
HEREDITARILY NORMAL MANIFOLDS OF
DIMENSION GREATER THAN ONE MAY ALL BE

METRIZABLE

ALAN DOW1 AND FRANKLIN D. TALL2

Abstract. P. J. Nyikos has asked whether it is consistent that
every hereditarily normal manifold of dimension greater than one
is metrizable, and proved it is if one assumes the consistency of
a supercompact cardinal, and, in addition, that the manifolds are
hereditarily collectionwise Hausdorff. We are able to omit these
extra assumptions.

1. Nyikos’ Manifold Problem

For us, a manifold is a locally Euclidean topological space in which
every non-empty open set has the same dimension. Lindelöf subsets of
a manifold are separable and metrizable ([17, 2.6]). Mary Ellen Rudin
proved that MA + ∼CH implies every perfectly normal manifold is
metrizable [23]. Hereditary normality (T5) is a natural weakening of
perfect normality; Peter Nyikos noticed that, although the Long Line
and Long Ray are hereditarily normal non-metrizable manifolds, and
indeed the only 1-dimensional non-metrizable connected manifolds [18],
it is difficult to find examples of dimension greater than 1 (although one
can do so with ♦ [23] or CH [24]). He therefore raised the problem of
whether it was consistent that there weren’t any [16], [18]. In a series of
papers [19, 20, 21, 22] he was finally able to prove this from the consis-
tency of a supercompact cardinal, if he also assumed that the manifolds
were hereditarily collectionwise Hausdorff. We will demonstrate that
neither of these extra assumptions is necessary:
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Theorem 1.1. It is consistent relative to ZFC that every hereditarily
normal manifold of dimension greater than 1 is metrizable.

The proof consists of two main steps. The first step is to isolate a few
consequences of the recently introduced forcing axiom PFA(S)[S] and
to prove, in Theorem 1.4 below, that the main result is a consequence
of the conjunction of these. Given the high level of interest in the
ongoing exploration of PFA(S)[S], it is of independent interest to note,
Theorem 1.2 below, that the main result is, in fact, a consequence of
PFA(S)[S]. The second step of the proof of Theorem 1.1 is to prove
that the large cardinal aspect of PFA(S)[S] is not needed to establish
the consistency of the hypothesis of Theorem 1.4.

For a coherent Souslin tree S (see §2), PFA(S) is the statement [33,
§4]: If P is a proper poset that preserves S and if Dα(α < ω1) is
a sequence of dense open subsets of P there is a filter G ⊂ P such
that G ∩ Dα 6= ∅ for all α < ω1. The notation PFA(S)[S] is adopted
in [13] to abbreviate that the universe is a forcing extension by S of
a model in which S was a coherent Souslin tree and in which PFA(S)
held. The analysis of forcing axioms relative to a coherent Souslin tree,
and resulting model after forcing with this tree, emerged from a series
of papers including [15, 8, 26, 14, 12, 33]. This last reference is the
first of these to specifically investigate consequences of PFA(S) and to
incorporate the method of using countable elementary submodels as
side conditions to build proper posets that preserve S.

Theorem 1.2. It is a consequence of PFA(S)[S] that every hereditarilyneedref
normal manifold of dimension greater than 1 is metrizable.

We will isolate some known (quotable) consequences of PFA(S)[S].
The bounding number b is the minimum cardinal such that there is
a subset of ωω with that cardinality that is unbounded in the mod
finite ordering; our first consequence of PFA(S)[S] is that b is greater
than ℵ1 [12]. Another is that the value of the continuum c is ℵ2 [33,
4.4]. The next is the important P-ideal dichotomy. For a set X and
cardinal κ, [X]κ and [X]≤κ denote the sets {Y ⊂ X : |Y | = κ} and
{Y ⊂ X : |Y | ≤ κ}, respectively.

Definition 1.3. An ideal on a set X is a collection of subsets of X
that includes all the finite subsets of X and is closed under subsets and
finite unions. An ideal on X is a proper ideal if the set X is not an
element. If J is an ideal on a set X, then J ⊥X denotes the ideal of
subsets of X that have finite intersection with every member of J .

An ideal I of countable subsets of a set X is a P-ideal if whenever
{In : n ∈ ω} ⊆ I, there is a J ∈ I such that In − J is finite for all n.
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PID is the statement: For every P -ideal I of count-
able subsets of some uncountable set A either
(i) there is an uncountable B ⊂ A such that [B]ℵ0 ⊂ I,

or else
(ii) the set A can be decomposed into countably many

sets, {Bn : n ∈ ω}, such that [Bn]ℵ0 ∩I = ∅ for each
n ∈ ω.

The consistency of PID does have large cardinal strength but for
P-ideals on ω1 it does not – see the discussion at the bottom of page
6 in [33]. A statement similar to the PID for ideals on ω1 is the one
we need; it also does not have large cardinal strength and is weaker
than the ω1 version of the statement in [33, 6.2]. The statement P22

was introduced in [6]. For completeness, and to introduce the ideas we
will need for another consequence of PFA(S)[S], we include a proof in
§2 that it is a consequence of PFA(S)[S].

P22 is the statement: Suppose I is a P -ideal on a
stationary subset B of ω1. Then either
(i) there is a stationary E ⊆ B such that every count-

able subset of E is in I,
or (ii) there is a stationary D ⊆ B such that [D]ℵ0 ∩ I is

empty.

The ω1 version of Theorem 6.2 in [33] replaces requirement (i) in P22

with the requirement that E should be B ∩ C for some closed and
unbounded subset C of ω1.

A space X is said to be ℵ1-collectionwise Hausdorff if the points of
any closed discrete subset of cardinality at most ℵ1 can be surrounded
by pairwise disjoint open sets (separated). If a separable space is hered-
itarily ℵ1-collectionwise Hausdorff, then it can have no uncountable
discrete subsets (i.e. it has countable spread).

The next consequence of PFA(S)[S] is:

CW: Normal, first countable spaces are ℵ1-collectionwise
Hausdorff.

CW was first shown to be consistent in [28]; it was derived from
V = L in [10], and was shown to be a consequence of PFA(S)[S] in [13].
In fact, it is shown in [13] that simply forcing with any Souslin tree
will produce a model of CW. Let us note now that CW implies that
any hereditarily normal manifold is hereditarily ℵ1-collectionwise Haus-
dorff. Therefore CW implies that each separable hereditarily normal
manifold has countable spread.

Our next axiom is our crucial new additional consequence of PFA(S)[S]:
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PPI+: every regular first countable countably compact
non-compact space includes a copy of the ordinal space
ω1.

A space is countably compact if every countable open cover has a finite
subcover. A first countable countably compact space is sequentially
compact; a space is sequentially compact if every infinite sequence has
a convergent subsequence. An important component of our proof will
be to also show that it is a consequence of PFA(S)[S] that every non-
compact sequentially compact space includes an uncountable free se-
quence. A free sequence in a space X is a well-ordered sequence of
points with the property that each initial segment has closure disjoint
from the closure of its complementary final segment. We will say that
a point x is a complete accumulation point of a set A if for every
neighborhood U of x, U ∩A has cardinality equal to the cardinality of
A.

Let GA denote the conjunction of hypotheses: b > ℵ1, CW, PPI+

and P22. We show that GA is a consequence of PFA(S)[S], and also
establish the following desired theorem. We show in §4 that GA is
consistent relative to ZFC.

Theorem 1.4. GA implies that all hereditarily normal manifolds oftheorem1.1
dimension greater than one are metrizable.

We acknowledge some other historical connections.
The statement PPI+ is a strengthening of

PPI: Every first countable perfect pre-image of ω1 in-
cludes a copy of ω1.

PPI was proved from PFA by Fremlin [11], see also e.g. [5]. Another
consequence of PFA(S)[S] relevant to this proof is∑∑∑−

: In a compact T2, countably tight space, locally count-
able subspaces of size ℵ1 are σ-discrete.∑∑∑−

was proved from MA+∼CH by Balogh [2], extending work of [27].∑∑∑−
was shown to be a consequence of PFA(S)[S] in [9]. The close

connection of
∑∑∑−

to the work in this paper is apparent in [29]. The
following proposition, in one form or another, is well-known. It is
relevant to our work because we can use b > ℵ1 in connection with
P22.

Proposition 1.5. If J is an ideal of subsets of a set X such that J isisP
generated by fewer than b many sets, then the ideal I = [X]≤ℵ0 ∩ J ⊥X
is a P-ideal.
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If B ⊂ X satisfies that [B]ℵ0 ∩ I is empty, then for each sequence
{Bn : n ∈ ω} of infinite subsets of B, there is a J ∈ J such that
{n ∈ ω : J ∩Bn is infinite } is infinite.

Proof. We assume that X /∈ J since otherwise I is the P-ideal of finite
subsets of X. Let κ < b and let {Jα : α < κ} be a subset of J .
Suppose that each J ∈ J is included in Jα for some α < κ. Now
let {In : n ∈ ω} be any subset of I. For each n, fix an enumerating
function en from ω onto In. For each α ∈ κ, there is a function fα ∈ ωω
so that, for each n ∈ ω and each m > fα(n), en(m) /∈ Jα. Using b > κ,
there is an f ∈ ωω such that fα <

∗ f for each α ∈ κ. For each n, let
Fn = {en(m) : m ≤ f(n)}. It follows that I =

⋃
{In \ Fn : n ∈ ω}

meets each Jα in a finite set. Thus I ∈ I and mod finite includes In
for each n.

Now suppose that [B]ℵ0 ∩I is empty and let {Bn : n ∈ ω} be infinite
subsets of B. For each n, Bn /∈ I so we can choose an αn < κ so that
Bn ∩ Jαn is infinite. For each n, fix an enumerating function en from ω
onto Bn∩Jαn . Assume that for each J ∈ J , {n ∈ ω : |J ∩Bn| = ℵ0} is
finite. Then, for each α ∈ κ, there is a function gα ∈ ωω such that, for
all but finitely n, Jα ∩ (Bn ∩ Jαn) ⊂ {en(k) : k < gα(n)}. Let g ∈ ωω
be chosen so that gα <

∗ g for all α ∈ κ. Set I = {en(g(n)) : n ∈ ω}.
For each α ∈ κ, I ∩ Jα is finite, hence I ∈ I. The map sending n to
en(g(n)) is finite-to-one, hence I is an infinite subset of B, and this
contradicts that [B]ℵ0 is disjoint from I. �

We will need the following consequence of GA which is a weaker
statement than

∑∑∑−
. The key fact that PFA(S)[S] implies compact,

separable, hereditarily normal spaces are hereditarily Lindelöf was first
proven in [33, 10.6].

Lemma 1.6. GA implies that if X is a hereditarily normal manifold metric
then separable subsets of X are Lindelöf.

Proof. Let Y be any separable subset of X and assume that Y is not
Lindelöf. Recursively choose, for α ∈ ω1, points yα, together with open
sets Uα, so that yα ∈ Y \

⋃
β<α Uβ, yα ∈ Uα, and Uα is separable and

compact. We work with ideals on the set Ỹ = {yα : α ∈ ω1}. The
collection {Uα ∩ Ỹ : α ∈ ω1} generates an ideal J on Ỹ . Let I denote
the ideal J ⊥

Ỹ
. By Proposition 1.5, I is a P-ideal

If B is any subset of Ỹ such that [B]ℵ0 ⊂ I, then B is discrete since,
for each yβ ∈ B, B ∩ Uβ is finite. However, since X is first countable
and hereditarily normal, it follows from CW that separable subsets of
X do not include uncountable discrete subsets (as per the discussion
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following the introduction of CW). Therefore, by P22, we must then
have that there is an uncountable B ⊂ Ỹ satisfying that [B]ℵ0 ∩ I
is empty. Now let A be the closure (in X) of B. We check that A
is sequentially compact. Let {xn : n ∈ ω} be any infinite subset of
A; we show that there is an α ∈ ω1 such that {xn : n ∈ ω} ∩ Uα is
infinite. Since Uα is first countable and compact, this will show that
A is sequentially compact. If {xn : n ∈ ω} ∩ B = {yβ : β ∈ b} is
infinite, then {yβ : β ∈ b} /∈ I, and so there is an α ∈ ω1 such that
{yβ : β ∈ b}∩Uα is infinite. Of course this means that {xn : n ∈ ω}∩Uα
is also infinite. Otherwise we may suppose that {xn : n ∈ ω} is disjoint
from B. This means that each xn is a limit point of B and so we may
choose, for each n, an infinite Bn ⊂ B such that Bn converges to xn.
By the second assertion in Proposition 1.5, there is an α ∈ ω1 such that
Uα ∩Bn is infinite for infinitely many n. Since xn ∈ Uα for each n such
that Uα ∩ Bn is infinite, it follows that {xn : n ∈ ω} ∩ Uα is infinite as
required.

To finish the proof, we apply PPI+ to conclude that either A is com-
pact or it includes a copy of ω1. Since ω1 includes uncountable discrete
sets and Y , by assumption, is separable, we must have that A is com-
pact. However, the final contradiction is that A has the non-Lindelöf
subset B and so A cannot be covered by finitely many Euclidean open
subsets of X. �

Given an integer n, a manifold of dimension n is often called an n-
manifold. An alternative definition of manifold is that the space be
locally Euclidean. Since each component of a locally Euclidean space
is an n-manifold, for some integer n, and such a space is metrizable if
each of its components is metrizable, we prefer to avoid this unneces-
sary generality. For an n-manifold X, let BX denote the collection of
compact subsets of X that are homeomorphic to the closed Euclidean
n-ball Bn. Brouwer’s Invariance of Domain theorem states that each
member of BX has dense interior in X. We will use the notation int(B)
to denote the interior of any set B ⊂ X.

The literature on non-metrizable manifolds has identified two main
types of non-Lindelöf manifolds, literally called Type I and Type II.
A manifold is Type II if it is separable and non-Lindelöf. Lemma 1.6
shows that there are no hereditarily normal Type II manifolds if GA
holds. A manifold is said to be Type I, e.g. the Long Line, if it can
be written as an increasing ω1-chain, {Yα : α ∈ ω1}, where each Yα is
Lindelöf, open, and includes the closure of each Yβ with β < α. In this
next definition, we use the set-theoretic notion of countable elementary
submodels to help make a more strategic choice of a representation of
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our Type I manifolds. For a cardinal θ, the notation H(θ) denotes the
standard set-theoretic notion of the set of all sets that are hereditar-
ily of cardinality less than θ. These are commonly used as stand-ins
for the entire set-theoretic universe to avoid issues with Gödel’s fa-
mous incompleteness theorems in arguments and constructions using
elementary submodels. We refer the reader to any advanced book on
set theory for information about the properties of H(θ). The reader
unfamiliar with elementary submodels may find [4] useful.

Definition 1.7. Suppose that X is a non-metrizable n-manifold. Let
θ be a regular uncountable cardinal with {X,BX} ∈ H(θ).

(1) If M is an elementary submodel of H(θ) and {X,Bx} ∈ M ,
then X(M) will denote the union of the collection BX ∩M .

(2) A family {Mα : α ∈ ω1} is an elementary chain for X if there
is a regular cardinal θ with X ∈ H(θ) so that for each α ∈ ω1,
Mα is a countable elementary submodel of H(θ) such that X
and each Mβ (β < α) are members of Mα. The chain is said to
be a continuous chain if for each limit α ∈ ω1, Mα =

⋃
β<αMβ.

Here is the main reason for our preference to use elementary sub-
models in this proof. Again the main ideas are from [22], but the proof
using elementary submodels is much simpler.

Throughout the paper the term component refers to a maximal non-
empty connected set. The quasicomponent of a point is equal to the
intersection of all clopen sets containing the point. In a compact space,
components and quasicomponents coincide ([7, 6.1.25]).

Lemma 1.8. Suppose that X is a non-metrizable hereditarily normal
n-manifold with n > 1 and let θ be a regular uncountable cardinal.
Suppose that M is a countable elementary submodel of H(θ) and that elementary
{X,BX} is in M . Then X(M) is an open Lindelöf subspace of X with
the property that its boundary, ∂X(M), is not empty and is covered by
non-trivial connected compact subsets.

Proof. Since X is an n-manifold the family BX has the property that
whenever O is open in X and x ∈ O there is a B ∈ BX such that x is
in the interior of B and B ⊆ O. Since n > 1, int(B) \ {x} is connected
for all B ∈ BX and x ∈ X. Similarly, if U is a connected open subset
of X, then U \ {x} is connected for any x ∈ X. The boundary, ∂B, of
any B ∈ BX is itself an n−1-manifold and is therefore path-connected.

Let Y denote the set X(M). Since M is countable, Y is equal to a
countable union of compact subsets of X. Since Y is metrizable, and X
is not, Y is a proper subset of X. Each member of BX ∩M is separable
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and hence B ∩M is dense in B whenever B ∈ BX ∩M ; it follows that
Y ∩M is a dense subset of Y .

We also note that Y is open since if B ∈ BX ∩M , then B is compact
and so is included in the interior of a finite union of members of BX .
By elementarity, there is such a finite set in BX ∩M . Similarly we have
the following fact.

Claim 1. For each finite subset B′ of BX∩M , each Lindelöf componentcomponentClaim
of X \

⋃
B′ that meets M will be a subset of Y .

This again follows by elementarity: if C is such a component and if
y ∈ C ∩M , then M will witness that there is a countable collection of
members of BX that covers the component of y in X \

⋃
B′.

Each manifold is the free union of its components and so a non-
metrizable manifold must have a non-Lindelöf component. By elemen-
tarity there is a non-Lindelöf component of X that meets M . Since
this component is not included in the open set Y , it follows that the
boundary ∂Y = ∂X(M) = Y \Y is not empty. Now let x be any point
in ∂Y . Take any B ∈ BX with x in its interior, and let K denote the
component of x in the compact set B ∩ ∂Y . We must simply prove
that K \ {x} is not empty, so we can certainly assume that K does
not meet the boundary of B. Therefore the quasicomponent of x in
∂Y ∩ B also does not meet the boundary of B. Since the boundary
of B is compact there is a relatively clopen subset D of ∂Y ∩ B that
contains x and is disjoint from the boundary of B. Since D is relatively
clopen in ∂Y ∩ B, K is a subset of D. The relative complement, C,
of D in ∂Y ∩ B includes the union of all components of ∂Y ∩ B that
do meet the boundary of B. Since D and C ∪ ∂B are disjoint compact
subsets of B, we can choose a relatively open subset of B, W , with
D ⊆ W and W ∩ (C ∪ ∂B) = ∅. Since W is an open subset of int(B),
we have that W is an open subset of X whose closure is a subset of the
interior of B and is disjoint from C. Since D ⊂ W , we also have that
∂W is disjoint from C ∪D.

Since C ∪D includes ∂Y ∩B, we therefore have that ∂W is disjoint
from ∂Y . From this we conclude that ∂W ∩ Y is closed and compact
since it is equal to the closed subset, ∂W ∩ B ∩ Y , of B. There is a
finite subfamily B1 of M ∩ BX such that ∂W ∩ Y ⊂

⋃
B1 ⊂ int(B).

Since
⋃
B1 ⊂ Y , x is an element of the open set W \

⋃
B1. Let E be

the component of x in W \
⋃
B1. Since Y ∩M is dense in Y , E meets

Y ∩M . Since E is Lindelöf and not included in Y it follows by Claim
1, that E is not a component of X \

⋃
B1. This means that the closure

of E must meet the boundary of W . Since E is disjoint from
⋃
B1,

E ∩ ∂W is disjoint from Y , from which it follows that the closure of E



HEREDITARILY NORMAL MANIFOLDS 9

must meet ∂W ∩ Y . Since ∂W ∩ Y is equal to ∂W ∩ Y and is included
in
⋃
B1, the closure of E must in fact meet ∂W \ Y . It follows that

E \ Y and E ∩ Y are not empty, and neither contain x. Since E \ {x}
is also connected, we may choose a point z 6= x in E ∩ ∂Y . We note
that K ∪{z} is included in the closure of E ∩Y and we now show that
z ∈ K.

Let {Bk : k ∈ ω} enumerate all those members of BX ∩M that are
included in the interior of B. Since these sets are all closed, it follows
that K ∪{z} is contained in the closure of W ∩ Y \ (B0 ∪ · · · ∪Bk) for
all k ∈ ω. Choose any k0 large enough so that B1 ⊂ {B0, . . . , Bk0}.
Note that each point of W ∩ Y is contained in the interior of Bk

for some k ∈ ω. For each k, let Ok denote the component of x in
W ∩ Y \ (B0 ∪ · · · ∪Bk). Since x ∈ K is connected, K ⊂ Ok for each
k ∈ ω. An intersection of a countable descending family of connected
compact sets is connected ([7, 6.1.19]). Since W ∩ Y is compact, the
intersection of the family {Ok : k ∈ ω} is connected and is included in
B∩∂Y . Therefore this intersection is equal to K. We finish by proving
that z ∈ Ok for each k ∈ ω.

