < λ} and infinite
subsets {Iα ⊆ N : α < λ} such that: whenever α < γ < λ then Iα ⊇ Iγ ; and for each
α < λ and neighborhood V of pα, V ∩ prα(Un) 6= ∅ for all but finitely many n ∈ Iα. For
each a ∈ A \R, choose one point pa ∈ Xa.

Next, we define an infinite set I ⊆ N as follows: if λ is finite, set I = Iλ−1; if λ = ω0,
then select an infinite subset I of N such that for each α < λ, I \ Iα is finite. In either
case, let {ni : i ∈ N} be a strictly increasing mapping of N onto I.

Then for every neighborhood V of p in X, V ∩ Uni
6= ∅ for all but finitely many

i ∈ N. Therefore, X is sequentially feebly compact. �

The next theorem extends an analogous theorem obtained by A.H. Stone for first
countable spaces—see [20]. First a lemma is given.

Lemma 4.2. Suppose that X is sequentially feebly compact and Y is feebly compact.
Then X × Y is feebly compact.

Proof. Let U = {Un×Wn : n ∈ N} be a sequence of nonempty open sets in X×Y . Since
X is sequentially feebly compact, there exist p ∈ X and a strictly increasing sequence
{ni : i ∈ N} in N such that for every neighborhood V of p, V ∩Uni 6= ∅ for all but finitely
many i ∈ N. Since Y is feebly compact, the sequence {Wni

: i ∈ N} has a cluster point
q ∈ Y . Then (p, q) is a cluster point of {Uni

×Wni
: i ∈ N} and hence also of U . �

Theorem 4.3. Every product of feebly compact spaces, all but one of which are sequen-
tially feebly compact, is feebly compact.

Since every FCC space is sequentially feebly compact, and every pseudocompact
completely regular space is feebly compact, there are applications of the preceding prod-
uct results to FCC spaces and pseudocompact completely regular spaces.
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Because each factor of a product space is a continuous image of the product space
and is homeomorphic to a subspace of the product space, the next result follows from
Theorem 3.2 (a).

Theorem 4.4. If a product space X is FCC (respectively, sequentially feebly compact),
then so is every factor space of X.

We consider next what can be said about products of FCC spaces. One obvious
consequence of Theorem 2.2 (a) is the following.

Theorem 4.5. Let X =
∏

a∈A Xa be a product of FCC spaces.
(a) If A is countable and for each a ∈ A, Xa is an E1-space, then X is FCC.
(b) If A is finite, X is Fréchet, and for each a ∈ A, Xa is Hausdorff and scattered,

then X is FCC.

A simple example, however, shows that in general X =
∏

a∈A Xa is never FCC if
|A| ≥ ℵ1.

Example 4.6. Let A be any set with |A| ≥ ℵ1, D = {0, 1} have the discrete topology,
and X be the product space DA. Let C be the Corson Σ-subspace of X based at 0, i.e.,
let C = {x ∈ X : xa = 0 for all but countably many a ∈ A}. Then X is a product of
first countable compact Hausdorff spaces. But it is straightforward to show (and known)
that C is a countably compact, proper dense subspace of X. Therefore, X is not FCC.

Corollary 4.7. Let X =
∏

a∈A Xa, where |A| ≥ ℵ1, and for each a ∈ A, |Xa| ≥ 2. Then
X is not FCC.

Example 4.8. Let A, D and X be as in Example 4.6, but require that |A| ≥ 2ℵ0 . Then
the product space X is sequentially feebly compact by Theorem 4.1. As noted above, it
is not FCC. In [20] a proof was given that X fails to be sequentially compact.

While Example 4.6 does not answer the question as to whether or not the property
FCC is countably productive, one can use theorems of V.I. Malykhin and a theorem of
P. Simon (see [21]) to do so. It is shown below that there exist two FCC spaces whose
product is not FCC, and furthermore each of those spaces can be chosen to be compact,
Fréchet, scattered and Hausdorff. In order to develop this answer, some terminology
and notation to be used are given next.