Towards a contradiction, assume that z /∈ Ok for some k. Since the
family is descending, we may assume that k ≥ k0. Again using that
components are equal to quasicomponents in compact spaces, we may
choose a closed partition F1, F2 of W ∩ Y \ (B0 ∪ · · · ∪Bk) such that
x ∈ F1 and z ∈ F2. Since W \ (B0 ∪ · · · ∪ Bk ∪ F2) is a neighborhood
of x, we may choose y1 ∈ Y ∩M in the component of x in W \ (B0 ∪
· · · ∪ Bk ∪ F2). Similarly W \ (B0 ∪ · · · ∪ Bk ∪ F1) is a neighborhood
of z, so choose y2 ∈ Y ∩ M that is an element of the component
of z in W \ (B0 ∪ · · · ∪ Bk ∪ F1). By Claim 1, the components of
y1 and y2, respectively, in the subspace X \ (B0 ∪ · · · ∪ Bk) are not
Lindelöf. Therefore their respective components meet the boundary
of B and, since the boundary of B is path-connected, there is a path
in X \ (B0 ∪ · · · ∪ Bk) containing y1 and y2. That the boundary is
path-connected is the only place in the entire proof that we use the
dimension being greater than 1. By elementarity, there is a path P ∈M
included in X \ (B0 ∪ · · · ∪ Bk) joining y1 and y2. Since P is compact
it is covered by a finite subcollection of BX . Again by elementarity, P
is covered by a finite subcollection of M ∩ BX and so P is included in
Y \(B0∪· · ·∪Bk). Since ∂W ∩Y is included in

⋃
B1 and k ≥ k0, the set

W∩(Y \(B0∪· · ·∪Bk)) is a relatively clopen subset of Y \(B0∪· · ·∪Bk)
and so P ⊂ W ∩ Y . Of course it then follows that y1 and y2 are in
the same component of W ∩ Y \ (B0 ∪ · · · ∪Bk). This is our desired
contradiction since y1 ∈ F1, y2 ∈ F2, and P ⊂ F1 ∪ F2. �
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We now obtain our preferred representation of X as a Type I sub-
manifold.

Corollary 1.9 (GA). Suppose that X is a non-metrizable hereditar-
ily normal n-manifold of dimension greater than 1. Then there is an
increasing chain {Yα : α ∈ ω1} satisfying that, for each α ∈ ω1,component

(1) Yα is an open Lindelöf subset of X whose the boundary ∂Yα is
non-empty and included in Yα+1,

(2) each point of ∂Yα is contained in an infinite compact connnected
subset of ∂Yα,

(3) if α is a limit, then Yα =
⋃
{Yβ : β ∈ α}.

For any such chain {Yα : α ∈ ω1},
⋃
{Yα : α ∈ ω1} is both closed and

open in X and, for each closed subset C of ω1,
⋃
{∂Yδ : δ ∈ C} is

closed in X.

Proof. Fix a continuous elementary chain {Mα : α ∈ ω1} for X. Fix
any α ∈ ω1. By Lemma 1.8, Yα = X(Mα) is Lindelöf with non-empty
boundary, ∂X(Mα), and each component in ∂X(Mα) is non-trivial. By

Lemma 1.6, X(Mα) is Lindelöf, and so by elementarity, Mα+1 ∩ BX is

a cover of X(Mα). Since X is first countable,
⋃
{Yα : α ∈ ω1} is closed

because any x ∈ X that is in the closure will be in Yα ⊂ Yα+1 for some
α ∈ ω1.

Now let {Yα : α ∈ ω1} be a chain satisfying items (1)-(3) and let C
be a closed subset of ω1. To show that

⋃
{∂Yδ : δ ∈ C} is closed, we

show that if {yn : n ∈ ω} is a subset that converges to a point y, then
y is also in

⋃
{∂Yδ : δ ∈ C}. For each n ∈ ω, choose δn ∈ C such that

yn ∈ ∂Yδn . If the set {δn : n ∈ ω} is finite, then let δ be chosen so that
{n ∈ ω : δ = δn} is infinite. Then y is an element of the closed set ∂Yδ.
Otherwise, choose δ ∈ C so that the set {δn : n ∈ ω and δn < δ} is
cofinal in δ. Then we have that {yn : n ∈ ω}∩(Yδ \Yβ) is infinite for all
β < δ. Since each Yβ is open, this means that y ∈ Yδ \

⋃
{Yβ : β < δ}.

By item (3), we have that y ∈ Yδ \ Yδ = ∂Yδ. �

Lemma 1.10 (GA). Suppose X is a non-metrizable hereditary normal
manifold of dimension greater than 1 and that {Yα : α ∈ ω1} is an
increasing chain as in Corollary 1.9. Let A be a stationary subset of
ω1. If, for each α ∈ A, we have Uα ∈ BX and yα ∈ int(Uα)∩ ∂Yα, thencopyomega1
there is a stationary set A1 ⊂ A such that the closure of {yα : α ∈ A1}
is included in

⋃
{Uα : α ∈ A} and is sequentially compact.

Proof. It is immediate from the properties in Corollary 1.9 that the set
{yα : α ∈ A and yα /∈ {yβ : β ∈ A ∩ α} } is a dense discrete subset of

{yα : α ∈ A}. This implies that {yα : α ∈ A} is nowhere dense in X.
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We first prove that if E ⊂ A is stationary, then D = {yα : α ∈ E} is
not discrete. If D were discrete, then by hypothesis CW there should
be a separation {Wα : α ∈ E} ⊂ BX ; namely that the members of
{Wα : α ∈ E} are pairwise disjoint and yα ∈ int(Wα) for each α ∈ E.
Assume that {Wα : α ∈ E} ⊂ BX and that yα ∈ int(Wα) for each
α ∈ E. For each limit α ∈ E, using item (3) of Corollary 1.9, there is a
βα < α such that Wα∩Yβα is not empty. By the pressing down lemma,
there is a fixed β such that β = βα for uncountably many α ∈ E. Since
Yβ is separable, there are α, α′ ∈ E such that Wα ∩Wα′ ∩ Yβ is not
empty. This shows that D is not discrete.

Define the ideal J generated by the family of countable b ⊂ A such
that {yα : α ∈ b} ⊂ Uβ for some β ∈ A. Then a ∈ I = J ⊥A if
a ∈ [A]ℵ0 and, for all β ∈ A, {yα : α ∈ a} ∩ Uβ is finite. It follows
from Proposition 1.5 that I is a P-ideal on A. If E ⊂ A satisfies that
[E]ℵ0 ⊂ I, then D = {yα : α ∈ E} is discrete. Therefore there is
no such stationary E, and so by P22, there is a stationary subset A1

of A such that [A1]ℵ0 ∩ I is empty. Using Proposition 1.5, we verify

that every infinite subset of XA1 = {yα : α ∈ A1} meets some Uβ in an
infinite set. Since each Uβ is compact and metrizable, this will show
that XA1 is sequentially compact. If b is any infinite subset of A1, then
b /∈ I and so there is a β ∈ A such that {xα : α ∈ b} ∩ Uβ is infinite.
Now suppose that {xn : n ∈ ω} is any infinite subset of XA1 that is
disjoint from {yα : α ∈ A1}. For each n ∈ ω we may choose an infinite
bn ⊂ A1 such that {yα : α ∈ bn} converges to xn. By Proposition 1.5,
there is a β ∈ A such that Uβ ∩ {yα : α ∈ bn} is infinite for each n in
an infinite set L ⊂ ω. Now we have our Uβ meeting {xn : n ∈ ω} in an
infinite set since by the compactness of Uβ we have that xn ∈ Uβ for
each n ∈ L.

Let UA denote the union
⋃
{Uα : α ∈ A}. Finally we prove that

XA1 ⊂ UA. Since yα ∈ Uα for each α ∈ A1, we have that {yα : α ∈
A1} ⊂ UA. If x is any other point of XA1 , then there is an infinite set
b ⊂ A1 such that {xα : α ∈ b} converges to x. Since there is a β ∈ A
such that Uβ ∩ {yα : α ∈ b} is infinite, we have that x ∈ Uβ = Uβ. �

Now we are ready to give a proof of the main theorem. The clever
topological ideas of the proof are taken from [19, p. 189]. A sketch of
this proof (minus the elementary submodels) appears in [29]. The main
idea of the proof is to use PPI+ to find copies of ω1 and, combined
with Corollary 1.9, to show that, in fact, there is a copy of the dense
subset, ω1 × (ω + 1), of the Tychonoff plank in the space. We then
show that such a copy has a non-normal subspace.
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Proof of Theorem 1.4. Let X be a non-metrizable manifold of dimen-
sion greater than 1. We assume that X is hereditarily normal but
then obtain a contradiction by producing a non-normal subspace. Let
{Yα : α ∈ ω1} be chosen as in Corollary 1.9. For each α ∈ ω1, choose
any point xα ∈ ∂Yα. For each α ∈ ω1 choose Uα ∈ BX so that
xα ∈ int(Uα). By Lemma 1.10, let A be a stationary subset of ω1

such that XA = {xα : α ∈ A} is sequentially compact. Then we may
apply the hypothesis PPI+ and choose a copy W of ω1 included in XA.
Since countable subsets of W have compact closure included in W , W
is a closed subset in X. W has no non-trivial connected subsets, which
also implies that the interior of W is empty.

Let W = {wξ : ξ ∈ ω1} be the homeomorphic indexing of W . For
each α ∈ ω1, Yα = Yα ∪ ∂Yα is Lindelöf since, by Corollary 1.9, it is
included in the Lindelöf set Yα+1. Therefore, we have that, for each α,
W ∩Yα is countable, and its closure is included in Yα+1. It follows that
there is a cub C ⊂ ω1 satisfying that for each γ < δ, both in C, the
set {wβ : γ ≤ β < δ} is included in Yδ \ Yγ. Therefore {wγ : γ ∈ C} is
another copy of ω1 with the property that wδ ∈ ∂Yδ for each δ ∈ C.

For each γ ∈ C, let Kγ ⊂ ∂Yγ be the component of wγ in Kγ. By
Corollary 1.9, Kγ is a non-trivial compact connected set. Since W
has no non-trivial connected subsets, we can make another selection
yγ ∈ Kγ \W . Now choose, for each γ ∈ C, a basic set Vγ ∈ BX so that
yγ is in the interior of Vγ and Vγ ⊂ X \W . We again apply Lemma 1.10
and choose a stationary set A1 ⊂ C so that the closure of {yα : α ∈ A1}
is sequentially compact and included in

⋃
{Vγ : γ ∈ C}. In particular

then, the closure of {yα : α ∈ A1} is disjoint from W . For each γ ∈ C,
the closure of {yα : α ∈ A1 ∩ γ} is compact because it is a sequentially
compact closed subset of the Lindelöf space Yγ.

Since X is normal, there is a continuous function f from X into
[0, 1] such that f [W ] = {1} and f(yα) = 0 for all α ∈ A1. Note that
f [Kα] = [0, 1] for each α ∈ A1. Finally we are ready to produce our
non-normal subspace for our contradiction. For each α ∈ A1, choose
yet another point zα ∈ Kα, in such a way that the map f restricted to
{zα : α ∈ A1} is one-to-one. For each α ∈ A1, choose any Bα ∈ BX so
that zα ∈ int(Bα). By Lemma 1.10, we choose stationary A2 ⊂ A1 so
that the closure of {zα : α ∈ A2} is sequentially compact. We again
have that for each γ ∈ C, the closure of {zα : α ∈ A2∩γ} is sequentially
compact and included in the Lindelöf set Yγ and so the closure of each
countable subset of {zα : α ∈ A2} is compact. Let Z denote the closure
of the set {zα : α ∈ A2}, and for each r ∈ [0, 1], let Zr = f−1(r)∩Z. We
will use the following property of these subsets of Z. Consider any open
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set U of X that includes Zr ∩ ∂Yγ for any r ∈ [0, 1] and γ ∈ C. Since
Zr ∩ Yγ has compact closure, there is a β < γ such that (Zr ∩ Yγ) \ Yβ
is included in U . Therefore the pressing down lemma implies that if
U is an open set that includes Zr ∩ ∂Yγ for a stationary set of γ ∈ C,
there is a β ∈ ω1 such that Zr \ Yβ is included in U .

Choose any r ∈ [0, 1] such that r is a complete accumulation point
of {f(zα) : α ∈ A2}. Choose any sequence {rn : n ∈ ω} ⊂ [0, 1] \ {r}
converging to r so that each rn is also a complete accumulation point
of {f(zα) : α ∈ A2}. We now prove there is a cub Cω ⊂ C such that
Zrn ∩ ∂Yγ and Zr ∩ ∂Yγ are not empty for each n ∈ ω and γ ∈ Cω.
For each β ∈ ω1, there is a value g(β) ∈ C \ β such that the closure of
the set {f(zα) : β < α ∈ A2 ∩ g(β)} includes {rn : n ∈ ω} ∪ {r}. Let
Cω denote the set of δ ∈ C \ ω satisfying that g(β) < δ for all β < δ.
If Cω ∩ γ is cofinal in γ and β < γ, then then there is a δ ∈ Cω ∩ γ
such that β < δ. Since g(β) ≤ δ, we have that g(β) < γ. This shows
that Cω is a closed subset of C. To see that Cω is unbounded, fix
any γ0 ∈ ω1. By recursion on n ∈ ω, set γn+1 to be the supremum
of the countable set {g(β) : β ≤ γn}. The sequence {γn : n ∈ ω} is
strictly increasing and it is easy to check that the supremum is in Cω.
Now we prove that Cω is as claimed by showing that if δ ∈ Cω and
s is any element of {rn : n ∈ ω} ∪ {r}, then Zs ∩ ∂Yδ is not empty.
Choose a strictly increasing sequence {βm : m ∈ ω} cofinal in δ with
the property that g(βm) ≤ βm+1. For each m ∈ ω, s is in the closure
of {f(zα) : βm < α < g(βm)} so we may choose αm in the interval
(βm, g(βm)) so that |s− f(zαm)| < 1

m+1
. The set {δ}∪ {αm : m ∈ ω} is

a closed subset of ω1 and so, by Corollary 1.9, ∂Yδ ∪
⋃
{∂Yαm : m ∈ ω}

is closed. Since Z is sequentially compact, the sequence {zαm : m ∈ ω}
has a limit point z that is in ∂Yδ. By continuity of f , f(z) is a limit
of the set {f(zαm) : m ∈ ω} and so s = f(z). This implies that z ∈ Zs
and proves that Zs ∩ ∂Yδ is not empty.

Let C ′ω be the set of relative limit points of Cω, and set Zr(C
′
ω) =⋃

{Zr∩∂Yγ : γ ∈ C ′ω}. Since Zr is closed in Z, it follows that Zr\Zr(C ′ω)
is a closed subset of Z \Zr(C ′ω). By Corollary 1.9,

⋃
{∂Yγ : γ ∈ C ′ω} is

a closed set. Therefore H = Z ∩
⋃
{∂Yγ : γ ∈ C ′ω} is a closed subset

of Z and H \ Zr(C ′ω) is a closed subset of Z \ Zr(C ′ω). We show that
Zr\Zr(C ′ω) and H\Zr(C ′ω) cannot be separated by disjoint open subsets
of Z \Zr(C ′ω). Since Zr \Zr(C ′ω) and H \Zr(C ′ω) are disjoint, this will
complete the proof. Suppose that U is an open subset of Z \ Zr(C ′ω)
that includes H \ Zr(C ′ω). For each n ∈ ω, we showed in the third
paragraph of the proof that there is a β ∈ ω1 such that Zrn \ Yβ is
included in U for each n ∈ ω. Choose any γ ∈ Cω \ C ′ω with β < γ.
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For each n, choose z′n ∈ Zrn ∩ ∂Yγ. Since Z ∩ ∂Yγ is compact, let z be
any limit point of {z′n : n ∈ ω}. By the continuity of f , f(z) = r and
so z ∈ Zr ∩ ∂Yγ. In other words, z ∈ Zr \Zr(C ′ω), completing the proof
that H \Zr(C ′ω) and Zr \Zr(C ′ω) cannot be separated by open sets. �

2. on P22

As usual, S is a coherent Souslin tree. For us, it will be a full
branching downward closed subtree of 2<ω1 = {0, 1}<ω1 . Naturally it
is a Souslin tree (no uncountable antichains) and has the additional
property

for each s ∈ S and t ∈ 2<ω1 with dom(t) = dom(s), t is
in S if and only if {ξ ∈ dom(s) : s(ξ) 6= t(ξ)} is finite.

The diamond principle ♦ implies the existence of coherent Souslin
trees and they exist in any single Cohen real forcing extension (see [33,
3.1,3.2], [3], [31]). In a forcing argument using S as the forcing poset, we
will still use s′ < s to mean that s′ ⊂ s, and so, s is a stronger condition.
We will also use the more compact notation o(s) to denote the order-
type of dom(s) for s ∈ S. For each α ∈ ω1, Sα = {s ∈ S : o(s) = α}.
In this section we give a proof, following [33, 6.1], that our statement
P22 is a consequence of PFA(S)[S].

Here are some simple facts about forcing with a Souslin tree that we
will need repeatedly. The first is that a Souslin tree is a ccc forcing
notion, so each cub subset of ω1 in the forcing extension will include a
cub from the ground model ([25, III 1.8]). Also, it follows from item
(4) in the next result that forcing with a Souslin tree will not add any
countable subsets of the ground model.

Lemma 2.1. Suppose that S is a Souslin tree and S ∈ M for some
countable elementary submodel M of any H(θ) (θ ≥ ω2). If ẋ ∈ M isbasiclemma
an S-name, and s ∈ S \M , then there are a, α, s′ ∈M with s′ < s and
α ∈ ω1 such that

(1) s 
 ẋ ∈ θ if and only if s′ 
 ẋ = α
(2) s 
 ẋ = ∅ if and only if s′ 
 ẋ = ∅,
(3) if s 
M ∩ ω1 ∈ ẋ, then s′ 
 (ẋ ∩ ω1) is stationary,
(4) if s 
 ẋ ∈ [ω1]ℵ0, then s′ 
 ẋ = a.

Proof. The second item is just a (useful) special case of the first. So
we consider ẋ to be any S-name and assume that s 
 ẋ ∈ θ. The set
of conditions that force a value on ẋ is a dense and open subset of S,
and since ẋ is in M , so too is this subset of S. Since S is a ccc forcing
there is a γ ∈ M ∩ ω1 such that each element of Sγ forces a specific
ordinal value on ẋ. Therefore, for some α ∈ M ∩ θ, s′ = s � γ forces
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that ẋ = α. Conversely, if for some α ∈ θ and s′ < s we have that
s′ 
 ẋ = α, then s clearly forces that ẋ ∈ θ.

Now assume that s 
M∩ω1 ∈ ẋ. Let us assume, for a contradiction,
that s forces that ẋ ∩ ω1 is not stationary. Let Ẋ denote an S-name
of the set of ground model cub subsets of ω1 that are disjoint from ẋ,
hence s 
 Ẋ is not empty. So, now apply item (2) to Ẋ for some s′ < s
in M . Since s′ 
 Ẋ is not empty, there is, by elementarity, a cub C
in M such that s′ 
 C ∈ Ẋ. Of course this means that s 
 ẋ ∩ C is
empty. However C∩M is, by elementarity, unbounded in M ∩ω1, and,
since C is closed, M ∩ ω1 ∈ C, which s forces is in ẋ.

Item (4) is proven by a repeated application of item (1). �

In the proof of Theorem 1.2, the only poset that we will actually
force with is the coherent Souslin tree S and we will soon need some
additional standard notation for doing so. If ȧ is an S-name and if
g ⊂ S is a generic filter, then valg(ȧ) denotes the evaluation of ȧ in the
generic extension. If x is any set (in the ground model), the canonical
name for x is denoted x̌. When there is no risk of confusion we routinely
simply use x to refer to the set in the extension. By the well-known
Forcing Lemma, and for a name ȧ of a subset of some ground model
H(κ), we get by with the definition that valg(ȧ) = {x ∈ H(κ) : (∃s ∈
g) s 
 x̌ ∈ ȧ}. We will say that a condition s ∈ S forces a value on such
a name if there is a set b such that s 
 ȧ = b̌. If M is an elementary
submodel of any such H(κ) with S ∈M , then one uses M [g] to denote
the set {valg(ẋ) : x ∈M, and ẋ is an S-name}. In particular, H(κ)[g]
is such an instance and is equal to the new H(κ) as calculated in the
forcing extension V [g]. We also have (and will use) that M [g] is an
elementary submodel of H(κ)[g] (see [25, III 2.11]). Oddly enough,
the generic filter itself has a canonical name, ġ, which we must use in
statements of the forcing language. With this notation, 1 
 M̌ ⊂ M̌ [ġ],
and as with any x̌, we may use M [ġ] in a forcing statement rather than
M̌ [ġ].

When applying PFA(S) from the definition, we will need the follow-
ing basic facts about proper forcing.

Definition 2.2. [25] If M is a countable elementary submodel of H(κ)
for some regular κ and P is a poset in M , then a condition p is an
M-generic condition for P providing that for each dense open D ⊂ P
that is in M , p forces that the generic filter meets D ∩M .

A poset P is proper if for each regular κ such that the power set of defproper
P is an element of H(κ) and each countable elementary submodel M
of H(κ) with P ∈M , each member of P ∩M has an extension that is
an M-generic condition for P.
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Remark 2.3. For a dense set D ∈M for a poset P ∈M , the statement
that p forces the generic filter meets D∩M is equivalent to the statementalsoMgeneric
that each extension r ∈ D of p is compatible with some member of
D ∩M .

Proposition 2.4. [15] A poset P is proper and preserves S if for each
κ as in Definition 2.2, and each countable submodel M of H(κ) with
P , S ∈M , each condition in M ∩ P has an extension p satisfying thatmiyamoto
(s, p) is M-generic for S × P for each s ∈ S \M .

Evidently the assumptions of Proposition 2.4 show that P is proper.
For completeness we explain how to conclude that forcing with P pre-
serves that S is Souslin. Consider a P-name Ȧ ∈ M that is forced to
be a maximal antichain of S. Let δ = M ∩ ω1; we prove that p (as in
Proposition 2.4) forces that every member of Sδ is above some member
of Ȧ, thereby proving that Ȧ ∩M is a maximal antichain. Let G ⊂ P
be any generic filter with p ∈ G. Let g ⊂ S be any generic filter for S
and choose any s† ∈ Sδ ∩ g.

Just reversing the coordinates, we define D ⊂ S × P (again in M)
where (s, q) ∈ D if q forces that s is above some member of Ȧ. Since
Ȧ is forced by P to be a maximal antichain of S, it is a standard
fact about product forcing that D is a dense subset of S × P (e.g.
see [25, II 1.5]). Since (s†, p) forces that the generic filter for S × P
meets D ∩M , and g × G is a generic filter for S × P , we may choose
(s, r) ∈ D ∩M ∩ (g ×G). It follows that s < s† and that r forces that
s, hence s†, is above some member of Ȧ.

Proposition 2.4 from [15] actually applies to all Souslin trees. It is
useful to have a simpler sufficient condition that a poset P is proper
and S-preserving in the case that S is a coherent Souslin tree. We
begin with this definition that we will need repeatedly.

Definition 2.5. For each s, t ∈ S with o(s) ≤ o(t), let s ⊕ t denote
the function s ∪ (t � [o(s), o(t)) ). Since S is a coherent Souslin tree,
s⊕ t ∈ S.

Suppose that Ȧ is an S-name and that s ∈ S forces that Ȧ is a
subset of some ground model set B. If s′ is any other member of S
with o(s′) = o(s), we define a new name Ȧss′ (the (s, s′)-transfer) whichtransfer
is defined by the property that for all b ∈ B and t ∈ S,

s′ ⊕ t 
 b̌ ∈ Ȧss′ if and only if s⊕ t 
 b̌ ∈ Ȧ
and, for all s̄ ∈ So(s) \ {s′}, s̄ 
 Ȧss′ = ∅.

We frequently use that for Ȧ and s, s′ ∈ S as in Definition 2.5, (Ȧss′)
s′
s

is equal to Ȧss and s 
 Ȧ = Ȧss.
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Lemma 2.6. If S is a coherent Souslin tree, then a poset P is proper Spreserve
and S-preserving if and only if S × P is proper.

Proof. If P is proper and S-preserving, then it follows from Proposition
2.4 that S × P is proper. Now assume that S × P is proper. The
original formulation of properness is that the stationarity of certain
types of sets are preserved. Clearly if S × P preserves these, then so
does P . Thus, P is proper. We now prove, by contradiction, that
forcing with P preserves that S is ccc. Suppose that Ȧ is a P-name
of a maximal antichain of S and that some p0 ∈ P forces that Ȧ is
uncountable. Let M be a countable elementary submodel of H(κ) for
a κ as in Definition 2.2 with p0, Ȧ,P , S all in M . Since we are assuming
that S ×P is proper, each condition in M ∩ (S ×P) has an extension
that is M -generic for S × P so let (s1, p1) be an M -generic condition
for S×P with p1 < p0 and δ ≤ o(s1). We may now choose a condition
p2 < p1 so that there is an s∗ ∈ S \M such that p2 
 s∗ ∈ Ȧ.

Since S is coherent, we can choose α ∈ δ so that s1 and s∗ agree on
[α, δ). Set t1 = s1 � α ∈M and t∗ = s∗ � α ∈M . Now define a P-name
Ḃ in M by the rule that a condition p ∈ P forces that some s ∈ S is in
Ḃ if either s is incompatible with t1 or p forces that t∗⊕s is above some
member of Ȧ. Let D ⊂ S×P be defined to be the set of all pairs (s, p)
such that p forces that s ∈ Ḃ. Since every element of P forces that
Ȧ is a maximal antichain, one shows as in the paragraphs following
Proposition 2.4 that the set D ∈ M is a dense open subset of S × P .
Using that (s1, p1) is an M -generic condition and that (s∗, p2) ∈ D, we
can, by Remark 2.3, choose (s, p) ∈ D ∩M compatible with (s1, p2).
Let p3 be any condition in P stronger than each of p and p2. Since
s is compatible with s1 it is also compatible with t1. Therefore, since
p forces that s ∈ Ḃ, we have that p forces that t∗ ⊕ s is above some
member of Ȧ. We have achieved our contradiction since p3 forces that
s∗ ∈ Ȧ and that t∗ ⊕ s < s∗ is above some member of Ȧ.

�

Proposition 2.7. Assume PFA(S), then S forces that P22 holds. P22holds

Proof. Let Ḃ be an S-name such that the root of S forces that Ḃ is
a stationary subset of ω1. Suppose that İ is an S-name of a P-ideal
of countable subsets of Ḃ. To prove P22, we may assume that some
condition in S forces that İ ∩ [E]ℵ0 6= ∅ for all stationary subsets E
of Ḃ. By virtue of Definition 2.5, we can assume for convenience that
the root of S is that condition. We will prove, Claim 6, that there is
an S-name Ė and a condition s0 ∈ S that forces Ė to be a stationary
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subset of Ḃ that satisfies that [Ė]ℵ0 ⊂ İ. This will complete the proof
that PFA(S)[S] implies P22.

Fix any well-ordering ≺ of H(ℵ2).

Claim 2. For each countable elementary submodel M of (H(ℵ2), İ,≺)claima
and each s ∈ SM∩ω1, there is a set a(s,M) such that

s 
 a(s,M) ∈ İ and (∀a ∈ İ ∩M [ġ])(a \ a(s,M) is finite) .

Proof of Claim 2: Let s be any element of SM∩ω1 . Since s forces that
İ is a P-ideal, there is a ≺-minimal S-name ȧ such that 1 forces that
each member of M [ġ] ∩ İ is a subset mod finite of ȧ. Choose M ′ to
be any countable elementary submodel of H(κ) with M,S, s, ȧ ∈ M ′.
Since forcing with S adds no countable sets of ordinals ((4) of Lemma
2.1), we know that ȧ is forced to be a ground model subset of ω1.
Moreover, if {sn : n ∈ ω} is an enumeration of all the elements of
level SM ′∩ω1 that are extensions of s, then there is a countable family
{an : n ∈ ω} of countable subsets of ω1 such that, for each n, sn 

ȧ = an. Furthermore, again by Lemma 2.1, s forces a value on each
ȧ ∈ M such that s 
 ȧ ∈ İ. Let J denote the countable family of
sets forced by s to be members of M [ġ] ∩ İ. Note that every member
of J is mod finite included in every member of {an : n ∈ ω}. We may
choose a(s,M) to be the ≺-minimal set that splits this (ω, ω)-gap, i.e.
a(s,M) includes mod finite each member of J and is included mod
finite in each element of {an : n ∈ ω}.

For each countable elementary submodel M of H(ℵ2, İ,≺), and each
s ∈ S \M , we let a(s,M) equal the ≺-minimal set a(s � δ,M) as in
Claim 2. We will now consider the name Ḃ. Let B1 equal the set of
δ ∈ ω1 for which there is an s ∈ S forcing that δ ∈ Ḃ. B1 is a stationary
set since the root of S forces that Ḃ is a subset of B1.

In order to apply PFA(S), we let P be the collection of all functions
of the form p :Mp → S, where

(1) Mp is a finite ∈-chain of countable elementary submodels of
(H(ℵ2),≺)

(2) {İ, B1} ∈M for each M ∈Mp,
(3) for each M ∈Mp, p(M) ∈ S \M and if δ = M ∩ ω1 ∈ B1 then

p(M) forces that δ ∈ Ḃ,
(4) p(N) is in M whenever N,M ∈Mp with N ∈M .

We let p ≤ q if,

(5) Mp ⊃Mq and q = p �Mq,
(6) if M ∈Mq and N ∈M ∩Mp \Mq, then N ∩ω1 ∈ a(q(M),M)

providing N ∩ ω1 ∈ B1 and p(N) < q(M).
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Claim 3. For each δ ∈ ω1, Dδ is a dense subset of P, where cub

Dδ = {p ∈ P : δ ∈
⋃
Mp and (∃M ∈Mp)(either M ∩ ω1 = δ

or (δ ∈M and (∀q < p) (
⋃

(M ∩Mq) =
⋃

(M ∩Mp) )} .

Proof of Claim 3: Let p1 ∈ P be arbitrary. We first show that p1

has an extension p2 with δ ∈
⋃
Mp2 . Choose any countable elementary

submodel M2 of (H(ℵ2),≺) such that p1, δ and {İ, Ḃ} are in M2. Since
p1 is finite it is a subset of M2. Set Mp2 equal to Mp1 ∪ {M2} and
choose p2(M2) ∈ S \M2 so that, if M2 ∩ ω1 ∈ B1, then p2(M2) forces
M2 ∩ ω1 ∈ Ḃ. Also, for each N ∈ Mp1 , a(p(N), N) is chosen as the
≺-least set satisfying Claim 2, and so it is in M2. We have constructed
p2 ∈ P , and p1 = p2 �Mp1 . Condition (6) in the definition of p2 < p1

is vacuous, and so we have constructed our desired extension p2 < p1

with δ ∈
⋃
Mp2 .

Let δ∗ be the minimum of the set {M ∩ ω1 : (∃p∗ < p2) M ∈
Mp∗ and δ ≤ M ∩ ω1}. Choose p∗2 < p2 such that δ∗ ∈ {M ∩ ω1 :
M ∈ Mp∗2

}. If δ∗ = δ, then p∗2 is in Dδ. If p∗2 is not in Dδ, then let M
be the element of Mp∗2

with M ∩ ω1 = δ∗ > δ and note that there is a
q < p∗2 such that

⋃
(M ∩Mq) 6= (M ∩Mp∗2

). Choose such a q and let

M̄ be the maximum element of M ∩Mq. Choose any extension sM̄ of
q(M̄) in S ∩M so that δ ≤ o(sM̄). We now define an extension p of p∗2
that is in Dδ. SetMp equal toMp∗2

∪{M̄} and set p = p∗2∪{(M̄, sM̄)}.
Since we already have that q is an extension of p∗2, it is routine to check
that p is also an extension of p2. It is immediate that p ∈ Dδ because
if q < p and M̄ ∈ M ′ ∈ Mq ∩M , then p(M̄) ∈ M ′, implying that
δ ∈M ′, and this contradicts the assumption on p2.

Claim 4. If G ⊂ P is a filter that meets Dδ for all β < δ ∈ ω1, then
C = {M ∩ ω1 : (∃p ∈ G) M ∈ Mp} is a closed and unbounded subset isacub
of ω1.

Proof of Claim 4: For δ ∈ ω1, the fact that G meets Dδ implies that
C \ δ is not empty. To show that C is closed we assume δ /∈ C and
show that it is not a limit point of C by showing that C ∩ δ has a
maximum element. Choose p ∈ G ∩Dδ and let M ∈ Mp be as in the
definition of Dδ. Since δ is not in C, δ ∈M . If Mp ∩M is empty, let
β = 0, otherwise let M̄ be the maximum element of Mp ∩M , and let
β = M̄ ∩ω1. It now follows that for all q < p in G and M ′ ∈Mq ∩M ,
then M ′∩ω1 is less than or equal to β. It thus follows that C is disjoint
from the interval (β, δ).
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In order to apply PFA(S) to P , we have to show that P is a proper
poset that preserves that S is Souslin. For the moment, assume that
S ×P is proper, and by PFA(S), choose a filter G on P as in Claim 4
and let CG be the corresponding cub, also as in Claim 4. Let ĖG be an
S-name having the property that for each p ∈ G and M ∈ Mp with

δ = M ∩ ω1 ∈ B1, the condition p(M) forces that δ is in ĖG.

Claim 5. There is an s0 ∈ S that forces that ĖG is a stationary subsetclaims0
of Ḃ.

Proof of Claim 5: Item (3) in the definition of P ensures that every
member of S forces that ĖG is a subset of Ḃ. Now we prove that some
s0 forces that ĖG is stationary. Let D denote the set of s ∈ S such
that there is a cub Cs ⊂ CG such that s forces that Cs ∩ ĖG is empty.
If D is dense there is γ ∈ ω1 such that Sγ ⊂ D. Let Cγ denote the cub⋂
{Cs : s ∈ Sγ}. Since B1 is stationary, there is a δ ∈ Cγ ∩ B1 above

γ. Choose p ∈ G and Mδ ∈Mp so that δ = Mδ ∩ ω1. Therefore p(Mδ)

forces that δ ∈ ĖG. But this contradicts that δ ∈ Cs where s is the
unique element of Sγ that is below p(Mδ). Therefore D is not dense
and our desired value s0 is any element with no extension in D.

Claim 6. s0 forces that [Ė]ℵ0 ⊂ İ, where s0 and Ė are chosen as inp22
Claim 5.

Proof of Claim 6: It suffices to show that if s0 < s ∈ S and γ = o(s),
then s has an extension forcing that Ė ∩ γ ∈ İ. Since s 
 Ė is
stationary, there is a δ ∈ C ∩ B1 and a p ∈ G, with δ = M ∩ ω1 for
some M ∈ Mp, such that s < p(Mδ). Therefore, by condition (6) of

the definition of P , p(Mδ) forces that Ė ∩ δ ∈ İ.

We finish the proof of the Proposition by proving that P is proper
and preserves that S is Souslin. Let M be any countable elementary
submodel of H(κ) for some regular κ > ω2 with S × P ∈ M . By
Proposition 2.4, it will suffice to show that any pair (s†, q) where s† ∈
S \M and M ∩H(ℵ2) ∈Mq is an M -generic condition for S × P .

Consider any dense open set D of S×P that is a member of M . By
Remark 2.3 it suffices to show that any extension of (s†, q) that is inD is
compatible with an element of D∩M . For simplicity we rename (s†, q)
to be such an extension that is in D. We make two more extensions
of (s†, q). With the first, using that s† forces that Ḃ is stationary, we
can extend so as to assume that there is an M † ∈ Mq \M such that
q(M †) < s†. The second of these is to simply extend s† so that there
is a countable elementary submodel of H(κ) containing q but not s†.
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It is useful to regard D as an S-name Ḋ of a dense open subset of
P in the sense that if (t, p) ∈ D, then we interpret this as t 
 p ∈ Ḋ.
It is evident from conditions (4) and (5) of the definition of P that
q0 = q � M is in M and that q is an extension of q0. Let δ = M ∩ ω1.
Let {M1, . . . ,M`} be an increasing enumeration ofMq \M . Of course
M1 = M ∩ H(ℵ2). Let {s0, . . . , sm} be any one-to-one list of the set
{s† � δ, q(M1) � δ, . . . , q(M`) � δ} so that s0 = s† � δ. For each
1 ≤ j ≤ `, let mj denote the value such that smj = q(Mj) � δ. For each
1 ≤ j ≤ `, q(Mj) forces that a(q(Mj),Mj) includes, mod finite, each

member of M [ġ]∩ İ. For each 0 ≤ k ≤ m, let ak be the intersection of
all a(q(Mj),Mj) such that 1 ≤ j ≤ ` and mj = k, i.e. sk = q(Mj) � δ.

Let J denote those 1 ≤ j ≤ ` such that q(Mj)(ξ) = s†(ξ) for all
δ ≤ ξ ∈ dom(q(Mj)). Note that the assumption above onM † ∈Mq\M
ensures that J is not empty. Since S is a coherent Souslin tree, there
is a δ̄ ∈ M such that s0 � [δ̄, δ) = si � [δ̄, δ) for each i ≤ m. By
increasing δ̄ we can also ensure that M̄ ∩ ω1 < δ̄ for each M̄ ∈ Mq0 .
Let s̄i = si � δ̄ for i ≤ m, and notice that {s̄0, . . . , s̄m} ∈ M1. Note
that J = {j : 1 ≤ j ≤ ` and s̄0 ⊕ p(Mj) < s†}. Also, define JB to be
the set {j ∈ J : Mj ∩ ω1 ∈ B1}.

Say that (t, p) ∈ D is like (s†, q) providing

(1) there is a Mp
1 ∈Mp such that δ̄ ∈Mp

1 and q0 = p �Mp
1 ,

(2) Mp \Mp
1 has size `, enumerated as {Mp

1 , . . .M
p
` } in increasing

order,
(3) s̄mj < p(Mp

j ) for 1 ≤ j ≤ `
(4) J = {j : 1 ≤ j ≤ ` and s̄0 ⊕ p(Mp

j ) < t},
(5) JB = {j ∈ J : Mp

j ∩ ω1 ∈ B1}.

Our proof that S ×P is proper will depend on finding some (t, p) ∈
D ∩M that is like (s†, q) and, in addition, is compatible with (s†, q).
Of course this requires that t < s†, but what else? Since Mp ∈ M1

and p < q0 we automatically would have that Mp ∪ Mq is an ∈-
chain. The most difficult (and remaining) requirement is to ensure
that if p(Mp

j ) < q(Mk) and Mp
j ∩ ω1 ∈ B1, then Mp

j ∩ ω1 must be in
a(q(Mk),Mk). Since s̄mj < p(Mp

j ) < q(Mk), it follows that mk = mj

and so amj is a subset of a(q(Mk),Mk), and we will ensure that Mp
j ∩ω1

is in amj .

The set L ⊂ D consisting of those pairs (t, p) that are like (s†, q)
is an element of M . For each p ∈ P such that there is a t ∈ S with
(t, p) ∈ L, let

∆p = 〈Mp
1 ∩ ω1,M

p
2 ∩ ω1, . . . ,M

p
` ∩ ω1〉 .
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Set

Ḟ` = {(t,∆p) : (t, p) ∈ L} ,
which is an S-name of a subset of ω`1 that is in M and in H(ℵ2), so
it follows that Ḟ` ∈ M1. By reverse induction on ` > k ≥ 1, we
define Ḟk. Having defined Ḟk+1, we define for any increasing sequence
δ1 < · · · < δk < ω1, the S-name

Ḟk+1(〈δ1, . . . , δk〉) = {(t̄0, γ) : t̄0 ∈ S and (t̄0, 〈δ1, . . . , δk, γ〉) ∈ Ḟk+1}

and then we put (t0, 〈δ1, . . . , δk〉) in Ḟk providing t0 forces that Ḟk+1(〈δ1, . . . , δk〉)
is stationary.

The next step is to prove that, for each k < `, s† 
 ∆q � k ∈ Ḟk.
Again, this is by reverse induction on ` > k ≥ 0. Let ~γ = ∆q =

〈γ1, . . . , γ`〉. Certainly, s† 
 ~γ ∈ Ḟ`. We again take note of the fact
that Ḟk ∈ M1 for each 0 ≤ k ≤ `. Now let j = k + 1 and assume that
s† 
 ~γ � j ∈ Ḟj. Observe that Ḟj(~γ � k) is a member of the model Mj,

and that γj = Mj ∩ω1 is forced by s† to be an element of Ḟj(~γ � k). By

Lemma 2.1 (3), this means that s† forces that Ḟj(~γ � k) is stationary.

This completes the inductive step that s† forces that ~γ � k is in Ḟk.
For the last case, when k = 0, we have proven that s† forces that Ḟ0

includes the empty sequence.
To complete the proof, we work our way back up from k = 0 to k = `

in order to pick a suitable (t, p) ∈ D∩M that is compatible with (s†, q).
Recall that the main requirement, once we know that (t, p) ∈ L ∩M ,
is to have that δj ∈ amj for each j ∈ JB where ∆p = 〈δ1, . . . , δ`〉. We

begin with the fact that s† forces that Ḟ0 ∈ M1 is non-empty. By
Lemma 2.1, there is an t0 ∈ M ∩ S with t0 < s† that also forces the
empty sequence is in Ḟ0. By definition, t0 
 Ḟ1(∅) is stationary.

If 1 is not in JB, then we simply apply Lemma 2.1 to choose t0 ≤
t1 < s† in M1 and a δ1 ∈ M ∩ ω1 such that t1 
 δ1 ∈ Ḟ1(∅). We
now handle the more difficult case when 1 is in JB. Here we use our
assumptions on İ in order to similarly find the pair t1 and δ1, but this
time with δ1 ∈ am1 , so that t1 forces that δ1 ∈ Ḟ1(∅).

We have that t0 
 Ḟ1(∅) is stationary. Let g be a generic filter for
S with s† ∈ g. Since S is coherent, s̄m1 ⊕ g is also a generic filter for
S. Since we are assuming that 1 ∈ JB, we check that valg(Ḟ1(∅)) is a

subset of vals̄m1⊕g(Ḃ). Fix any (t1, γ1) in the name Ḟ1(∅) so that t1 ∈ g.

This means that (t1, 〈γ1〉) is in the S-name Ḟ1. By recursion, continue
to extend until we obtain (t`, 〈γ1, . . . , γ`〉) in the S-name Ḟ` with t` ∈ g.
Choose p̄ ∈ P so that (t`, p̄) ∈ L and 〈γ1, . . . , γ`〉 is equal to ∆p̄. By

condition (3) of the definition of P , p̄(M p̄
1 ) forces that γ1 ∈ Ḃ. Since
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1 ∈ J , we have that s̄0⊕ p̄(M p̄
1 ) < t` < s†, and so p̄(M p̄

1 ) is in the filter
s̄m1 ⊕ g. The ideal I(s̄m1) we get by interpreting the name İ using the
filter s̄m1⊕g is a P-ideal satisfying that [E]ℵ0∩I(s̄m1) is non-empty for
all stationary sets E ⊂ Ḃ. Since E = valg(Ḟ1(∅)) is such a stationary
set and is in the model M1[g], there is an infinite set a ∈ M1[g] such
that a ∈ [E]ℵ0 and a ∈ I(s̄m1). Again by elementarity, and Lemma
2.1, there is a condition t1 ∈ M ∩ g extending t0 and satisfying that
t1 
 a ⊂ Ḟ1(∅) and s̄m1 ⊕ t1 
 a ∈ İ. We have noted that am1 includes
mod finite a and so we may choose a δ1 ∈ a ∩ am1 .