Let P be an AD family on N. As in [21], we shall define F(P) to be the space
previously introduced by S.P. Franklin, the set N∪P∪{∞}, where∞ /∈ N∪P, topologized
as follows: each n ∈ N is isolated; a basic open neighborhood of a point P ∈ P is {P}∪C,
where C is any cofinite subset of P ; and F(P) is the one-point compactification of N∪P.
The family P will be called nowhere infinitely MAD provided that for every infinite subset
X of N, the set {X ∩P : X ∩P is infinite and P ∈ P} fails to be an infinite MAD family
on X. Note that a MAD family (say on N) is always a MAD family when restricted to
a cofinite subset of N.

In [21] Simon attributed to Malykhin two results which can be stated as follows.
The space F(P) is Fréchet iff P is nowhere infinitely MAD. If P = P1 ∪ P2 is AD on
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N and P1 ∩ P2 = ∅, then the product space F(P1) × F(P2) is not Fréchet iff P is not
nowhere infinitely MAD. Then Simon proved that there exists an infinite MAD family
P on N having a partition P = P0 ∪ P1 such that for each i, i = 0, 1, Pi is nowhere
infinitely MAD. We shall call such a partitioned family a Simon MAD family. Simon used
his theorem to prove that the product of two Fréchet compact Hausdorff spaces need not
be Fréchet. By Tanaka’s theorem (Theorem 2.2 (c) above), such a product would then
not be FCC. Moreover, one can prove the following.

Theorem 4.9. Let P = P0 ∪P1 be a Simon MAD family. Then the compact Hausdorff
Fréchet spaces F(Pi), i = 0, 1, are scattered and hence are FCC spaces, but their product
F(P0)×F(P1) does not have property (F3).

Proof. Obviously any Franklin space is scattered, so each F(Pi) is FCC by Theorem 2.2
(a) (iii). The proof that F(P0) × F(P1) does not have property (F3) is similar to the
proof that this space is not Fréchet. Let D = {(n, n) : n ∈ N}. We show that (i) the
point p = (∞0,∞1) is in D and (ii) the set F = D \ {p} is feebly compact.

(i). Let U0×U1 be a basic open neighborhood of p. For each i, i = 0, 1, F(Pi)\Ui is
compact, and so there exist a finite subset Ni of the closed discrete subset Pi of the space
F(Pi)\{∞i} and finite subsets Ci and Ni of N such that F(Pi)\Ui ⊆ Ni∪((

⋃
Ni)\Ni)∪

Ci. Choose any set P ∈ P \ (N0 ∪ N1), which we may do since P is infinite. Because P
is AD, some cofinite subset C of P satisfies C ∩ (Ni ∪ ((

⋃
Ni) \Ni)∪Ci) = ∅ for i = 0, 1.

Thus C ⊆ U0 ∩U1, and so for any n ∈ C, (n, n) ∈ U0×U1. Therefore D∩ (U0×U1) 6= ∅.
(ii). Since each point of D is isolated and D is dense in F , it suffices to prove that

every infinite subset of D has a limit point in (F(P0)×F(P1))\{p}. Let I be an infinite
subset of D. Define X = {n ∈ N : (n, n) ∈ I}. Since P is MAD, there exists P ∈ P such
that X ∩ P is infinite. Then every neighborhood of the point P contains all but finitely
many integers in X ∩ P . Either P ∈ P0 or P ∈ P1. Suppose P ∈ P0. Since F(P1) is
compact, the infinite set X ∩ P has a limit point y ∈ F(P1). Thus the point (P, y) is a
limit point of I. (In fact, since P /∈ P1, one can show that y = ∞1, and any 1-1 listing
of the members of {(n, n) ∈ I : n ∈ X ∩ P} defines a sequence in D which converges to
(P,∞1).) �

Corollary 4.10. There exists a compact Hausdorff, scattered, Fréchet, and hence FCC,
space X whose product with itself, X2, does not have property (F3).

Proof. Let X be the discrete union of the spaces F(P0) and F(P1) in Theorem 4.9.