We now have that (t1, 〈δ1〉) is in the name Ḟ1 ∩M , t1 < s†, and if
1 ∈ JB, then δ1 ∈ am1 . We proceed recursively to choose δj ∈ M1 (for
1 < j ≤ `) and an extension tj ∈ M1 ∩ S of tj−1 so that tj < s†, the

pair (tj, 〈δ1, . . . , δj〉) is in the S-name Ḟj, and so that, if j ∈ JB, then
δj ∈ amj . Now choose (t`, p) ∈ L ∩M so that ∆p = 〈δ1, . . . , δ`〉, and
that δj ∈ amj for each j ∈ JB. Of course this means that (t¯̀, p) ∈ D∩M
and (t`, p) 6⊥ (s†, q) as required. �

3. on PPI+

In this section we prove that PFA(S)[S] implies PPI+. As mentioned
in the introduction we will work with general sequentially compact reg-
ular spaces and not just spaces that are first countable. Our approach
requires this anyway, since we will be constructing a more general se-
quential structure in the ground model arising from an S-name of a
sequentially compact space. As a first step we prove that we can work
in the sequential closure of a subset of cardinality ℵ1. A subset E of
a space X is sequentially closed if every converging sequence from E
converges to a point of E. The sequential closure of a set is the inter-
section of all sequentially closed sets that include it. It will be useful
to have an internal description of the sequential closure of a set. There
is a well-known space in the study of sequential spaces, namely the
space Sω from [1]. This is the strongest sequential topology on the set
of finite sequences of integers, ω<ω, in which, for each t ∈ ω<ω, the
set of immediate successors, {t_n : n ∈ ω}, converges to t. If T is
any subtree of ω<ω, we will consider T to be topologized as a subspace
of Sω. To avoid confusion with the Souslin tree, we will call this the
Seqω-topology. As usual, for t ∈ T , Tt will denote the subtree of T
consisting of all t′ ∈ T which are comparable with t.

Of particular use will be those T ⊂ ω<ω that are well-founded (that
is, contain no infinite branch). Let WF denote those downward closed
well-founded trees T with the property that every branching node has
a full set of immediate successors. Such a tree will have a root, root(T )
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(which need not be the root of ω<ω) which is either the minimal branch-
ing node or, if there are no branching nodes, the maximum member of
T . For T ∈ WF, we let max(T ) denote the maximal elements of T
and let Br(T ) = {t ∈ T \ max(T ) : root(T ) ≤ t}, which is the set of
branching nodes of T . When discussing the topology on T ∈WF we
ignore the nodes strictly below the root of T . There is a natural notion
of the rank of each T ∈WF. The rank of T will really be the rank of
Tt where t is the root of T . We use rk(T ) to denote the ordinal α ∈ ω1

which is the rank of T . If t ∈ T is a maximal node, then rk(Tt) = 0,
and if root(T ) ⊂ t ∈ T , then rk(Tt) = sup{rk(Tt′)+1 : t < t′ ∈ Tt}. We
let WF(α) = {T ∈WF : rk(T ) ≤ α} and WF(<α) =

⋃
β<α WF(β).

Definition 3.1. Suppose that X is the base set for a topology and let
A be a subset of X. Let Σ(A,X) denote the set of functions σ such
that

(1) the domain of σ is some T ∈WF,
(2) σ(t) ∈ A for each maximal node t of T ,
(3) σ is a continuous function from T into X.

If σ ∈ Σ(A,X), we will say that σ converges to x if σ(root(T )) = x.

Proposition 3.2. If X is a Hausdorff space and A ⊂ X, then the se-seqlcl
quential closure of A in X is equal to {σ(root(T )) : σ ∈ Σ(A,X) and T =
dom(σ)} and has cardinality at most |A|ℵ0.

Proof. Let σ ∈ Σ(A,X) and let T ∈WF be the domain of σ. There is
no loss of generality in assuming that the empty sequence is the root of
T . For each t ∈ T , rk(Tt) is a countable ordinal. By induction on rk(Tt),
it follows that σ(t) is in the sequential closure of A. Now to prove that
{σ(root(T )) : σ ∈ Σ(A,X) and T = dom(σ)} is the sequential closure
of A, it suffices to prove that {σ(root(T )) : σ ∈ Σ(A,X) and T =
dom(σ)} is sequentially closed. Suppose that {σn : n ∈ ω} ⊂ Σ(A,X)
and that {xn : n ∈ ω} converges to a point x ∈ X, where for each
n ∈ ω, σn converges to xn. For each n, let Tn denote the domain of
σn. There is no loss in assuming, or arranging, that the root of Tn is
the immediate successor of the empty function and that root(Tn)(0)
is equal to n. With this assumption, it follows that T =

⋃
n Tn is an

element of WF. Similarly, the function σ with domain T , such that
σ(root(T )) = x and

⋃
n σn ⊂ σ, is an element of Σ(A,X) that converges

to x. This shows that {σ(root(T )) : σ ∈ Σ(A,X) and T = dom(σ)} is
sequentially closed in X.

If A is finite, then it is sequentially closed. The cardinality of WF is c
because every T ∈WF is a subset of the countable set ω<ω. Similarly,
for each T ∈ WF, the set {σ ∈ Σ(A,X) : T = dom(σ)} is bounded
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by |A|ℵ0 . Since a union of c many sets of cardinality at most |A|ℵ0 has
cardinality at most |A|ℵ0 , this shows that the sequential closure of an
infinite set A has cardinality at most |A|ℵ0 . �

Proposition 3.3. Every non-compact regular space in which countable
subsets have compact sequential closure has a subset of cardinality ℵ1 smallsubspace
which has no complete accumulation points in its sequential closure.

Proof. Let U be an open cover of a space X that has no finite subcover.
Since X is countably compact, U has no countable subcover. For conve-
nience we assume that U is closed under finite unions. Choose x0 ∈ X
and x0 ∈ U0 ∈ U . We continue the recursion for all α ∈ ω1 so that,
having chosen {xβ, Uβ : β < α}, we choose an xα /∈

⋃
β<α Uβ and then

a Uα ∈ U so that the (compact) sequential closure of {xβ : β ≤ α} is
included in Uα. It then follows that the sequential closure of {xα : α <
ω1} is included in the union of the open collection {Uα : α ∈ ω1} and
no complete accumulation point can be in any of the Uα’s. �

We will need a stronger version of Proposition 3.3.

Theorem 3.4. It is a consequence of PFA(S)[S] that each sequentially itsomega1
compact non-compact regular space includes a subset of cardinality ℵ1

that has no complete accumulation point in its sequential closure.

Proof. We work in a model of PFA(S) and prove that if we force with S
the conclusion of the theorem holds. Let g ⊂ S be any generic filter and
we begin by making a reduction in the forcing extension V [g]. Suppose
that X is a sequentially compact non-compact space. If the sequential
closure of every countable subset of X is compact, then the conclusion
of the Theorem holds by Proposition 3.3. Therefore we may assume
there is a countable set whose sequential closure, Y , is not compact.
We choose such a Y and fix a maximal free filter F of closed subsets of
Y . Since F is a free filter, its members are not compact sets. Since X
is sequentially compact, Y is also sequentially compact and countably
compact. It now follows that F is closed under countable intersections.
By re-labelling, we assume that the ordinal ω is dense in Y , and by
Proposition 3.2, we have that Y has cardinality at most c. Say that
H ∈ F+ providing H ∩ F is not empty for all F ∈ F .

We break into three cases. For the remainder of the proof, we work
in the subspace Y and the closure operation refers to the closure of a
subset of Y in Y . In the first case, assume that there is a descending
collection {Fα : α ∈ ω1} ⊂ F such that

⋂
{Fα : α ∈ ω1} is empty. For

each α ∈ ω1, choose any point xα ∈ Fα. The sequence {xα : α ∈ ω1}
has no complete accumulation point in Y since such a point would be
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in the closure of {xβ : α < β ∈ ω1} ⊂ Fα for each α. This completes
the proof in this first case. The second case is that there is some set
H ∈ F+ with the property that H0 ∩Y /∈ F for all countable H0 ⊂ H.
Since F is maximal, if H0 /∈ F , there is an F ∈ F that is disjoint from
H0. Following [11], we recursively construct an uncountable sequence
{hα : α ∈ ω1} ⊂ H together with a descending family {Fα : α ∈ ω1} ⊂
F . Having chosen {hβ : β < α} we choose Fα ⊂

⋂
{Fβ : β < α}

so that Fα is disjoint from {hβ : β < α}. Then we choose hα ∈ Fα.
It follows that the ω1-sequence {hα : α ∈ ω1} is a free sequence in
Y since, for each α ∈ ω1, Fα is disjoint from the closure (in Y ) of
{hβ : β < α} and includes the closure of {hβ : α ≤ β}. Each complete
accumulation point (if any) of {hα : α ∈ ω1} is in

⋂
{Fα : α ∈ ω1}, and

so {hα : α ∈ ω1} is our desired ω1-sequence.
Now we consider the final case. In this case we have that F is a

maximal free filter of closed subsets of Y with the property that every
intersection of at most ℵ1 members of F is again in F . In addition,
F satisfies that for each H ∈ F+, there is a countable H0 ⊂ H such
that H0 ∈ F . As mentioned above, the cardinality of Y is at most c,
and since F is generated by its separable members, it has a base of
cardinality at most c. Since PFA(S)[S] implies that c = ℵ2, we may fix
a strictly descending chain {Fα : α ∈ ω2} ⊂ F that is a base for F . For
each α ∈ ω2, choose a point xα ∈ Fα \Fα+1 together with a continuous
bounded real-valued function fα on Y satisfying that fα[Fα+1] = 1 and
fα(xα) < 0. Choose any σα ∈ Σ(ω, Y ) so that σα converges to xα.
It follows that fα ◦ σα is a member of Σ(fα[ω],R) that converges to
a negative real. Let Tα denote the domain of σα and, with no loss of
generality, assume that ∅ = root(Tα). Recall that fβ ◦ σα(∅) denotes
the real number to which fβ ◦ σα converges. Let us note that for all
β < α < ω1, fβ ◦ σα(∅) = 1 and fα ◦ σα(∅) < 0. Also note that if
H ∈ [ω2]ℵ2 , then {xα : α ∈ H} ∈ F+ and so there is a countable
H0 ⊂ H and an η ∈ ω2 such that the closure of {xα : α ∈ H0} contains
Fη. In particular, if η < α and if L is a finite subset of ω2 \ α with
fγ ◦ σα(∅) < 0 for each γ ∈ L, then there is a β ∈ H0 such that
fγ ◦ σβ(∅) < 0 for each γ ∈ L.

Now we pass back to the ground model. Let Ẏ be an S-name for
the topological space Y under discussion with 1 
 ω ⊂ Ẏ . We can
assume that the base set for the sequential closure of ω is ω2. For each
α ∈ ω2, fix S-names ẋα, σ̇α, Ṫα and ḟα for xα, σα, Tα and fα respectively
as defined in the previous paragraph. Choose a condition s̃ ∈ S that
forces the following properties for each α, β ∈ ω2:
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(1) σ̇α is an element of Σ(ω, Ẏ ), Ṫα = dom(σ̇α), and σ̇α(∅) equals
ẋα,

(2) ḟα is a continuous real-valued function on Ẏ and ḟα ◦ σ̇α(∅) < 0,

(3) if β < α, ḟβ ◦ σ̇α converges to 1
(4) if H ⊂ ω2 has cardinality ℵ2, there is a countable H0 ⊂ H and

an η ∈ ω2 such that for all η < α and finite L ⊂ ω2 \ α, if

ḟγ ◦ σ̇α(∅) < 0 for all γ ∈ L, then there is a β ∈ H0 such that

ḟγ ◦ σ̇β(∅) < 0 for all γ ∈ L.

Property (4) corresponds to the condition that xα is in the closure of
{xξ : ξ ∈ H0} for all α > η as discussed above. By Lemma 2.1, for each
α ∈ ω2, pick an sα ∈ S extending s̃ such that sα forces a value on each of
ẋα, Ṫα, σ̇α and ḟα � ω. That is, there is a Tα ∈WF which is the domain
for a function σα with domain Tα and range included in ω2. We can
assume that sα forces that σ̇α is equal to σα, hence ẋα is forced to equal
σα(∅), and that there is a function fα with domain equal to ω union

the range of σα, such that sα forces that ḟα agrees with fα on all these
values. Choose any s̄ ∈ S so that Γ = {α ∈ ω2 : sα = s̄} has cardinality
ℵ2. Let X denote the indexed family {〈Tα, σα, fα � ω〉 : α ∈ Γ}.

Now we define a poset P in a similar (but simpler) fashion as in the
proof of P22. Our reduction from S-names to the family of values that
the names are forced to equal allows us to ignore S when defining the
poset P . We let P be the set of all functions p of the form p :Mp → Γ,
where

(1) Mp is a finite ∈-chain of countable elementary submodels of
H(ℵ3),

(2) X ∈M for each M ∈Mp,
(3) for M2 ∈ Mp and M1 ∈ Mp ∩M2, sup(M1 ∩ ω2) ≤ p(M1) ∈

Γ ∩M2.

We let p ≤ q for p, q ∈ P , if

(4) the function p includes the function q,
(5) if M2 ∈Mq and if M1 ∈Mp ∩M2 is such thatMq ∩M2 ∈M1,

then fq(M) ◦ σp(M1) extends continuously to Tσp(M1)
and fq(M) ◦

σp(M1)(∅) < 0, for each M ∈Mq such that fq(M) ◦σq(M2)(∅) < 0.

Note that in condition (5), it follows from condition (3) that fq(M) ◦
σq(M2) converges to 1 for each M ∈ Mq ∩ M2. To see that ≤ is a
transitive ordering on P , assume that r ≤ p and p ≤ q. Let M2 ∈ Mq

and suppose there is M1 ∈Mr∩M2 such thatMq∩M2 ∈M1. Also let
M ∈Mq be such that fq(M) ◦ σq(M2)(∅) < 0. We have to establish that
fq(M) ◦σr(M1)(∅) < 0. If M1 ∈Mp, then this follows by the assumption
that p ≤ q. If Mp ∩M2 ∈ M1, then it follows from the assumption
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that r ≤ p. Otherwise, choose the minimal M3 ∈ Mp ∩M2 \M1 such
that Mp ∩M3 ∈ M1. Then Mq ∩M2 ∈ M3 and so p ≤ q implies that
fq(M) ◦ σp(M3)(∅) = fp(M) ◦ σp(M3)(∅) < 0. Then fp(M) ◦ σr(M1)(∅) < 0
since r ≤ p and fp(M) ◦ σp(M3)(∅) < 0.

We will prove that P is proper and preserves that S is Souslin. Before
doing so, we show that this means that s̄ forces that Ẋ has an ω1-
sequence with no complete accumulation point in its sequential closure.
It is immediate from the definition of the ordering on P , that for each
δ ∈ ω1, the set Dδ = {q ∈ P : δ ∈

⋃
Mq} is a dense open subset of P .

Let G ⊂ P be a filter such that G∩Dδ is not empty for all δ ∈ ω1. Set
C = {δ ∈ ω1 : (∃q ∈ G) (∃M ∈ Mq) δ = M ∩ ω1}. For each δ ∈ C,
choose qδ ∈ G and Mδ ∈ Mqδ such that δ = Mδ ∩ ω1. Let αδ ∈ Γ be
the value of qδ(Mδ). We prove, by induction on δ ∈ C, that s̄ forces
that the closure of {ẋαβ : β ∈ C ∩ δ+1} is disjoint from the closure of
{ẋαγ : δ < γ ∈ C}. Given δ ∈ C, let ξ be the maximum element of
{0} ∪ {M ′ ∩ ω1 : M ′ ∈ Mqδ ∩Mδ}. By the induction hypothesis, it
follows that s̄ forces that {ẋαβ : β ∈ C ∩ ξ+1} and {ẋαγ : δ < γ ∈ C}
have disjoint closures. Now we prove that s̄ forces that {ẋαβ : ξ <
β ∈ C ∩ δ+1} and {ẋαγ : δ < γ ∈ C} have disjoint closures. In fact

we show that ḟαδ is forced to be a continuous function that separates

them in the sense that ḟαδ
(
{ẋαβ : ξ < β ∈ C ∩ δ+1}

)
⊂ (−∞, 0) and

ḟαδ
(
{ẋαγ : γ ∈ C \ δ}

)
= {1}.

For δ < γ ∈ C, qδ, qγ ∈ G are compatible, and so, by condition
(3) of P αδ < αγ and, by property (3) of the construction, s̄ forces

that ḟαδ(ẋαγ ) = 1 and fαδ ◦ σαδ(∅) < 0. Now consider any β with
ξ < β ∈ C∩δ. Since qβ and qδ are in the filter G, we may choose q̄ ∈ G
below each of them. Then Mβ ∈ Mq̄ ∩Mδ and, by the definition of ξ,
Mqδ ∩Mδ ∈Mβ. Therefore, since q̄ < qδ, it follows from condition (5)
in the definition of P that fαδ ◦ σαβ extends continuously to Tαβ and

that fαδ ◦ σαβ(∅) < 0. This means that s̄ forces that ḟαδ(ẋαβ) < 0 as
required.

Now we return to the proof that P is proper and preserves that S
is Souslin. Since S is a coherent Souslin tree it suffices to show that
P preserves that {s ∈ S : s̄ ⊆ s} is Souslin. We will construct a pair
(s, p) ∈ S × P (with s̄ ≤ s) that is M -generic for S × P . Let κ and
countable M ⊂ H(κ) be as in Definition 2.2 with, additionally, s̄, S ∈
M . For any q ∈ P ∩M , p = q ∪ {(M ∩H(ℵ3),min(Γ \ sup(M ∩ ω2))}
is in P and so we may choose p ∈ P to be any condition such that
M ∩ H(ℵ3) ∈ Mp. Let s be any member of S \M with s̄ ⊂ s. By
Proposition 2.4 it will suffice to prove that (s, p) is M -generic for S×P .
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Let D ∈ M be any dense open subset of S × P . By Definition 2.2,
we have to prove that if (s̃, q) is any extension of (s, p), then there is a
compatible condition in D∩M . Since D is dense, we may assume that
(s̃, q) ∈ D. Let M̄0 =Mq ∩M and choose any M̄ ∈ M ∩H(ℵ3) such
that M̄ is a countable elementary submodel of H(ℵ3) and M̄0 ∈ M̄ .

Now let g ⊂ S be any generic filter for S with s̃ ∈ g. We will argue
in the forcing extension V [g]. The poset P with its same ordering is a
poset in V [g]. Again we use the basic fact about product forcing (e.g.
see [25, II 1.5]).

Claim 7. The set valg(D) = {r ∈ P : (∃t ∈ g) (t, r) ∈ D} is a dense inVg
subset of P.

Similarly, for each r ∈ P and each M̃ ∈Mr, we again use that the set
M̃ [g] = {valg(τ) : τ is an S-name in M̃} is an elementary submodel of
H(ℵ3) in V [g] (see [25, III 2.11]). Of course q is an element of valg(D).
To finish the proof that (s, p) is an M -generic condition for S ×M , it
suffices to show there is an r ∈ valg(D)∩M that is compatible with q.
Let {M0, . . . ,M`−1} enumerateMq \M =Mq \M̄ in increasing order.
For each i < `, let αi ∈ Γ denote q(Mi).

Say that r ∈ valg(D) is like q providing

(1) q � M̄0 ⊂ r and Mr ∩ M̄ = M̄0,
(2) Mr \M̄ has size `, enumerated as {M r

0 , . . . ,M
r
`−1} in increasing

order.

For each r that is like q and each i < `, let αri denote r(M r
i ). Set L`

equal to the collection {〈αr0, . . . , αr`−1〉 : r is like q}. For any tuple 〈βj :
j < i〉 ∈ ωi2 and β ∈ ω2, we use 〈βj : j < i〉_〈β〉 to denote the tuple
〈βj : j ≤ i〉 where βi = β. By reverse induction on 0 ≤ i < `, we define
a set Li. If Li+1 has been defined, then for any i-tuple 〈βj : j < i〉 ∈ Γi,
Li+1(〈βj : j < i〉) is equal to the set {β : 〈βj : j < i〉_〈β〉 ∈ Li+1}.
Then we define 〈βj : j < i〉 to be in Li providing Li+1(〈βj : j < i〉) has
cardinality ℵ2. Using the facts that 〈α0, . . . , α`−1〉 ∈ L`, and that Mi[g]
is an elementary submodel of H(ℵ3) with Lj ∈ Mi[g] for each j ≤ `
and i < `, it follows by reverse induction on i < `, that 〈αj : j < i〉 is
in Li. In particular, we have that the empty sequence is an element of
L0.

Now we note that the following claim holds in V [g] because, as shown
above, it is forced by s̄.

Claim 8. If H ⊂ Γ has cardinality ℵ2 then there is an η ∈ ω2 and a sepble
countable H0 ⊂ H ∩ η such that for all α ∈ Γ \ η and finite L ⊂ Γ \ α,
if fγ ◦ σα(∅) < 0 for all γ ∈ L, then there is a β ∈ H0 such that
fγ ◦ σβ(∅) < 0 for all γ ∈ L.



30 ALAN DOW1 AND FRANKLIN D. TALL2

Let L = {αi : i < ` and fαi ◦ σα0(∅) < 0}. Applying Claim 8 to the
set H = L0(〈 〉), there is an η ∈ M and a β0 ∈ L0(〈 〉) ∩M such that
fγ ◦ σβ0(∅) < 0 for all γ ∈ L. Similarly, there is a β1 ∈ L1(〈β0〉) ∩M
such that fγ ◦ σβ1(∅) < 0 for all γ ∈ L. Repeating this step ` times, we
establish that there is a 〈β0, . . . , β`−1〉 ∈ L`∩M such that fγ◦σβi(∅) < 0
for each i < ` and each γ ∈ L. By elementarity, there is an r ∈M [g]∩P
that is like q such that 〈βi : i < `〉 = 〈αri : i < `〉. Of course r ∈ M
since, by Lemma 2.1, P ∩M [g] ⊂M .

Since r ∈ valg(D) ∩ M , we complete the proof by showing that
r ∪ q is an extension in P of each of r and q. Conditions (1) and (2)
are immediate for Mr∪q and (3) follows from the fact that r ∈ M0.
Condition (5) holds vacuously for the relation q ∪ r < r while the
previous paragraph established that (5) holds for the relation r ∪ q <
q. �

We return to our proof of PPI+. For the remainder of the section we
assume that we have an S-name of a sequentially compact non-compact
regular space Ẋ that is equal to the sequential closure of the set of
countable ordinals, ω1, and that every point in the sequential closure
of the set ω1 is forced (by 1) to have a neighborhood meeting ω1 in a
countable set. We note that by Theorem 3.4, PFA(S) implies that any
S-name of a sequentially compact non-compact space has to include
such a subspace, but we emphasize (for use in §4) that the results
in the remainder of this section do not require the assumption that
PFA(S) holds. We do apply PFA(S) for our main result in Proposition
3.27, but it is explicitly added as a hypothesis in that statement.

The cardinality of the sequential closure of a set of size ℵ1 in a regular
space is at most c, hence we may assume that the base set is the ordinal
c. To ensure that the cardinality of Ẋ is at least c, we can replace Ẋ by
the free union of Ẋ and the unit interval (with a suitable re-indexing
so that ω1 is still dense). Next we choose an assignment of S-names
of neighborhoods {U̇(x, n) : x ∈ c, n ∈ ω}. We assume that 1 forces
that the closure of U̇(x, n+ 1) is included in U̇(x, n) for each x ∈ c and
n ∈ ω. We also assume that 1 forces that the closure of any finite union
from the collection {U̇(x, n) : x ∈ c, n ∈ ω} meets ω1 in a countable
set. If we are also assuming that Ẋ is forced to be first countable, then
we assume that {U̇(x, n) : n ∈ ω} is forced to form a neighborhood
base for x.

Fix a regular cardinal κ large enough so that the second power set
(i.e. the power set of the power set) of c has cardinality less than κ. Let
≺ be a well-ordering of H(κ). Since S is ccc and has cardinality ℵ1, it is
also true in the forcing extension by S that κ is a regular cardinal and
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the cardinality of the second power set of c is less than κ. Moreover,
every element of H(κ) in the forcing extension has an S-name in the
H(κ) of the ground model. Therefore whenever we choose an S-name
for a subset of c or a subset of its power set, we may choose such a name
from H(κ). In order to avoid getting more technical about S-names, we
will occasionally choose an S-name by describing some properties that
it must satisfy and to then choose the ≺-minimal name fulfilling those
properties. Throughout this section we will assume without mention
that any S-names under discussion are elements of H(κ).

3.1. The sequential structure. Since S is ccc, it follows that if {ẋn :
n ∈ ω} is a sequence of S-names and 1 
 ẋn ∈ Ẋ for each n, then there
is an infinite L ⊂ ω such that 1 
 {ẋn : n ∈ L} is a converging sequence
in Ẋ. To see this, assume that the root of S does not force that {ẋn :
n ∈ ω} is a converging sequence and let L0 = ω. Recursively choose,
by Lemma 2.1 (4), a mod finite descending sequence {Lα : α ∈ γ} and
conditions {sα : α ∈ γ} satisfying that sα forces that {ẋn : n ∈ Lβ}
(for β < α) is not converging, while {ẋn : n ∈ Lα} is converging. Since
the family {sα : α ∈ γ} is an antichain, this process must end for some
γ < ω1. Finally L is any infinite set that is mod finite included in each
member of {Lα : α ∈ γ}.

Definition 3.5. Say that a sequence {ẋn : n ∈ L} is an S-converging
sequence in Ẋ providing 1 
 {ẋn : n ∈ L} is a converging sequence
(which includes, for example, constant sequences).

With this new terminology we have proven above that

Lemma 3.6. For any {ẋn : n ∈ ω} of S-names of ordinals in c, there is Sconverge
an infinite L ⊂ ω such that {ẋn : n ∈ L} is an S-converging sequence.

Of course our space Ẋ is forced to be sequentially compact and equal
to the sequential closure of ω1. We again work with trees T ∈WF and
accompanying functions y but with a new twist. We define a set Y of
such functions and interpret a (ground model) sequential topology on
that set.

Definition 3.7. A function y ∈ Yα providing there is a Ty in WF(α)
such that doty

(1) the domain of y is max(Ty) (we will refer to Ty as the domain
of y),

(2) the range of y is included in ω1,
(3) the condition 1 of S forces that y extends continuously into Ẋ

to all of Br(Ty).
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For any such y ∈ Yα and branching node t ∈ Ty, we associate an
S-name by recursion on the rank of (Ty)t: ẏ(t) denotes the canonical
S-name such that s ∈ S forces an ordinal value x on ẏ(t) providing
s forces such a value on ẏ(t′) for all branching nodes t′ ∈ (Ty)t above
t and s forces that the continuous extension of y to all of (Ty)t takes
value x at t. For maximal nodes t ∈ Ty, ẏ(t) will just denote y(t).

We let Y =
⋃
α∈ω1

Yα.

This next lemma is a straightforward reformulation of the property
of a potentially suitable function y being in Y .

Lemma 3.8. Each function y with Ty ∈ WF(0) and unique max-
imal node t is in Y0 so long as y(t) ∈ ω1. A function y with do-
main Ty ∈ WF(1) is in Y1 if and only if {y(root(T )_n) : n ∈ ω} is
an S-converging sequence. For each Ty ∈ WF, and function y from
max(Ty) into ω1, by induction on the rank of Ty, y is in Y if and only
if for each branching t ∈ Ty, each y � max( (Ty)t_n ) is in Y , and
{ẏ( t_n ) : n ∈ ω} is an S-converging sequence.

Definition 3.9. Say that y1 and y2 in Y are congruent, denoted y1 ≈
y2, providing there is a tree T ∈WF such that

(1) the set Br(Ty1) equals {root(Ty1)_t : t ∈ Br(T )},
(2) the set Br(Ty2) equals {root(Ty2)_t : t ∈ Br(T )},
(3) and for each maximal t ∈ T , y1(root(Ty1)_t) equals y2(root(Ty2)_t).

Clearly if y1 ≈ y2, then ẏ1(root(Ty1)) names the same element as
ẏ2(root(Ty2)). Now that we have identified our structure Y we extend
the notion to define a closure operator on any given finite power of Y
which will help us understand points in the sequential closure of ω1 in
Ẋ. If y ∈ Y , we will also use e(y) as a more compact notation for
ẏ(root(Ty)). Similarly, if ~y ∈ Y n (for some n ∈ ω), we will use e(~y) to
denote the point 〈e(~y0), e(~y1), . . . , e(~yn−1)〉.
Definition 3.10. For each countable index set H, and subset B ofseql
Y H we similarly define the hierarchy {B(α) : α ∈ ω1} by recursion.
For limit α, B(α) equals

⋃
β<αB

(β) and B(0) = B. The members of

B(α+1) for any α, consist of the union of B(α) together with all those
~b = 〈yh : h ∈ H〉 ∈ Y H such that there is a sequence {~bk : k ∈ ω} of
members of B(α) ∩ (Yα)H such that

(∀h ∈ H)(∃m ∈ ω)(∀k ∈ ω\m) (~bk)h ≈ yh � (Tyh)t_h k where th = root(Tyh) .

When ~b satisfies this definition with respect to {~bk : k ∈ ω}, we ab-

breviate this by saying that {~bk : k ∈ ω} Y -converges to ~b. Also if we

say that {~bk : k ∈ L} Y-converges to ~b for some infinite set L, we just
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mean that for any bijection f : ω → L, the sequence {~bf(k) : k ∈ ω}
Y -converges to ~b.

For any countable index set H, we may view Y H as an S-sequential
structure and for any A ⊂ Y H , we say that A(ω1) is the sequential clo-
sure and is sequentially closed. Notice that this S-sequential structure
on Y H is defined in the ground model.

Definition 3.11. For any countable set H and S-name Ȧ such that seqldef
1 
 Ȧ ⊂ Y H , we define, for each δ ∈ ω1, the S-name (Ȧ)(δ) to be the
set of pairs (s, ~y) ∈ S×Y H such that there is a countable B ⊂ Y H with
s 
 B ⊂ Ȧ and ~y ∈ B(δ).

The next lemma captures how the topology on Y will be key to the
definition of our proper S-preserving poset in the next subsection.

Lemma 3.12. Suppose that B ⊂ Y n and ~y = 〈yi : i < n〉 ∈ B(α) for seqopen
some α ∈ ω1. If, for each i < n, Oi is an Seqω-open subset of Tyi with
root(Tyi) ∈ Oi, then there is a sequence 〈ti : i < n〉 and an element
〈bi : i < n〉 ∈ B such that

(1) for each i < n, ti ∈ Oi,
(2) for each i < n, bi is congruent to yi � (Tyi)ti.

Proof. We proceed by induction on α. There is nothing to prove if α
is a limit, since there is then a β < α such that ~y ∈ B(β). Otherwise,

let α = β + 1 and, by Definition 3.10, there is a sequence {~bk : k ∈ ω}
of elements of B(β) ∩ (Yβ)n such that, for each k ∈ ω and each i < n,

(~bk)i is congruent to yi � (Tyi)root(Tyi )
_k. Choose a k ∈ ω so that

root(Tyi)
_k is in Oi for each i < n. For each i < n, let T ′i denote the

domain of (~bk)i and let t′i denote the root of T ′i . For each i < n, let O′i
denote the open subset of T ′i consisting of those (t′i)

_t ∈ ω<ω such that

root(Tyi)
_k_t ∈ Oi. Now apply the induction hypothesis to ~bk. �

Note that the members of Y0 have a singleton domain and for each
α ∈ ω1, Y0 ∩ e−1(α) is the set of members y of Y0 such that e(y) =
y(max(Ty)) = α. To see this, let y ∈ Y and fix any γ ∈ ω1 so that
each s ∈ Sγ decides the ordinal value for e(y). Next, fix a possibly

larger δ ∈ ω1 so that for each s ∈ Sδ, s forces that U̇(e(y), 0) ∩ ω1 ⊂ δ.
Since s ∈ Sδ also forces that U̇(e(y), 1) is included in the closure of
U̇(e(y), 0)∩ω1, s forces that e(y) is not in the sequential closure of ω1\δ.
On the other hand, s forces that for all y′ ∈

(⋃
δ≤α Y0 ∩ e−1(α)

)(ω1)
,

e(y′) is in the sequential closure of ω1 \δ. Therefore there is a free filter

of S-sequentially closed subsets of Y including
(⋃

α>δ Y0 ∩ e−1(α)
)(ω1)
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for each δ ∈ ω1. By Zorn’s Lemma, we can extend it to a maximal free
filter, F0, of S-sequentially closed subsets of Y .

3.2. A new application of PFA(S). The filter F0 may not generate
a maximal filter in the extension V [g] and so, for the purposes of using
such a filter to define a proper poset adding a copy of ω1, we will have to
extend it to some S-name of a maximal filter Ḟ0. Looking ahead to the
PFA(S) step requiring that this poset also be S-preserving, we then run
into severe problems caused by the fact that, for some s, we obtain a
different filter in V [s⊕g] than in V [g]. Recall that s⊕g is the (generic)
filter generated by {s ⊕ t : t ∈ g}. The key innovation to overcome
this problem is to work in a much larger product structure. We adopt
a new approach by extending this filter coherently to a directed family
of finite powers of Y . See the definition of a symmetric F0-filter base
below. It will be convenient to also use the notation s ⊕ g to denote
the element

⋃
{s⊕ t : t ∈ g} ∈ 2ω1 .

We introduce some more notational conventions. Let S→ denote the
set of non-empty finite sets {si : i < n} for which there is a δ such that
each si ∈ Sδ. The index ordering on the tuples in S→ will always be
the lexicographic ordering of S as a subtree of 2<ω1 . We will be using
the (s, s′)-transfer construction from Definition 2.5 when s forces that
Ȧ is a subset of some power of Y . Here is another such definition. It
is simply a suggestive terminology for transfering a subset of Y {si : i<n}

to a subset of Y {si⊕s : i<n}.

Definition 3.13. If {si : i < n} ∈ S→ and s ∈ S are such that o(s0) ≤
o(s), then for ~y ∈ Y {si : i<n}, let (~y)⊕s be the element ~z of Y {si⊕s : i<n}

defined by ~z(si ⊕ s) = ~y(si) for each i < n. Similarly, for an S-name
Ȧ such that s 
 Ȧ ⊂ Y {si:i<n}, the name Ȧ⊕s is the name defined bygoup
the property that: for each s < s′ and ~y = 〈yi : i < n〉 ∈ Y {si:i<n},
s′ 
 ~y ∈ Ȧ if and only if s′ 
 (~y)⊕s ∈ Ȧ⊕s.

If g is a generic filter for S, (~y)⊕g ∈ Y {si⊕g:i<n} and Ȧ⊕g are defined
analogously for {si : i < n}, ~y, and Ȧ as above.

Suppose that Ȧ, {si : i < n}, and s ∈ S are as in the definition.
If B ⊂ Y {si : i<n} is a set in the ground model, then B⊕s is similarly
defined. Then B⊕s ⊂ Y {si⊕s:i<n} and s 
 Ȧ⊕s ⊂ Y {si⊕s:i<n}. Also,
Ȧ⊕s means the same thing as Ȧ⊕š in the forcing language. Since Y
and S are elements of H(ℵ2), for any {si : i < n} ∈ S→ and S-name
Ȧ of a subset of Y {si : i<n}, there is an S-name Ḃ in H(ℵ2) such that
1 
 Ḃ = Ȧ.
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Definition 3.14. Let V denote the set of all tuples (s, {si : i < n}, Ḟ )
where

(1) s ∈ S, {si : i < n} ∈ S→, o(s0) ≤ o(s),
(2) Ḟ ∈ H(ℵ2) is an S-name and s 
 Ḟ 6= ∅, and
(3) 1 forces that Ḟ = Ḟ (ω1) ⊂ Y {si:i<n}.

For each α ∈ ω1, let Vα be the set of (s, {si : i < n}, Ḟ ) ∈ V satisfying
that o(s) ≤ α.

For this next definition we remind the reader that the (s, s′)-transfer
(Ȧ)ss′ was defined in Definition 2.5 and that ∅ is the root of S.

Definition 3.15. A family SB ⊂ V is a symmetric F0-filter base if it symmet
includes the family {(∅, {∅}, F̌ ) : F ∈ F0} and for each (s, {si : i <
n}, Ḟ ) ∈ SB,

(1) (s̃, {si : i < n}, Ḟ ) ∈ SB for each s < s̃ ∈ S,
(2) for each s̃ ∈ So(s), (s̃, {si ⊕ s : i < n}, (Ḟ⊕s)ss̃) ∈ SB,

(3) for each `0 < ω and {(s, {s`i : i < n`}, Ḟ`) : ` < `0} ⊂ SB, there
is an (s, {s̃i : i < m}, Ḣ) ∈ SB such that for each s < s′ ∈ S
and ~y ∈ Y {s̃i:i<m},
(a) for each ` < `0, {s`i ⊕ s : i < n`} ⊂ {s̃i : i < m}, and
(b) if s′ 
 ~y ∈ Ḣ, then, for each ` < `0, s′ 
 ~y � {s`i ⊕ s : i <

n`} ∈ Ḟ⊕s` .

The intuition behind Definition 3.15 is that we are actually building
a filter in V [g] (g any S-generic branch) on the product space Y bS

where bS is the set of all ω1-branches of S in V [g]. An element (s, {si :
i < n}, Ḟ ) of SB with s ∈ g corresponds to the set of elements ~y ∈ Y bS

satisfying that ~y � {si ⊕ g : i < n} is in valg(Ḟ
⊕g). Conditions (1) and

(2) combine to ensure that, for all s ≤ s̃ ∈ g, we have (s̃, {si ⊕ s̃ : i <
n}, Ḟ⊕s) in SB. More roughly speaking, (valg(Ḟα))⊕g is a projection
of a member of that filter. Condition (3) is the finite directedness
property for the above described filter on Y bS. Condition (2) is the
symmetry condition which is designed to ensure that the filter described
above in V [g] is the same filter as we will get in V [s ⊕ g] for any
s ∈ S. The connection to (2) is that if s is in g and g′ = s̃ ⊕ g
then valg(Ḟ

⊕g) is equal to valg′( (Ḟ⊕s)ss̃ )⊕g
′
. We again mention the

fact that if s < s̃ and s′ ∈ So(s̃), it may happen that s̃ forces that

Ḟ is disjoint from (Ḟ )s
′
s̃ . Now each of (s̃, {si ⊕ s̃ : i < n}, Ḟ⊕s) and

(s̃, {si⊕s′ : i < n}, (Ḟ⊕s′)s′s̃ = ((Ḟ )s
′
s̃ )⊕s

′
) will be in SB, but fortunately

the index sets {si ⊕ s̃ : i < n} and {si ⊕ s′ : i < n} are disjoint.

Lemma 3.16. There is a symmetric F0-filter SBmax satisfying the ismaxl
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additional maximality condition

(4) for each s ∈ S and {si : i < n} ∈ S→ with o(s0) = o(s), s
forces that Fs,{si:i<n} is a maximal filter of S-sequentially closed

subsets of Y {si:i<n}, where Fs,{si:i<n} is defined to be the set {Ḟ :

(s, {si : i < n}, Ḟ ) ∈ SBmax} .

Proof. For any family G ⊂ V , define the upward closure of G to be

{(s, {si : i < n}, Ḣ) ∈ V : (∃Ḟ ) (s, {si : i < n}, Ḟ ) ∈ G and s 
 Ḣ ⊃ Ḟ}
and let G† = {(s, {si : i < n}, Ḟ ) ∈ G : o(s0) = o(s)}. For each α ∈ ω1

and each (s, {si : i < n}, Ḟ ) ∈ V†α, let Ḟ (Sα) be an S-name for the set
{~y ∈ Y Sα : ~y � {si : i < n} ∈ Ḟ}. We say that the support of Ḟ (Sα)
is {si : i < n}. Just for clarity we note that for any s < t ∈ S and
~y ∈ Y Sα ,

t 
 ~y ∈ Ḟ (Sα) if and only if t 
 ~y � {si : i < n} ∈ Ḟ .

For any β < α < ω1 and G ⊂ Vβ, let

G↑α = {(s⊕ s̃, {si⊕ s̃ : i < n}, Ḟ⊕s̃) : s̃ ∈ Sα, (s, {si : i < n}, Ḟ ) ∈ G†} .
We inductively construct an increasing chain {SBα : α ∈ ω1} where
SBα ⊂ Vα and then prove that SBmax =

⋃
{SBα : α ∈ ω1} has the

properties (1)-(4). We start the induction by choosing any S-name Ḟ0

of a maximal filter of S-sequentially closed subsets of Y that extends
F0. We set

SB0 = {(∅, {∅}, Ḟ ) ∈ V0 : 1 
 Ḟ ∈ Ḟ0} .
Suppose 0 < α ∈ ω1 and that we have constructed the increasing
sequence {SBβ : β < α} satisfying the following inductive hypotheses
for each γ < β < α:

(1) SBβ ⊂ Vβ , (SBγ ∪ SB↑βγ ) ⊂ SBβ,

(2) (s⊕ s̃, {si : i < n}, Ḟ ) ∈ SBβ if s̃ ∈ Sβ and (s, {si : i < n}, Ḟ ) ∈bind2
SBγ,

(3) (s̃, {si : i < n}, (Ḟ )ss̃) ∈ SBβ if s, s̃ ∈ Sβ, and (s, {si : i <bind3

n}, Ḟ ) ∈ SB†β,

(4) SB†β is finitely directed: for any {(s, {s`i : i < n`}, Ḟ`) : ` <bind4

`0} ⊂ SB†β (`0 ∈ ω), there is an Ḣ such that (s,
⋃
{{s`i : i <

n`} : ` < `0}, Ḣ) ∈ SB†β and s forces that ~y � {s`i : i < n`} ∈ Ḟ`
for each ~y ∈ Ḣ,

(5) for each s ∈ Sβ and {si : i < n} ∈ S→ with o(s0) = β, s forcesbind5

that {Ḟ : (s, {si : i < n}, Ḟ ) ∈ SB†β} is a maximal filter on the

S-sequentially closed subsets of Y {si:i<n}.
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In case α is a limit, let SBα be the upward closure of the union of

{(s⊕ s̃, {si : i < n}, Ḟ ) : s̃ ∈ Sα and (s, {si : i < n}, Ḟ ) ∈
⋃
β<α

SBβ}

and
⋃
γ<α(SBγ ∪SB↑αγ ). Induction hypotheses (1) and (2) are immedi-

ate. For (3), let s, s̃ ∈ Sα and (s, {si : i < n}, Ḟ ) ∈ SB†α. It follows from
the definition that (s, {si : i < n}, Ḟ ) must be in SB↑αγ for some γ < α.

That is, there is an S-name Ḣ such that Ḟ = Ḣ⊕s and (s�γ, {si�γ :
i < n}, Ḣ) ∈ SB†γ. Choose β ≥ γ so that s�[β, α) = s̃�[β, α). By

inductive assumptions (1) and (2), (s�β, {si�β : i < n}, Ḣ⊕s�β) is in

SB†β. By (3), (s̃�β, {si�β : i < n}, (Ḣ⊕s�β)s�βs̃�β) is in SBβ. By the
choice of β, {si : i < n} is equal to {si�β ⊕ s̃ : i < n}, so we have

that (s̃, {si : i < n}, ( (Ḣ⊕s�β)s�βs̃�β )⊕s̃) is in SBα. Now it follows that

(s̃, {si : i < n}, Ḟ s
s̃ ) is in SBα simply because we took the upward

closure and

( (Ḣ⊕s�β)s�βs̃�β )⊕s̃ = ( (Ḣ⊕s�β)s�βs̃�β )⊕s = ( (Ḣ)s�βs̃�β )⊕s ⊃ Ḟ s
s̃ .