5. Extension spaces.
A space E is called an extension space of a space X if X is a dense subspace of E.

We wish to examine necessary and sufficient conditions that a space X have an FCC or
sequentially feebly compact extension space E, where E may be required to have other
properties, such as complete regularity. Some embedding theorems will be given, and it
will be shown that there exist Moore spaces, neither of which has a regular FCC extension
space, and one of which is separable and has no regular sequentially feebly compact T1-
extension space. A feebly compact extension space E of a space X is sometimes called a
feeble compactification of X.



16 ALAN DOW, JACK R. PORTER, R.M. STEPHENSON, JR., AND R. GRANT WOODS

The following links some of these concepts and maximal and minimal P-spaces (for
various properties P) and shows that: as far as the underlying sets are concerned, an
FCC extension space of a space X is a minimal feeble compactification of X; and from
the point of view of topological properties, a semiregular FCC extension space E of a
space X is minimal with respect to being an FCC extension space of X and is maximal
with respect to being a semiregular feeble compactification of X.

Theorem 5.1. Let (X,U) be a space, and suppose (E,S) and (G, T ) are feeble compact-
ifications of (X,U) such that (E,S) is FCC, where X ⊆ G ⊆ E and S|G ⊆ T . Then the
following hold.

(a) G = E.
(b) If (G, T ) is semiregular then T = S.

Proof. For statement (a), note that because (G,S|G) is a continuous image of (G, T ), the
space (G,S|G) is feebly compact, and hence G is a closed subset of (E,S). But X ⊆ G,
and so G is a dense subset of (E,S). Thus G = E. Statement (b) follows from (a) and
Corollary 3.3.

Before stating the next result, some notation and terminology is needed. Recall
that a filter base F on a space is called free iff the adherence of F is empty. Given a
space X and a family M of free open filter bases on X, we shall denote by XM the set
X ∪M, topologized as follows: a set G ⊆ XM is defined to be open iff (i) G∩X is open
in X, and (ii) if F ∈ G ∩M then G ∩X contains some member of F . For a space Y, we
shall denote by sY the semiregularization of Y , the semiregular space whose points are
the same as those of Y , and whose topology has as a base the regular open subsets of Y
(for a derivation of properties of sY , see [15]).

Theorem 5.2. Let X be a topological space and M a maximal family of countable, free,
open filter bases on X such that whenever F and G are distinct members of M then there
exist F ∈ F and G ∈ G such that F ∩ G = ∅. Then the following hold.

(a) X is a dense open subspace of XM, XM is a feeble compactification of X, and
each point of XM \X is of countable character in XM and is an E1-point of XM,
i.e., is an intersection of countably many of its closed neighborhoods.

(b) If X ⊆ G ⊆ XM is feebly compact then G = XM.
(c) The space X is sequential (Fréchet, first countable, Hausdorff) iff XM has the

same property, and in case X is sequential (first countable and Hausdorff), then
XM is sequentially feebly compact (first countable and Hausdorff, and hence
FCC).

(d) X is semiregular and first countable iff sXM is a semiregular first countable
extension space of X, and in this case, sXM is FCC if X is Hausdorff.

(e) If X is scattered (has a dense set of isolated points), Fréchet and Hausdorff, then
XM is FCC (has property (F3)).

The proof of 5.2 is straightforward, and some of its statements are similar to known
results: (a), (b) and (d) are extensions of results in [23]; the last statement in (c) follows
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from 2.2 (d) and the preceding statements in (c), each of which is a special case of a
known result.

If one seeks conditions on a space X that it have an FCC extension space having
other desirable properties, such as regular, completely regular, zero-dimensional or Moore,
some results obtained previously that have applications to these questions are the next
four theorems.

Theorem 5.3.

(a) ([24]) Every locally feebly compact, first countable zero-dimensional T1-space has
a feebly compact, first countable zero-dimensional T1-extension space.

(b) ([18]) Every locally compact Moore space which is zero-dimensional at each point
of a countable dense subset has a locally compact, feebly compact Moore extension
space.

Theorem 5.4. ([27])
(a) Every locally pseudocompact (locally compact), first countable Tychonoff space X

has a pseudocompact, first countable Tychonoff extension space E such that E is
locally compact if X is.

(b) Every metrizable space has a pseudocompact first countable Tychonoff extension
space.

Theorem 5.5. ([13]) Let X be a separable, locally pseudocompact Tychonoff (locally
compact) Moore space. Then X can be embedded densely in a pseudocompact Tychonoff
(locally compact) Moore space.

Theorem 5.6. ([22])
(a) Every locally feebly compact regular T1-space X can be embedded as an open dense

subspace in a feebly compact regular T1-space Y which is first countable at every
point of Y \X.

(b) Every separable, locally feebly compact (locally pseudocompact, Tychonoff) Moore
space embeds as an open dense set in a feebly compact (pseudocompact Tychonoff)
Moore space.

Theorems 5.5 and 5.6 answered questions raised in [17], [18] and [24] (While made
available to others, Theorem 5.5 and its proof have not been published yet by P. Nyikos.)
Simon and Tironi’s very nice Theorem 5.6 (a) implies that every first countable, locally
feebly compact, regular T1-space has a feebly compact, first countable, regular T1, and
hence FCC, extension space.

Remark 5.7. For converse properties, we make some observations. If a space X has
an FCC extension space E, then X must have property (F1), and if X is locally feebly
compact then it is an open subset of E. If X is an open subspace of some feebly compact
regular space (some space having property (F3)), then X is locally feebly compact (has
property (F3)). As noted in [25] (see also [19]), every dense subspace of a feebly compact
Moore space is separable and has a dense metrizable subspace.
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An example due to T. Terada and J. Terasawa (which was a modification of an ex-
ample due to E. van Douwen and T.C. Przymusiński) was given in [27] to prove that there
is a first countable zero-dimensional Čech-complete T1-space which has no first count-
able, feebly compact, regular T1-extension space. In [25] the Terada-Terasawa example
was modified and used to obtain the following result: There is a first countable, feebly
compact zero-dimensional T1-space which has no Urysohn, feebly compact, sequential
extension space. (Recall that a space X is said to be Urysohn provided that every pair of
distinct points of X can be separated by disjoint closed neighborhoods of those points.)
We show next that this example can be used to establish the following.

Theorem 5.8. There exists a zero-dimensional separable Moore space Y such that Y has
no Urysohn, sequentially feebly compact extension space, and hence Y has no Urysohn,
FCC extension space.

Proof. We refer the reader to the proof on page 24 of [25]. Let Y be the space described
there, and assume X is any sequentially feebly compact extension space of Y . One can
replace the fourth–sixth sentences of the last paragraph on that page by the sentence:
“Since X is sequentially feebly compact, the sequence U = {{(n, i)} : i ∈ In} has as-
sociated with it an infinite subset Jn of In and a cluster point xn of U such that every
neighborhood V of xn contains all but finitely many of the sets in {{(n, i)} : i ∈ Jn}.”
Then one can use the rest of that proof to show that X cannot be a Urysohn space. �

In Theorem 4.1 of [2] Murray Bell showed that if C is the Cantor set, F [C] is the
set of all finite subsets of C, and T is the Pixley-Roy topology on F [C], then (F [C], T )
has no first countable pseudocompact Tychonoff extension space. We show next how to
modify his proof and strengthen his theorem. Due to the complexity of his proof and
for the convenience of the reader, we give a self-contained extension of it, rather than
just a fragmentary presentation of the changes needed. First let us recall that if U is
the algebra of clopen subsets of C, and for each G ∈ F [C] and U ∈ U with G ⊆ U
one defines [G, U ] = {H ∈ F [C] : G ⊆ H ⊆ U}, then T has as a base the family
C = {[G, U ] : G ∈ F [C], G ⊆ U and U ∈ U}, and each member of C is a clopen subset
of (F [C], T ). It is known ([4]) that (F [C], T ) is a zero-dimensional, ccc, non-separable
Moore space.

Theorem 5.9. The Pixley-Roy space (F [C], T ) has no regular T1 feeble compactification
that has property (F3), and hence (F [C], T ) has no extension space that is FCC and
regular.