To verify induction hypothesis (5), fix any s ∈ Sα and {si : i < n} ∈ S→
with o(s0) = α. Choose β < α so that there is a {s̄i : i < n} ∈ S→ and
si = s̄i ⊕ s for each i < n. By the induction hypotheses,

s � β 
 {Ḟ : (s�β, {s̄i : i < n}, Ḟ ) ∈ SB†β}

is a maximal filter on the sequentially closed subsets of Y {s̄i:i<n} .
Therefore, it is immediate that s forces that{Ḟ⊕s : (s�β, {s̄i : i <

n}, Ḟ ) ∈ SB†β} is a maximal filter on the sequentially closed subsets of

Y {si:i<n}. To complete this limit step we just have to verify that for
s ∈ Sα, SB†α is finitely directed as in (4). It should be clear that it
suffices to consider those elements that were not added by taking the
upward closure. Let `0 ∈ ω and {(s, {s`i : i < n`}, Ḟ`) : ` < `0} be a sub-
set of SB†α. It follows from the definition of SBα, and the fact that α is
a limit, that there is a β < α such that {(s, {s`i : i < n`}, Ḟ`) : ` < `0}
is a subset of

⋃
γ<β SB

↑α
γ . For each ` < `0, there is an Ḣ` so that

Ḟ` = Ḣ⊕s` and (s�β, {s`i�β : i < n`}, Ḣ) ∈ SB†β. Applying (1) and (4)

to β, we may choose Ḣ so that

(s�β,
⋃
{{s`i�β : i < n`} : ` < `0}, Ḣ) ∈ SB†β

so that s forces that ~y � {s`i�β : i < n`} ∈ Ḣ` for each ~y ∈ Ḣ. Therefore
(s, {si : i < n}, Ḣ⊕s) is the required member of SB†α to complete the
verification of (4).
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Now assume that α = β+ 1. In preparation for defining SBα, let Gα
be the upward closure of the union of SBβ, SB↑αβ , and the family

{(s⊕ s̃, {si : i < n}, Ḟ ) : s̃ ∈ Sα and (s, {si : i < n}, Ḟ ) ∈ SBβ} .

If (s, {si : i < n}, Ḟ ) ∈ G†α and s ∈ Sα, then (s, {si : i < n}, Ḟ ) ∈(
SB†β

)↑α
. For each s ∈ Sα, let Gα(s) be the set of (s, {si : i < n}, Ḟ )

that are in G†α. Since SB†β is finitely directed, it is immediate that Gα(s)
is finitely directed for each s ∈ Sα. We will define a special collection
Hα of S-names of S-sequentially closed subsets of Y Sα .

For the remainder of the proof fix any s ∈ Sα and let s† ∈ Sα \ {s}
be the other successor of s�β. Let

Hα(s) = {Ḟ (Sα) : (s, {si : i < n}, Ḟ ) ∈ Gα(s)}

and similarly

Hα(s†) = {Ḟ (Sα) : (s†, {si : i < n}, Ḟ ) ∈ Gα(s†)} .

The fact that each of Gα(s) and Gα(s†) are finitely directed easily
implies that each of Hα(s) and Hα(s†) are similarly finitely directed.
We define a collection (Hα(s†))s by

(Hα(s†))s = {(Ḟ s†

s )(Sα) : (s†, {si : i < n}, Ḟ ) ∈ Gα} .

It should be clear that for any t ∈ S, ~y ∈ Y Sα , and (s†, {si : i <
n}, Ḟ ) ∈ G†α,

(1) s⊕ t 
 ~y ∈ (Ḟ s†

s )(Sα) iff s† ⊕ t 
 ~y ∈ Ḟ (Sα)

We also note that the support of each member of Hα(s) is disjoint from
the support of each member of Hα(s†). This is simply because for any
s̃ ∈ Sα, s′(β) will equal s̃(β) for any s′ in the support of any element
of Hα(s̃). Now we set

Hα = Hα(s) ∪ (Hα(s†))s

and prove that s forces that Hα is finitely directed. Pick any pair
(s, {s1

i : i < n1}, Ḟ1), (s†, {s2
i : i < n2}, Ḟ2) from G†α. Let t be any

extension of s in S. Choose t ≤ t1 and ~y1 ∈ Y {s
1
i :i<n1} so that t1 


~y1 ∈ Ḟ1. Then choose any t1 ≤ t2 and ~y2 ∈ Y {s
2
i :i<n2} so that s† ⊕ t2 


~y2 ∈ Ḟ2. Since the support of Ḟ1 is disjoint from the support of Ḟ2,
we may choose a ~y ∈ Y Sα satisfying ~y � {s1

i : i < n1} = ~y1 and
~y � {s2

i : i < n2} = ~y2. We have shown that t2 
 ~y ∈ Ḟ1(Sα) and
s† ⊕ t2 
 ~y ∈ Ḟ2(Sα). It follows from equation (1) that t2 
 ~y ∈
((Ḟ2)s

†
s )(Sα). Since t was arbitrary and each of Hα(s) and Hα(s†)
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are finitely directed, this completes the proof that s forces that Hα

is finitely directed.
Concerning induction hypotheses (3), we note that for all s̃ ∈ Sα

and (s̃, {si : i < n}, Ḟ ) from Gα(s̃), if s(β) = s̃(β), then (s, {si :
i < n}, Ḟ s̃

s ) ∈ Gα(s), and otherwise, (s†, {si : i < n}, Ḟ s̃
s†) ∈ Gα(s†).

It then follows that Hα has the property that for each s̃ ∈ Sα and
(s̃, {si : i < n}, Ḟ ) ∈ Gα(s̃), (Ḟ (Sα))s̃s is in Hα. Let us abbreviate this
statement by saying that inductive hypothesis (3) holds for Hα.

Now we can choose an S-name Ḟα of a maximal filter of S-sequentially
closed subsets of Y Sα that is forced by s to include the collection Hα.
We define

SBα(s) = {(s, {si : i < n}, Ḟ ) ∈ V†α : s 
 Ḟ (Sα) ∈ Ḟα} .

It is useful to note that inductive hypothesis (3) holding for Hα ensures
that we have that (s, {si : i < n}, (Ḟ )s̃s) is in SBα(s) for each (s̃, {si :
i < n}, Ḟ ) ∈ G†α. It is clear, by the maximality of Ḟα, that for each
{si : i < n} ⊂ Sα, s forces that, as in induction hypothesis (5), {Ḟ :
(s, {si : i < n}, Ḟ ) ∈ SBα(s)} is a maximal filter on the S-sequentially
closed subsets of Y {si:i<n}. Similarly it follows that, for each s̃ ∈ Sα, s̃
forces that {Ḟ s

s̃ : (s, {si : i < n}, Ḟ ) ∈ SBα(s)} is a maximal filter on
the S-sequentially closed subsets of Y {si:i<n}.

We are ready to define SBα in this successor case:

SBα = Gα ∪ SBβ ∪

{(s̃⊕ t, {si : i < n}, Ḟ ) : t ∈ Sα and (s̃, {si : i < n}, Ḟ ) ∈
⋃
γ<α

SBγ}

∪ {(s̃, {si : i < n}, (Ḟ )ss̃) : s̃ ∈ Sα, and (s, {si : i < n}, Ḟ ) ∈ SBα(s)} .

We check that the inductive hypotheses hold for {SBβ : β < α + 1}.
Inductive hypotheses (1) and (2) are immediate, and, so long as (4)
holds, (5) was proven above. Hypothesis (4) for members of SBα(s)
was verified when we proved thatHα was finitely directed. We complete
the verification of (4) after verifying (3).

Towards verifying (3), let t play the role of s in the statement (3)
and suppose that (t, {si : i < n}, Ḟ ) ∈ SB†α \

⋃
β<α SBβ and let s̃ ∈ Sα.

Since o(s0) = α, we have that either (t, {si : i < n}, Ḟ ) is in Gα or
that Ḟ is equal to (Ḣ)st for some (s, {si : i < n}, Ḣ) ∈ SBα(s). If
(t, {si : i < n}, Ḟ ) is in Gα then the induction hypothesis (3) applied
to some β < α ensures that (s̃, {si : i < n}, (Ḟ )ts̃) ∈ Gα. So now
assume that there is some Ḣ as above. By the definition of SBα,
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(s̃, {si : i < n}, (Ḣ)ss̃) is also in SBα, and this completes the verification
since (Ḟ )ts̃ = ((Ḣ)st )ts̃ = (Ḣ)ss̃.

We complete the verification of (4). Let {(s̃, {s`i : i < n`}, Ḟ`) : ` <
`0} ⊂ SB†α. As proven above, the family {(s, {s`i : i < n`}, (Ḟ`)s̃s) : ` <
`0} is a subset of SBα(s). Since (4) holds for this collection, we choose
Ḣ such that (s,

⋃
{{s`i : i < n`} : ` < `0}, Ḣ) ∈ SBα(s), and s forces

that ~y � {s`i : i < n`} ∈ (Ḟ`)
s̃
s for each ~y ∈ Ḣ. By the definition of

SBα, (s̃,
⋃
{{s`i : i < n`} : ` < `0}, (Ḣ)ss̃) is in SBα. Now suppose that

s̃ < t and t forces that ~y ∈ (Ḣ)ss̃. It follows that s⊕ t 
 ~y ∈ Ḣ and so
s⊕ t 
 ~y � {s`i : i < n`} ∈ (Ḟ`)

s̃
s (for each ` < `0). The final unraveling

is that s̃⊕ t = t 
 ~y � {s`i : i < n`} ∈ ( (Ḟ`)
s̃
s )ss̃ = Ḟ`.

Evidently, the induction hypotheses holding for SBmax implies that
SBmax is a symmetric F0-filter base, and this completes the proof. �

Definition 3.17. Let A denote the family of all (s, {si : i < n}, Ȧ)needA
such that

(1) s 
 Ȧ ⊂ Y {si:i<n} and (s, {si : i < n}, Ȧ(ω1)) ∈ V,
(2) for all Ḟ such that (s, {si ⊕ s : i < n}, Ḟ ) ∈ SBmax, s 


Ȧ⊕s ∩ Ḟ 6= ∅.
The family A has properties analogous to those of symmetric F0-

filter bases.

Lemma 3.18. If (s, {si : i < n}, Ȧ) ∈ A, then (s̃, {si⊕s̃ : i < n}, Ȧ⊕s̃) ∈goupLem
A for all s ≤ s̃. If o(s0) = o(s) = o(t) and (s, {si : i < n}, Ȧ) ∈ A,
then (s, {si : i < n}, Ȧ(ω1)) is in SBmax and (t, {si : i < n}, Ȧst) ∈ A.

Proof. Let (s, {si : i < n}, Ȧ) ∈ A and s ≤ s̃. Let Ḟ be an S-name such
that (s̃, {si ⊕ s̃ : i < n}, Ḟ ) ∈ SBmax. To prove that (s̃, {si ⊕ s̃ : i <
n}, Ȧ⊕s̃) is in A, we just have to prove that s̃ 
 Ȧ⊕s̃ ∩ Ḟ is not empty.
Since s ≤ s̃, this is equivalent to proving that s̃ 
 (Ȧ⊕s)⊕s̃ ∩ Ḟ is not
empty. By property (4) of SBmax, we have that s forces Fs,{si⊕s:i<n} is

maximal. It therefore also follows that s̃ forces that {Ḣ⊕s̃ : (s, {si⊕ s :
i < n}, Ḣ) ∈ SBmax} is maximal. In addition, by properties (1) and
(2) of SBmax, s̃ forces that {Ḣ⊕s̃ : (s, {si ⊕ s : i < n}, Ḣ) ∈ SBmax}
is equal to Fs̃,{si⊕s̃:i<n}. Since s forces that Ȧ⊕s ∩ Ḣ is not empty for

all (s, {si ⊕ s : i < n}, Ḣ) ∈ SBmax, it follows that s̃ 
 Ȧ⊕s̃ ∩ Ḟ is not
empty.

Now assume that o(s0) = o(s) and note that (s, {si : i < n}, Ȧ(ω1))

is in V†o(s). With the notation from Lemma 3.16, we claim that s 


Ȧ(ω1) ∈ Fs,{si:i<n}. Since s forces that Fs,{si:i<n} is a maximal filter of

S-sequentially closed sets, it suffices to show that s 
 Ȧ(ω1) ∩ Ḟ is not
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empty for all S-names Ḟ such that (s, {si : i < n}, Ḟ ) ∈ SBmax. Of
course this is true since s 
 Ȧ ∩ Ḟ is not empty for all (s, {si : i <
n}, Ḟ ) ∈ SBmax. Now let t ∈ So(s) and since si ⊕ t = si for each i < n,

we consider (t, {si : i < n}, Ḟ ) ∈ SBmax and show that t 
 Ȧst ∩ Ḟ 6= ∅.
Choose any extension t̃ of t. By property (2) of SBmax, we have that
(s, {si : i < n}, Ḟ t

s) ∈ SBmax and so we may find a ~y ∈ Y {si:i<n} and an
extension s̃ of s ⊕ t̃ forcing that ~y ∈ Ȧ ∩ Ḟ t

s . Naturally it follows that
t⊕ s̃ forces that ~y ∈ Ȧst and ~y ∈ Ḟ . �

This next lemma is the main ingredient for constructing a suitable
S-preserving proper poset for the application of PFA(S). It asserts the
existence, for any countable elementary submodel M , of a very special
member of Y Sδ where M ∩ ω1 = δ.

Lemma 3.19. Suppose that M is a countable elementary submodel of Melement
(H(κ),≺) including S, Y , and SBmax. Let M ∩ ω1 = δ and let sδ be
the ≺-least element of Sδ. There is a sequence 〈yM(s) : s ∈ Sδ〉 ∈ Y Sδ

such that, for each s̃ < sδ and (s̃, {si : i < n}, Ȧ) ∈ A ∩ M and
(s̃, {si : i < n}, Ḟ ) ∈ SBmax ∩M ,

(1) yM(s) has domain TMs ,
(2) yM(s) � (TMs )t is in M for each t ∈ TMs above the root,
(3) sδ forces that yM � {si ⊕ sδ : i < n} ∈ Ḟ⊕sδ ,
(4) if, for each s ∈ Sδ, O(s) is a Seqω-open neighborhood of root(TMs )

in TMs , there is a sequence {ti : i < n} ⊂ ω<ω such that each

ti ∈ O(si ⊕ sδ) and there is a ~b ∈ M such that sδ 
 ~b ∈ Ȧ and,

for each i < n, ~bi is congruent to yM(si ⊕ sδ) � (TMsi⊕sδ)ti.

Proof. Let {sδ,j : j ∈ ω} be an enumeration of Sδ with sδ,0 = sδ,
and for each ξ < δ, let sξ = sδ�ξ. Choose an increasing sequence
{δ` : ` ∈ ω} ⊂ δ cofinal in δ and satisfying that (sδ,`�δ`)⊕ sδ = sδ,` for

each ` < ω. Fix an enumeration {(sm, {smi : i < nm}, Ḟm) : m ∈ ω} of
all those (s, {si : i < n}, Ḟ ) ∈ SBmax ∩M satisfying that s < sδ and
o(s0) = o(s). By induction, we choose a subsequence {β` : ` ∈ ω} ⊂ ω
and an accompanying sequence {~y` : ` ∈ ω} ⊂M so that for all k ≤ `

(i) δ` < o(sβ`),
(ii) sδ 
 ~y` ∈ Ḟβ` ,

(iii) sδ,k ∈ {sβ`i ⊕ sδ : i < nβ`},
(iv) {ski ⊕ sβ` : i < nk} ⊂ {sβ` : i < nβ`},
(v) sδ forces that ~y` � {skk ⊕ sβ` : i < nk} ∈ Ḟ⊕s

β`

k .

To start, let ξ0 = max(δ0, o(s
0)) + 1. By properties (1) and (2) of

Definition 3.15, each of (sξ0 , {sδ,0�ξ0}, Y̌ {sδ,0�ξ0}) and (sξ0 , {s0
i ⊕ sξ0 : i <
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n0}, Ḟ
⊕sξ0
0 ) are in SBmax. By property (3), there is a value β0 ∈ ω so

that {sβ0

i : i < nβ0} ⊇ {sδ,0�ξ0} ∪ {s0
i ⊕ sξ0 : i < n0} and sδ forces that

~y � {s0
i ⊕sξ0 : i < n0} ∈ Ḟ

⊕sξ0
0 for all ~y ∈ Ḟβ0 . Choose any ~y0 ∈M such

that sδ 
 ~y0 ∈ Ḟβ0 .
Now assume we have chosen {βk, ~yk : k < `} and let m` ∈ ω \ ` be

chosen so that βk ≤ m` for all k < `. Let ξ` < δ be greater than the
maximum of the set {δ`} ∪ {o(sk) : k ≤ m`}. Again, we have that

each of (sξ` , {sδ,`�ξ`}, Y̌ {sδ,`�ξ`}) and (sξ` , {ski ⊕ sξ` : i < nk}, Ḟ
⊕sξ`
k ), for

all k ≤ m`, are in SBmax. By property (3) of Definition 3.15, we may
choose a β` ∈ ω so that, for each k ≤ m`, {sδ,`�ξ`} ∪ {ski ⊕ sξ` : i <

nk} ⊂ {sβ`i : i < nβ`} and sδ forces that ~y � {ski ⊕ sξ` : i < nk} ∈ Ḟ
⊕sξ`
k

for each ~y ∈ Ḟβ` . Choose any ~y` ∈M such that sδ 
 ~y` ∈ Ḟβ` . We have

sδ,`⊕sξ` ∈ {s
β`
i : i < nβ`}, hence sδ,` ∈ {sβ`i ⊕sδ : i < nβ`}. For each k <

`, we have, by the induction hypotheses, that sδ,k ∈ {sβki ⊕sδ : i < nβk}
and so sδ,k�ξ` ∈ {sβ`i : i < nβ`}. Therefore sδ,k ∈ {sβ`i ⊕ sδ : i < nβ`} for
each k ≤ `. This completes the recursive construction of the sequence
{β` : ` ∈ ω} and {~y` : ` ∈ ω}.

For each ` ∈ ω and i < nβ` , ~y`(s
β`
i ) is in Y and so, we recall from

Definition 3.7, that, for each t ∈ T
~y`(s

β`
i )

, (~y`(s
β`
i ))(t) can be interpreted

as an S-name of an element of Ẋ. In particular, we introduced the
notation e(~y`(s

β`
i )) to denote the S-name for the element so named by

(~y`(s
β`
i ))(root(T

~y`(s
β`
i )

)). By a simple length ω recursion using Lemma

3.6, choose a decreasing sequence {Jm : m ∈ ω} of infinite subsets of
ω satisfying that, for all m ∈ ω, {e(~y`(sδ,m�o(sβ`))) : m < ` ∈ Jm}
is an S-converging sequence in Ẋ. Let J be an infinite set that is
almost included in each Jm. Let {jk : k ∈ ω} be an order-preserving
indexing of J . For each integer k ≥ `, ` ≤ jk and so sδ,`�o(sβjk ) is

in {sβjki : i < nβjk}. This means that, for each m ∈ ω, the sequence

〈e(~yjk(sδ,m�o(sβjk ))) : m < k ∈ ω〉 is well-defined and is S-converging.
We choose yM(sδ,m) ∈ Y to be the limit in Y where the root of TMyM (sδ,m)

is the empty sequence and so that

yM(sδ,m) � (TMyM (sδ,m))〈k〉 ≈ ~yjk(sδ,m�o(s
βjk ))

for each m < k ∈ ω. Using a small abuse of indexing notation, this is
what we have accomplished: for each ` ∈ ω,

{~yjk � {s`i⊕sβjk : i < n`} : ` < k ∈ ω} Y -converges to yM � {s`i⊕sδ : i < n`} .

More formally, consider any ` ∈ ω. For each ` < k, let ~z `k be the vector
〈~yjk(s`i⊕sβjk ) : i < n`〉, then by induction hypothesis (iv), we have that
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~z `k is an element of Y n` . Also, let ~z `ω be the vector 〈yM(s`i⊕sδ) : i < n`〉.
Then we do indeed have that {~z `k : ` < k ∈ ω} Y -converges to ~z `ω. By
inductive condition (v), and the fact that sβk < sδ for all k, sδ forces
that ~yjk � {s`i ⊕ sδ : i < n`} is in Ḟ⊕sδ` for each k > `. This verifies that
item (3) holds.