Proof. Assume that (F [C], T ) is a dense subspace of an FCC, regular space X. We
will construct by induction, a decreasing sequence of Cantor sets {Kn : n ∈ N} and a
decreasing sequence of clopen sets {Bn : n ∈ N} with these properties for each n ∈ N:

(1) Bn ⊇ Kn and diam(Bn) <
1
n

; and

(2) there are a point sn ∈
⋂
{clX [{p}, Bn] : p ∈ Kn} and a sequence {Gn

k : k ∈ N}
of points of F [C] converging to sn with the property that Kn

⋂
(
⋃
{Gn

k : k ∈ N}) = ∅.
Assuming the existence of {Kn, Bn, sn, Gn

k : n, k ∈ N} with properties (1) and (2), a
contradiction follows quickly. Let p ∈

⋂
{Kn : n ∈ N} and R = intXclX([{p}, B1]). Note
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that R ∩ F [C] = [{p}, B1] and {p} ∈ R. Since {clX [{p}, Bn] : n ∈ N} is a neighborhood
base for {p} in X, there is some n ∈ N such that clX [{p}, Bn] ⊆ R. By (2), sn ∈ R and
there is some k ∈ N such that Gn

k ∈ R. But p ∈ Gn
k since Gn

k ∈ R ∩ F [C] = [{p}, B1], a
contradiction as Kn ∩Gn

k = ∅ by (2).
The inductive step goes as follows (the first step is similar). Choose a Cantor

set K ⊆ Kn and a clopen Bn+1 with K ⊆ Bn+1 and the diameter of Bn+1 less than
1/(n + 1). Choose a sequence 〈Fk : k < ω〉 of finite subsets of K that strictly increase
up to a dense subset of K. Define Vk = [Fk, Bn+1] \ [Fk+1, B

n+1] for each k < ω. Since
{Vk : k < ω} is a pairwise disjoint family of nonempty open subsets of the dense subset
F [C] of the T3-space X, there exists a sequence U = {Uk : k < ω} of nonempty open
subsets of X whose closures in X are pairwise disjoint, and which satisfy Uk ∩F [C] ⊆ Vk

for each k < ω. It follows from our Corollary 2.3 that there exist a point sn+1 of X,
an infinite subset J of ω, and a sequence P = {Pk : k ∈ J} of nonempty open subsets
of F [C] such that Pk ⊆ Uk for each k ∈ J , and every neighborhood of sn+1 contains
all but finitely many sets in P. For each k ∈ J , choose [Gn+1

k ,Wk] ⊆ Pk. Since the
Fk’s increase to a dense subset of K and each Fk is contained in the clopen set Wk,
there exists an infinite A ⊆ J such that K ∩

⋂
k∈A Wk contains a Cantor set K ′. Since⋃

k∈A Gn+1
k is countable there exists a Cantor set Kn+1 ⊆ K ′ with Kn+1∩

⋃
k∈A Gn+1

k =
∅. The sequence {Gn+1

k : k ∈ A} converges to sn+1. If O is any neighborhood of
sn+1 then for some k ∈ A, Pk ⊆ O. Consider any p ∈ Kn+1. One has p ∈ Wk and
Gn+1

k ⊆ Bn+1. Hence [{p}, Bn+1] ∩ [Gn+1
k ,Wk] 6= ∅ and so [{p}, Bn+1] ∩ O 6= ∅. Thus

sn+1 ∈ clX([{p}, Bn+1]). �

We conclude by asking a question similar to one raised several years ago by M.V.
Matveev. Let us call a feeble compactification E of a space X a minimal feeble com-
pactification of X provided that for every point p ∈ E \X, the space E \ {p} fails to be
feebly compact. In each of Theorems 5.2–5.7, the feeble compactifications obtained for
the given space are minimal feeble compactifications.

Question. If P denotes one of the properties Urysohn, regular T1, or Tychonoff, does
every P-space have a P, minimal feeble compactification?

Finally, we thank the referee for very good and helpful suggestions, all of which
have been followed.
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