We finish by verifying the conclusion in (4) by considering any s̃ < sδ
and (s̃, {si : i < n}, Ȧ) ∈ A ∩ M . By Lemma 3.18 we may choose
an integer ` so that (s`, {s`i : i < n`}, Ḟ`) is equal to (s̃, {si ⊕ s̃ :
i < n}, (Ȧ⊕s̃)(ω1)). We are also given, for each i < n, a Seqω-open
neighborhood, O(si ⊕ sδ), of root(TMsi⊕sδ) in TMsi⊕sδ . That is, for each
i < n, we have that Oi = O(si⊕sδ) is a Seqω-open subset of T~z `ω(i) with
root(T~z `ω(i)) ∈ Oi. We are going to apply Lemma 3.12 to this sequence

and the vector ~z `ω on the set

B = {~b ∈ Y n : (∃~y ∈M)(∀i < n) ~b(i) = ~y(si) and sδ 
 ~y ∈ Ȧ} .
For each k ∈ ω \ `, since ~yjk ∈ M , it follows that sδ forces that ~yjk �

{s`i ⊕ sβjk : i < n`} is in ((Ȧ)(δ))⊕s
βjk . Therefore ~z `k ∈ B(δ). We now

apply Lemma 3.12 and we obtain {ti : i < n} with each ti ∈ O(i) such

that there is a ~b ∈ B where ~b(i) is congruent to ~z `ω(i) � (T~z `ω)ti . Choose

~y ∈ M so that sδ 
 ~y ∈ Ȧ and ~b(i) = ~y(si) for each i < n. We now
have that ~y(si) is congruent to yM(si ⊕ sδ) � (TMsi⊕sδ)ti , completing the
proof of the Lemma. �

Lemma 3.20. If M and 〈yM(s) : s ∈ Sδ〉 ∈ Y Sδ are as described in strongMelement
Lemma 3.19, then for all s ∈ Sδ and (s̃, {si : i < n}, Ḟ ) ∈ SBmax ∩M
with s̃ < s, s forces that yM � {si ⊕ s : i < n} is an element of Ḟ⊕s.

Proof. Let (s̃, {si : i < n}, Ḟ ) be in SBmax ∩M with s̃ < s. Choose
ξ ∈M large enough so that s = (s�ξ)⊕ sδ and o(s0) ≤ ξ. Let s̃ξ = s�ξ
and sξ = sδ�ξ. With Ḣ = Ḟ⊕s̃ξ we have, by Definition 3.15, that

(s̃ξ, {si ⊕ s̃ξ : i < n}, Ḣ) and, subsequently, (sξ, {si ⊕ s̃ξ : i < n}, Ḣ s̃ξ
sξ ),

is in SBmax ∩M . Note that, for i < n, (si ⊕ s̃ξ)⊕ sδ is equal to si ⊕ s.
Apply Lemma 3.19 (3) to (sξ, {si ⊕ s̃ξ : i < n}, Ḣ s̃ξ

sξ ) to conclude that

sδ forces that 〈yM(si⊕ s) : i < n〉 is in ((Ḣ)
s̃ξ
sξ)
⊕sδ . Since s̃ξ ⊕ sδ = s, it

then follows that s forces that 〈yM(si ⊕ s) : i < n〉 is in (Ḣ)⊕sδ which,
in turn, is equal to (Ḟ⊕s̃ξ)⊕sδ = Ḟ⊕s. �

3.3. S-preserving proper forcing. Now we are ready to define our
poset P . Recall that we have a fixed assignment {U̇(x, n) : x ∈ c, n ∈
ω} of S-names, which we will denote as U , of neighborhoods (regular
descending for each x) for each x in Ẋ (the sequential closure of ω1).
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We also have that, for each x ∈ c and n ∈ ω, 1 forces that the closure
of U̇(x, n) meets ω1 in a countable set. We have already chosen above a
well-ordering ≺ of H(κ), and for each countable elementary submodel
M of H(κ) as in Lemma 3.19, let 〈yM(s) : s ∈ SM∩ω1〉 denote the ≺-
least sequence with the properties in Lemma 3.19. We recall that for
each y ∈ Y , we defined the associated S-name ẏ in Definition 3.7.

Lemma 3.21. For each countable elementary submodel M of (H(κ),≺
, Y ), there is a γ ∈ ω1 such that M ∩ω1 = δ < γ, and for all s ∈ S withgetopen
γ ≤ o(s), s decides the value of e(yM(s � δ)) and of M ∩ U̇(e(yM(s �
δ)), n) for all n ∈ ω. Furthermore, for all y ∈ {yM(s � δ)} ∪ (M ∩ Y )
and n ∈ ω, there is a Seqω-open set O(y,M, s, n) of Ty containing the
root, such that

(1) if s 
 e(y) /∈ U̇(e(yM(s � δ)), n)), then O(y,M, s, n) equals Ty,

(2) if s 
 e(y) ∈ U̇(e(yM(s � δ)), n)), then root(Ty)
_t ∈ O(y,M, s, n)

if and only if s 
 ẏ(root(Ty)
_t)) ∈ U̇(e(yM(s � δ)), n)

Proof. Lemma 2.1 implies that there is a γ satisfying that each s ∈ Sγ
decides the values of yM(s � δ) and of M ∩ U̇(e(yM(s � δ)), n) for each
n ∈ ω. Therefore each s ∈ S with γ ≤ o(s) does the same. We also
have, by elementarity, that s /∈ M implies that s decides the value (in
M ∩ c) of ẏ(t) for all y ∈ Y ∩M and all t ∈ Ty. Finally, since s forces

that the function ẏ : Ty → Ẋ is continuous, and since s decides the

value of M ∩ U̇(e(yM(s � δ)), n), it follows s decides the value of the
set O(y,M, s, n) as defined in (1) and (2) and that it is a Seqω-open
subset of Ty. �

We establish notation for the objects from Lemma 3.21.

Definition 3.22. For each countable elementary submodel M of (H(κ),≺OMsn
, Y ), let γ(M) denote the minimal γ as described in Lemma 3.21. For
each s ∈ S with γ(M) ≤ o(s) and each y ∈ {yM(s � (M∩ω1))}∪(M∩Y )
and n ∈ ω, let O(y,M, s, n) denote the Seqω-open subset of Ty as de-
scribed in Lemma 3.21. We will also use TMs̃ to denote this Ty where
s̃ = s � (M ∩ ω1) and y = yM(s̃).

Definition 3.23. A condition p ∈ P is simply a function into S with
domain Mp, a finite ∈-chain of countable elementary submodels offirstP
(H(κ),≺), satisfying

(1) for each M ∈Mp, {U , Y } ∈M and γ(M) ≤ o(p(M)),
(2) for M1 ∈M2 both in Mp, p(M1) ∈M2.

Before defining the ordering on P we establish some notation. For each
p ∈ P, we let Cp = {M ∩ ω1 : M ∈Mp} and Sp = {p(M) : M ∈Mp}.
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For convenience, we also let {Mp
δ : δ ∈ Cp} be the enumeration of

Mp such that Mp
δ ∩ ω1 = δ. Then we define S↓p to be the finite set

{s � δ : s ∈ Sp, δ ∈ Cp ∩ o(s)}. Then for s ∈ S↓p ∩ Sδ and y = yM
p
δ (s),

W (p, s) is the Seqω-open subset of TMδ
s equal to the intersection of the

family {O(y,Mp
η , s
′, n) : δ ≤ η ∈ Cp, n ≤ |Mp|, s < s′ ∈ Sp \Mp

η }.
The definition of p < q is that p ⊇ q and for each δ ∈ Cp \ Cq, if

δ < max(Cq), then for γ = min(Cq \ δ) and for all s ∈ S↓q ∩ Sγ, the Y -

value yM
p
δ (s � δ) is congruent to yM

q
γ (s) � (T

Mq
γ

s )t for some t ∈ W (q, s).

We note that W (p, s) defined in Definition 3.23 will contain the root

of T
Mp
δ

s . The ordering on P is more complicated than is usual in such
posets, so we verify that it is transitive. Before doing so we record an
immediate but important consequence (and purpose) of the ordering
relation.

Lemma 3.24. Let p < q ∈ P, s ∈ S↓q , γ = o(s) and β = max({0} ∪
(Cq ∩ γ)). Then for each s < s′ ∈ Sq, s

′ forces that e(yM
p
γ (s � δ)) ∈ purpose

U̇(e(yM
q
γ (s)), n) for all n ≤ |Mq| and β < δ ∈ Cp ∩ γ.

Proof. Let p < q and s, s′, γ, δ be as in the Lemma. For convenience,
let y denote yM

q
γ (s). Since s′ ∈ Sq and γ ∈ Cq ∩ o(s′), we have that

γ(M q
γ ) < o(s′). Fix any n ∈ ω and note that it is immediate from

the definitions that s′ forces that e(y) ∈ U̇(e(y), n). Therefore, by
Lemma 3.21, s′ forces that ẏ(root(Ty)

_t)) ∈ U̇(e(y), n) for all t ∈
O(y,M q

γ , s
′, n). Now let t ∈ W (q, s) be as postulated in the definition

of p < q so that yM
p
γ (s�δ) = yM

q
γ (s�δ) is congruent to y � (Ty)t. By the

definition of W (q, s), we have that t ∈ O(y,M q
γ , s
′, n) and so s′ forces

that e(yM
p
γ (s�δ)) = e(ẏ(root(Ty)

_t)) is in U̇(e(y), n). �

Lemma 3.25. If q, r are in P and q < r, then for all s ∈ S↓q , W (q, s) ⊂
W (r, s). Furthermore, the ordering on P is transitive.

Proof. Assume that p, q, r are in P and that p < q and q < r. Since
q ⊃ r, it is immediate that Sq ⊃ Sr and Cq ⊃ Cr, and S↓q ⊃ S↓r . We

prove, for s ∈ S↓r , that W (q, s) ⊂ W (r, s). In fact, letting y = yM
r
γ (s)

with γ = o(s), the family {O(y,M q
η , s
′, n) : δ ≤ η ∈ Cp, n ≤ |Mq|, s <

s′ ∈ Sq \M q
η } is easily seen to include the family {O(y,M r

η , s
′, n) : δ ≤

η ∈ Cr, n ≤ |Mr|, s < s′ ∈ Sr \M r
η }.

Now it follows now thatW (p, s) ⊂ W (q, s) ⊂ W (r, s) for each s ∈ S↓r .
Now we assume that δ ∈ Cp \ Cr and that there is a γ ∈ Cr with
δ < γ = min(Cr). We consider s ∈ S↓r ∩ Sγ, and we have to show that

yM
p
δ (s � δ) is congruent to yM

r
γ (s) � (T

Mr
γ

s )t for some t ∈ W (r, s). If
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δ ∈ Cq, then this follows from the fact that q < r. If δ /∈ Cq, then let
γ′ = min(Cq \δ). Let us use simply y to equal yM

r
δ (s). Using that p < q

and q < r we can choose t1 ∈ W (M q
γ′ , s � γ′) such that yM

p
δ (s � δ) is

congruent to y
Mq

γ′ (s � γ′) � (T
Mq

γ′

s�γ′ )t1 and choose t2 ∈ W (M r
γ , s) so that

y
Mq

γ′ (s � γ′) is congruent to y � (Ty)t2 .

Let T be the tree witnessing that y
Mq

γ′ (s � γ′) is congruent to y �

(Ty)t2 . Choose t ∈ T so that t1 = root(T
Mq

γ′

s�γ′ )
_t. It follows that t_2 t is

in Ty. It also follows that yM
p
δ (s � δ) is congruent to y � (Ty)t_2 t. We

simply have to show that t′2 = t_2 t is in W (r, s), which we do by show-
ing that t′2 ∈ O(y,M r

η , s
′, n) for all s < s′ ∈ Sr, n ≤ |Mr|, δ ≤ η ∈ Cr,

and s′ /∈ M r
η . Fix such a list s′, n and η. Since γ(M r

η ) ≤ o(s′), we

may let x, x′, z denote the values in c such that s′ 
 x = e(yM
r
γ (s)),

s′ 
 x′ = e(y
Mq

γ′ (s � γ′)), and s′ 
 z = e(yM
p
δ (s � δ)). Let us note

that s′ also forces that z = ẏ
Mq

γ′ (t1) = ẏ(t′2). Let U(s′,M r
η , n) denote

the value forced by s′ to equal M r
η ∩ U̇(x, n). If x /∈ U(s′,M r

η , n),
then O(y,M r

η , s
′, n) is all of Ty and so t′2 is in O(y,M r

η , s
′, n). If x

is in U(s′,M r
η , n), then we have that x′ ∈ U(s′,M r

η , n) since t2 ∈
O(y,M r

η , s
′, n) and s′ forces that ẏ(t′) ∈ U(s′,M r

η , n) for all t′ ∈ O(y,M r
η , s
′, n).

So now, from the definition of O(y
Mq

γ′ ,M r
η , s
′, n) and the fact that

t1 ∈ W (q, s � γ′), we have that s′ forces that z = ẏ
Mq

γ′ (t1)) is in
U(s′,M r

η , n). But this also means that s′ forces that z = ẏ(t′2) is in
U(s′,M r

η , n), and completes the proof that t′2 is in O(y,M r
µ, s
′, n). �

Proposition 3.26. For each q ∈ P and countable M ≺ (H(κ),≺)extendM
with {q,U , Y } ∈ M , each function of the form p = q ∪ {(M, s)} with
s ∈ Sγ(M) satisfies that p ∈ P and p < q.

Proof. It is trivial to check that p ∈ P . It is clear that p ⊂ q and since
(Cp \ Cq) ∩max(Cq) is empty, we have that p < q. �

Before we show that P × S is proper, let us verify that we will then
have the ω1-sequences that we need.

Proposition 3.27. If P is proper and S-preserving, then PFA(S) im-
plies that S forces that Ẋ3.9

(1) includes a free ω1-sequence, and
(2) if Ẋ is first countable, includes a copy of ω1.

Proof. It follows from Proposition 3.26 that, for each m ∈ ω and s ∈ S,
the set Ds,m = {p ∈ P : |Mp| ≥ m and (∃M ∈ Mp) (s ∈ M and s <
p(M))} is a dense open subset of P . For any condition q ∈ P , let E(q)
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denote the collection of all M such that there exists a p < q such that
M ∈Mp\Mq, and for each δ ∈ ω1, let E(q, δ) = {M ∈ E(q) : M∩ω1 <
δ}. Now we prove, similar to Claim (3) in Proposition 2.7, that

Claim 9. For each δ ∈ ω1,

Dδ = {p ∈ P : (∀M ′ ∈ E(p, δ))(∃M ∈Mp)(δ /∈M and M ′ ∈M)}
is a dense open subset of P.

Proof of Claim 9: To prove that Dδ is dense it suffices to choose s ∈
Sδ and, using that Ds,1 is dense, to show that each q ∈ Ds,1 has an
extension p in Dδ. So let q ∈ Ds,1 be arbitrary. If there is any p < q
with δ ∈ Cp, then p is our desired extension in Dp, since M ′ ∈ E(p, δ)
implies M ′ ∈ Mp

δ . So now we assume that δ /∈ Cp for all p < q, and
that q /∈ Dδ. Let ξ = min(Cq \ δ), and, witnessing that q /∈ Dδ, there
must be some M ′ ∈ E(q, δ) such that max(Cq ∩ δ) ∈ M ′. Choose
r < q so that M ′ ∈ Mr. Since r < q, we note that Mq ∈ M ′ and
{M ′, γ(M ′)} ∈ Mp

ξ . Choose any s′ ∈ S ∩M q
ξ so that r(M ′) ≤ s′ and

δ ≤ o(s′). Set p = q ∪ {(M ′, s′)}. The facts that r ∈ P and r < q, and
M ′ ∈ Mr, imply that p ∈ P . In the definition of p < q the only value
δ̃ in Cp \ Cq is an element of Cr \ Cq and Mp

δ̃
= M r

δ̃
. Thus it follows

that p < q. �

Consider the family D = {Dδ ∩Ds,m : δ ∈ ω1,m ∈ ω, s ∈ S} and let
G be a D-generic filter. Let C =

⋃
{Cp : p ∈ G} and let {Mδ : δ ∈ C}

be an enumeration of
⋃
{Mp : p ∈ G} enumerated so that Mδ∩ω1 = δ.

We show that C is a closed subset of ω1. Suppose that α is a limit
ordinal and that α /∈ C. Choose any s ∈ Sα and let p ∈ G∩Dα ∩Ds,1.
Since α /∈ Cp and is a limit, we can choose β < α so that Cp ∩ α ⊂ β.
We finish by proving that C ∩ α ⊂ β. Suppose that ξ ∈ C ∩ α. Since
G is a filter, we may choose an r < p in G such that ξ ∈ Cr. It follows
then that M r

ξ ∈ E(p, α) and so there is an M ∈Mp such that M r
ξ ∈M

and M ∩ ω1 < α. Therefore M r
ξ ∩ ω1 < M ∩ ω1 ∈ Cp ∩ α < β.

Let g ⊂ S be a generic filter. For each δ ∈ C, let sδ ∈ Sδ ∩ g and
let xδ = valg(e(y

Mδ(sδ))). We claim that the map sending xγ to γ is
a continuous map from W = {xγ : γ ∈ C} onto C endowed with the
order topology. This will show that W includes an uncountable free
sequence. To prove this claim, it suffices to show that for each pair
β < δ ∈ C, xδ is not in the closure of {xα : α ∈ C ∩ (β + 1)} and that
xη is not in valg(U̇(xδ, 0)) for η > δ. For each α ∈ C, let α+

C denote
the minimum element of C above α. For all α ∈ C, the closure of
valg(U̇(xα, 1)) is included in valg(U̇(xα, 0)) and, by elementarity, the

ordinal xα ∈Mα+
C

and the supremum of valg(U̇(xα, 0))∩ω1 is less than
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α+
C . For η ∈ C \ α+

C , xη is in the closure of ω1 \ ξ for all ξ ∈ α+
C , and

therefore xη is not in the closure of valg(U̇(xα, 1)). Now to show that
xδ is not in the closure of {xα : α ∈ C∩(β+1)} we show that there is a
finite subset {βi : i < `} of C ∩ (β+ 1) such that {xα : α ∈ C ∩ (β+ 1)}
is included in

⋃
i≤` valg(U̇(xβi , 1)). Consider any α ≤ β and choose

any q ∈ G so that {Mα,Mδ} ⊂ Mq and so that q ∈ Dδ ∩ Dsδ,2. Fix
s̄ ∈ Sq so that sδ < s̄. It follows that sδ ∈ S↓q and that γ(Mδ) < o(s̄).

Then, by Lemma 3.24, there is an βα < α such that xξ ∈ valg(U̇(xα, 1))
for all βα < ξ ≤ α. Now set γ0 = β and recursively set, for γi > 0,
γi+1 = βγi < γi. Once we find ` so that γ` = 0 we stop.

Now we prove (2) of the Proposition. That is, we assume that 1 forces
that {U̇(x, n) : n ∈ ω} is a neighborhood base at x for each x ∈ Ẋ. We
prove that W is a copy of ω1 by proving that it is homeomorphic to C.
Lemma 3.24 implies that if, for each δ ∈ C, {valg(U̇(xδ, n)) : n ∈ ω}
is a neighborhood base at xδ, then the map sending xδ ∈ W to δ ∈ C
is a closed mapping, and thus a homeomorphism. This completes the
proof. �

All we have to do now is to prove that

Theorem 3.28. The poset P is proper and S-preserving.ppithm

Proof. Following Lemma 2.6 we just have to prove that S×P is proper.
That is, by Definition 2.2, we assume that S,P ∈M ≺ H(µ) (for some
suitably large µ) is countable, and that M0 = M ∩ H(κ) ∈ Mp for
some condition p. Let M ∩ ω1 = δ and let sδ be the ≺-least element
of Sδ as in Lemma 3.19. Let D ∈ M be a dense open subset of S × P
and assume that (s†, r) ∈ D is below (sδ, p). By applying Lemma 3.26
at most twice, and by ensuring that r(max(Mr)) < s†, we can assume
that sδ ∈ S↓r and that s† � γ ∈ S↓r for all γ ∈ Cr. Let {M r

i : i < ¯̀}
and {δri : i < ¯̀} enumerate Mr \M and Cr \M in increasing order.
For each i < ¯̀, let sri = p(M r

i ). Let {si : i < `} ∈ S→ enumerate
Sδ ∩ S↓p , and for each j < ¯̀, let Srj = {si ⊕ (s† � δrj ) : i < `}. We note

that Srj is not necessarily included in S↓r . The set Srj is also equal to
{si ⊕ (sr¯̀−1

� δrj ) : i < `}. Choose ᾱ ∈ M ∩ ω1 large enough so that

M ′ ∩ ω1 < ᾱ for all M ′ ∈ Mr ∩M , and so that s � [ᾱ, δ) = s′ � [ᾱ, δ)
for all s, s′ ∈ Sr, and let s̄i = si � ᾱ for each i < `.

The remainder of the proof is similar to the proof that the poset used
in the proof of Theorem 3.4 was proper. Let us note that r ∩M = rM
is an element of P and r < rM . We will find a condition q ∈ P ∩M
so that q < rM and so that (sδ, q) ∈ D. The hard part is to choose q
so that q 6⊥ r which requires that, for each i < ` and η ∈ Cq ∩ (ᾱ, δ),

yM
q
γ (si � η) is congruent to yM

r
δ (si) � (T

Mr
δ

si )t for some t ∈ TM
r
δ

si .
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Let us say that a condition q is like r (or q ≡ r) providing:

(1) q < rM and Cq ∩ ᾱ = Cr ∩ ᾱ,
(2) Mq \Mr listed in ε-increasing order is {M q

i : i < ¯̀},
(3) let Cq \ ᾱ = {δqi : i < ¯̀} where M q

i ∩ ω1 = δ1
i ,

(4) Sq0 = {s � δq0 : s ∈ Sq} is equal to {s̄i ⊕ (sq¯̀−1
� δq0) : i < `}.

When q ≡ r, let us also define for 0 < j < ¯̀, Sqj = {s̄i⊕ (sq¯̀−1
� δqj ) : i <

`}, and for j < ¯̀, let ~yj
q denote the element in Y Sqj equal to yM

q
j � Sqj .

Recursively define a collection of sets and names. First we have the
S-name:

Ẏ¯̀ = {(s, 〈~ykq : k < ¯̀〉) : (s, q) ∈ D , sq¯̀−1
< s , Cq ⊂ o(s), and q ≡ r} .

As usual, we have that Ẏ¯̀ ∈ M since q ≡ r can be described within
M , and Ẏ¯̀ is in M0 because Ẏ¯̀ ∈ H(κ). Now define, for k ∈ {¯̀− 1, ¯̀−
2, . . . , 0} (in that order) and q ≡ r,

Ȧ(q, k) = {(s̄, ~y) : (∃(s̄, 〈~yjq̄ : j ≤ k〉) ∈ Ẏk+1) ~y ∈ Y {s̄i : i<`} and (~y)⊕(s̄�δq̄k) = ~yk
q̄ }

and let (for k < ¯̀)

Ẏk = {(s, 〈~yjq : j < k〉) : (s, {s̄i : i < `}, Ȧ(q, k)) ∈ A} .

We use the notation Ȧ(q, k) even though the definition depends only on
the parameters 〈~yjq : j < k〉 but we can thus observe that Ȧ(q, k) and

Ẏk+1 are in M q
k . Notice that Ȧ(q, k) is forced to be a subset of Y {s̄i:i<`}.

Clearly (s†, 〈~ykr : k < ¯̀〉) ∈ Ẏ¯̀ and, for readability, temporarily let
k = ¯̀− 1. We then have that

(2) s† 
 Ȧ(r, k) ⊂ Y {s̄i:i<`} and ~yk
r ∈ (Ȧ(r, k))⊕(s†�δrk) .

We show, by elementarity, that (s†�ξ, {s̄i : i < `}, Ȧ(r, k)) ∈ A for
some ξ ∈M r

k . In M r
k we have the set

S(Ȧ(r, k)) = {s ∈ S : (s, {s̄i : i < `}, Ȧ(r, k)) ∈ A}

and we need to show that s† ∈ S(Ȧ(r, k)). By Lemma 3.18, S(Ȧ(r, k))
is an upwards closed subset of S, i.e if s < s̃ and s ∈ S(Ȧ(r, k)),
then s̃ ∈ S(Ȧ(r, k)). The set of minimal elements, min(S(Ȧ(r, k))), is
an antichain of S and so there is a ξ ∈ M r

k such that for each s ∈ Sξ,
either s ∈ S(Ȧ(r, k)) or no element above s is in S(Ȧ(r, k)). We assume
that sξ = s† � ξ /∈ S(Ȧ(r, k)) and obtain a contradiction. By Definition

3.17, there is an (sξ, {s̄i ⊕ sξ : i < n}, Ḟ ) ∈ SBmax such that sξ 

(Ȧ(r, k))⊕sξ ∩ Ḟ = ∅. By elementarity, there is such an element in M r

k .

The contradiction is that sξ < s† � δrk < s† and s† 
 Ȧ(r, k)⊕sξ ∩ Ḟ 6= ∅
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because, by equation (2), s† 
 ~y rk ∈ (Ȧ(r, k)⊕sξ)⊕(s†�δrk) and by Lemma

3.20, s† 
 ~y rk ∈ Ḟ⊕s
†�δrk .

Continuing this standard argument, walking down from s†, shows
that, for each k < ¯̀, there is a ξk ∈ M r

k such that (s† � ξk, 〈~y rm : m <

k〉) is a member of Ẏk+1. Now we have that there is some ξ0 ∈ M r
0

such that (s† � ξ0, ∅) is a member of Ẏ0; and more importantly that
(s† � ξ0, {s̄i : i < `}, Ȧ(r, 0)) ∈ A ∩M r

0 . By Lemma 3.19, there is a
~y0 ∈ M such that sδ < s† forces that ~y0 ∈ Ȧ(r, 0) and, for each i < `,

there is a t ∈ W (r, si) such that ~y0(s̄i) is congruent to yM
r
0 (si) � (T

Mr
0

si )t.

By elementarity and Lemma 2.1, there is a β0 ∈ δ such that (sδ�β0, ~y0) ∈
Ȧ(r, 0). Similarly, there is a q0 ∈ M ∩ P witnessing that (sδ�β0, ~y0) is

in Ȧ(r, 0); namely that (sδ�β0, 〈~y0
q0〉) ∈ Ẏ1 and (~y0)⊕(sδ�δ

q0
0 ) = ~y0

q0 . It

follows that, for i < `, yM
q0
0 (si � δ

q
0) is congruent to yM

r
0 (si) � (T

Mr
0

si )t for
some t ∈ W (r, si). Now that we have that (sδ � β0, {s̄i : i < `}, Ȧ(q0, 1))
is in A ∩M and we repeat the argument above, beginning with the
assertion that (s† � ξ0, {s̄i : i < `}, Ȧ(r, 0)) is in A ∩M r

0 , replaced by
(sδ � β0, {s̄i : i < `}, Ȧ(q0, 1)) is in A ∩ M . In this way, we find a
q1 ∈ M ∩ P and a β1 ∈ δ satisfying that there is a ~y1 ∈ Y {s̄i : i<`} with
(sδ � β1, ~y1) ∈ Ȧ(q0, 1) and witnessed by (sδ � β1, 〈~ypq1 : j ≤ 1〉) ∈ Ẏ1. It
follows that ~y0

q1 = ~y0
q0 , and for each i < `, there is a t ∈ W (r, si) such

that yM
q1
1 (si � δ

q
1) is congruent to yM

r
0 (si) � (T

Mr
0

si )t. We repeat this
argument for ¯̀ steps until we find q = q¯̀ ≡ r with the property that

(sδ, q) ∈ D and, for each k < ¯̀, and for each i < `, y
Mq
δk (s̄i ⊕ (sδ � δ

q
k))

is congruent to yM
r
0 (si) � (T

Mr
0

si )t for some t ∈ W (r, si). It now follows
that q is compatible with r, and, by elementarity and Lemma 2.1, that
there is an s′ < sδ such that (s′, q) ∈ D as required. �

4. On the consistency of GAnolarge

The goal of this section is to prove that the consistency of ZFC is
sufficient to prove that GA is also consistent with ZFC. The method
is standard in that we assume that we have a ground model of ZFC
in which CH and a diamond principle on ω2 also hold. This assump-
tion is well-known to follow from the consistency of ZFC. We will then
construct a poset via a countable support iteration of proper posets
(see [25, III 3.1]) designed to force that GA holds in the forcing ex-
tension. We will need that this poset satisfies that every antichain has
cardinality less than ℵ2 (the ℵ2-cc). A proper poset with the ℵ2-cc will
ensure that sets in the extension that have cardinality at most ℵ2 will



HEREDITARILY NORMAL MANIFOLDS 51

have names that also have cardinality at most ℵ2. To accomplish this,
we will use the κ-p.i.c. (for “proper isomorphism condition”) scheme
(with κ = ℵ2) introduced by Shelah. The diamond sequence on ω2 will
help us decide which proper ℵ2-p.i.c. posets of size ℵ2 to use in such
an iteration, by predicting initial segments of the size ℵ2 objects that
we must finally consider to verify that, for example, PPI+ holds in the
extension.

We use the method of Todorcevic [30] in which side conditions are
finite sets (or matrices) of elementary submodels rather than the more
common method in which side conditions are simple finite ∈-chains of
elementary submodels. It is this change which is the key in making the
resulting posets satisfy the ℵ2-p.i.c. and thereby removing the need for
large cardinals to prove the results. This approach was also used in [5]
in the PFA context. 3.2
Definition 4.1 ([25, Ch. VIII]). A poset P satisfies the ℵ2-p.i.c. pro-
vided the following holds for big enough λ (for example [P ]ℵ1 ∈ H(λ)):

Suppose ≺ is a well-ordering of H(λ), i < j < ω2, Ni and Nj are
countable elementary submodels of 〈H(λ),≺,∈〉 such that {ℵ2, P} ∈
Ni ∩ Nj , i ∈ Ni, j ∈ Nj, Ni ∩ ω2 ⊂ j, Ni ∩ i = Nj ∩ j, p ∈ P ∩ Ni,
and h : Ni → Nj is an isomorphism such that h(i) = j and h is the
identity on Ni ∩Nj, then there is a q ∈ P such that:

(1) q < p , q < h(p) and q is both Ni and Nj generic ,
(2) if r ∈ Ni ∩ P and q′ < q there is a q′′ < q′ so that

q′′ < r if and only if q′′ < h(r) .

We record the next three results from [25, Ch. VIII].

Proposition 4.2. A countable support iteration of length less than ω2 3.3
of ℵ2-p.i.c. proper posets is again ℵ2-p.i.c.. Furthermore if CH holds
and the iteration has length at most ω2 then the iteration satisfies the
ℵ2-cc .

Proposition 4.3. A proper poset of cardinality ℵ1 satisfies the ℵ2-pic.

Proposition 4.4 (CH). If P is a proper ℵ2-p.i.c. poset and G is P - chaincondition
generic over V then V [G] |= c = ω1.

This next proposition is taken from [25, VIII 2.2].

Proposition 4.5. If CH and 2ℵ1 = ℵ2 and P ⊂ H(ℵ2) is a poset that aleph3
satisfies Definition 4.1 for P and λ = ℵ3, then P satisfies the ℵ2-p.i.c.,
and Definition 4.1 holds for all λ > 2ℵ3.

Following [30], for a countable elementary submodel N of H(ℵ2),
we let N be its transitive collapse, and we let hN : N → N be the
collapsing map, i.e. hN(x) = {hN(y) : y ∈ x ∩N}.
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Lemma 4.6. Suppose that N1, N2 are countable elementary submodelshomega1
of H(ℵ2) such that N1 = N2, and let hN1,N2 denote the map h−1

N2
◦ hN1.

Then hN1,N2 is the identity on H(ℵ1) ∩ N1 and for each A ∈ N1 with
A ⊂ H(ℵ1), A ∩N1 = hN1,N2(A) ∩N2.

Proof. It follows by ∈-induction that each x ∈ N1∩H(ℵ1), x ⊂ N1 and
so x ∈ N1. Therefore we also have, by ∈-induction, that hN1(x) = x =
h−1
N2

(x). �

A family, denoted [N ], is an elementary matrix if, for some integer
n > 0,

(1) [N ] = {N1, . . . ,Nn}
(2) for each 1 ≤ i ≤ n, Ni is a finite set of countable elementary

submodels of H(ℵ2)
(3) for each 1 ≤ i ≤ n, N1 = N2 for each pair N1, N2 ∈ Ni,
(4) for each 1 ≤ i < j ≤ n and each Ni ∈ Ni, there is an Nj ∈ Nj

with Ni ∈ Nj.

It will be convenient to let N ∈ [N ], for an elementary submodel N
of H(ℵ2), be an abbreviation for N ∈ Ni for some Ni ∈ [N ].

Lemma 4.7 (CH). If İ is an S-name of a P -ideal on ω1 such that 1p22pic
forces that İ ∩ [E]ℵ0 is not empty for all stationary sets E ⊂ ω1, then
there is an S-preserving ℵ2-p.i.c. proper poset P ⊂ H(ℵ2) such that P
forces that there is an S-name Ė of a stationary set with 1 
 [Ė]ℵ0 ⊂ İ.

Lemma 4.8 (CH). If Ẋ is an S-name of a sequentially compact non-ppipic
compact space of cardinality ℵ1, then there is an S-preserving ℵ2-p.i.c.
proper poset Q ⊂ H(ℵ2) such that Q forces that there is an S-name
{ẋγ : γ ∈ ω1} ⊂ Ẋ that is forced to include an uncountable free se-

quence, and, if Ẋ is first countable, to be a homeomorphic copy of ω1.

The proofs are very similar, with the same underlying idea in that
we replace elementary chains from the original proofs with elementary
matrices. The usage of elementary matrices is the device to make
the poset satisfy the ℵ2-p.i.c. The proof that the modified poset is
proper and S-preserving relies on the fact that CH guarantees that the
key combinatorics take place within H(ℵ1) and so, by Lemma 4.6 no
new arguments or constructions are required. Since it is newer, we
sketch the proof of Lemma 4.8 and leave the proof of Lemma 4.7 to
the interested reader. In actual fact, this method is not really needed
for the consistency of P22 because the needed poset can be chosen to
have cardinality c. The reason this is not true for PPI+ is that we
must utilize the construction of the maximal filter of S-sequentially
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closed sets which may have cardinality 2ℵ1 . We simply indicate the
modifications needed to the proof of Lemma 3.28.

Proof. Let Ẋ be the S-name as formulated in Lemma 4.8. Since Ẋ
is forced to be countably compact but not compact, there is an open
cover of Ẋ of cardinality ℵ1 that has no countable subcover. Let {U̇α :
α ∈ ω1} be the S-names for such a cover. For each α, let ẋα be the
S-name of a point that is forced by 1 to not be an element of U̇β for
all β < α. It is forced by 1 that the set {ẋα : α ∈ ω1} has no complete
accumulation point.

Now by simply renaming the elements of the original base set for
Ẋ, we can assume that ω1 × ω1 is the base set and that ω1 × {0}
is a subspace with no complete accumulation point. For each point
x = (α, β) of Ẋ, we fix a family {U̇(x, n) : n ∈ ω} of S-names of open
sets so that 1 forces that U̇(x, 0) ∩ (ω1 × {0}) is countable, and that,
for each n, x ∈ U̇(x, n + 1) and the closure of U̇(x, n + 1) is included
in U̇(x, n). If Ẋ is assumed to be first countable, then also we assume
that {U̇(x, n) : n ∈ ω} is a local base at x.

This entire family of S-names in the topology for Ẋ can be coded as
a single subset, τ , of S×ω×ω4

1 where (s,m, α, β, γ, δ) ∈ τ codes the fact
that s forces that (γ, δ) is in U̇((α, β),m). The family

⋃
{Yα : α ∈ ω1}

and WF as defined in §3.1 are already subsets of H(ℵ1). We also fix a
well-order ≺ω1 of H(ℵ1).

Finally, with no changes, the families SB defined in Lemma 3.16 and
A as defined in Definition 3.17 are subsets of H(ℵ2). For each countable
elementary submodel M of H(ℵ2) satisfying that {τ,≺ω1 ,SB,A} ∈M ,
the sequence {yM(s) : s ∈ SM∩ω1}, is chosen as in Lemma 3.19 to be the
≺ω1-minimal such sequence. Let P be the poset defined in Definition
3.23 using κ = ℵ2. For each p ∈ P and s ∈ S↓p , let W (p, s) be defined
as in Definition 3.23. We will use the construction and properties of P
to simplify the construction of the poset Q in this proof.

Claim 10. Consider any set N of pairwise isomorphic countable ele-
mentary submodels of (H(ℵ2), τ,≺ω1 ,SB,A); i.e. N = N ′ for N,N ′ ∈
N . Let δ = N ∩ ω1 for any N ∈ N . Let N1, N2 be elements of N . We claimsame
then have that the two sequences 〈yN1(s) : s ∈ Sδ〉 and 〈yN2(s) : s ∈ Sδ〉
are the same.

Proof of Claim 10: To prove the claim, let (s̄, {si : i < n}, Ȧ) be any
member of A ∩N1 and assume that s̄ < s ∈ Sδ. Choose B ⊂ Y n ∩N1

such that s 
 B ⊂ Ȧ and s 
 〈yN1(s⊕si) : i < n〉 ∈ B(δ+1). By Lemma
4.6, hN1,N2((s̄, {si : i < n}, Ȧ)) is in A ∩N2. Since Ȧ ⊂ H(ℵ1) we also

have, by Lemma 4.6, that hN1,N2(Ȧ)∩N2 is equal to Ȧ∩N1. Therefore,
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we have that s also forces that B is a subset of hN1,N2(Ȧ). Well, this
shows that 〈yN1(s⊕ si) : i < n〉 satisfies this particular requirement of
〈yN2(s ⊕ si) : i < n〉 with respect to hN1,N2((s̄, {si : i < n}, Ȧ)). Since
hN1,N2 is an isomorphism, this shows that 〈yN1(s) : s ∈ Sδ〉 works as a
choice for 〈yN2(s) : s ∈ Sδ〉, and so, indeed, they are the same. �

A condition q ∈ Q consists of a pair ([Nq], Sq) where [Nq] is an
elementary matrix of submodels of (H(ℵ2),≺ω1 , τ̇ ,SB,A) such that
there is a pq ∈ P satisfying that Mpq is a subset of [Nq], Spq = Sq,
and Cp = Cq = {N ∩ ω1 : N ∈ [Nq]}. The choice of pq is not unique,
so let [q]P equal the set of p ∈ P such that Mp ⊂ [Nq] and Sp = Sq.
We have that P ⊂ {pq : q ∈ Q} because, for each p ∈ P , the pair
({{N} : N ∈ Mp}, Sp) is a condition in Q. The ordering on Q is that
q2 < q1 providing that each N ∈ [Nq1 ] is an element of [Nq2 ], and there
is a p2 ∈ [q2]P such that p1 = p2 � {N ∈ Mp2 : N ∈ [Nq1 ]} satisfies
that p2 ≤P p1 and p1 ∈ [q1]P . Using Claim 10, it follows that if q2 < q1,
then an element p2 ∈ [q2]P is below an element of [q1]P providing each
N ∈Mp2 with N ∩ω1 ∈ Cq1 is in [Nq1 ]. This implies that the ordering
on Q is transitive.

Claim 11. S ×Q is proper.Qproper

Proof of Claim 11: Consider a countable elementary submodel M as
in Definition 2.2 for S ×Q. Since P is definable from Q, we also have
that P is in M . Choose any (s̄, q̄) ∈M ∩ (S ×Q) and any dense open
set D ∈ M of S × Q. Choose any p̄ ∈ [q̄]P ∩M and p† < p̄ so that
Mp† = Mp̄ ∪ {M ∩ H(ℵ2)}. Since q̄ ∈ M , [Nq̄] is a subset of M and
so it follows that ([Nq̄]∪ {M ∩H(ℵ2)}, Sp̄ ∪ {p†(M ∩H(ℵ2))}) is in Q.
Now we know we can choose a condition (s†, q) ∈ D below (s̄, q̄) such
that M ∩H(ℵ2) ∈ [Nq]. We show that

DP = {(s, p) ∈ S × P : (∃q ∈ Q) p ∈ [q]P and (s, q) ∈ D} ∈M
is a dense subset of S × P . Fix any (s′, p′) ∈ P . Choose any r1 ∈ Q
so that p′ ∈ [r1]P and let (s2, r2) ∈ D be below (s′, r1). Fix any
p2 ∈ [r2]P . Let γ = max(Cp′), and let Nγ ∈ Mp2 and Mγ ∈ Mp′

so that γ = Nγ ∩ ω1 = Mγ ∩ ω1. We define a condition r̃2 ∈ Q so
that (s2, r̃2) < (s2, r2) and so that there is a p3 ∈ [r̃2]P satisfying that
p3 < p′. Since (s2, p3) ∈ DP , this will show that DP is dense. For each
α ∈ Cr2 , let N r2

α = {N ∈ [Nr2 ] : N ∩ω1 = α}. For each α ∈ Cr2 ∩γ, let
N r̃2
α = N r2

α ∪ {hNγ ,Mγ (N) : N ∈ Mp2 ∩ Nγ}. For α ∈ Cr2 \ γ, set N r̃2
α

equal to N r2
α . Since {hNγ ,Mγ (N) : N ∈Mp2∩Nγ}∪{Mγ} is an ∈-chain,

it follows easily that [Nr̃2 ] is an elementary matrix. Also, there is an
∈-chain, which we will call Mp3 , of elements of [Nr̃2 ] extending this
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chain so that Cr2 = {N ∩ ω1 : N ∈ Mp3}. For each N ∈ Mp3 , choose
N ′ ∈Mp2 so that N ∩ω1 = N ′∩ω1 and set p3(N) = p2(N ′). It follows
easily that p3 ∈ [r̃2]P , and since r2 < r1, it follows from Claim 10, that
p3 < p′ – completing the proof that DP is dense.

Now, as in the proof of Lemma 3.28, there is a δ̄ < ξ < δ and a pair
(sξ, pξ) ∈ DP ∩M such that

(1) Cpξ ∩ δ̄ = Cq ∩ δ and δ̄ ∈ Cpξ ,
(2) for any sδ ∈ S↓pq ∩ Sδ, S

↓
pq ∩ Sδ = {s⊕ sδ : s ∈ S↓pξ ∩ Sδ̄}

(3) sξ = s† � ξ and (sξ, pξ) is compatible with (s†, pq).

The condition r̄ ∈ P with simply r̄ = pq ∪ pξ satisfies that r̄ < pq and
r̄ < pξ. Now choose (sξ, qξ) ∈ D ∩M so that pξ ∈ [qξ]P . We are ready
to define an r ∈ Q so that (s†, r) is below each of (s†, q) and (sξ, qξ) –
completing the proof that S×Q is proper. The definition of Sr is simply
Sq∪Sqξ . For α ∈ Cq\δ, we letN r

α = N q
α = {N ∈ [Nq] : N∩ω1 = α}. For

α ∈ Cqξ , let N r
α = {N ∈ [N q] ∪ [N qξ ] : N ∩ ω1 = α}. Since qξ ∈ M , it

follows that [Nqξ ] ⊂M ∩H(ℵ2), and that condition (4) of the property
of being an elementary matrix holds for [N r] = {N r

α : α ∈ Cq ∪ Cqξ}.
Since r̄ ∈ [r]P , we have that r < q and r < qξ holds. �

Now we have to prove that Q satisfies the ℵ2-p.i.c.

Claim 12. Q satisfies the ℵ2-p.i.c. itspic

Proof of Claim 12: Let λ = ℵ3 and fix a well-ordering ≺ of H(λ). Let
i < j < ω2 be such that there are two countable elementary submodels
Ni and Nj of 〈H(λ),≺,∈〉 such that Q is in Ni ∩Nj , i ∈ Ni , j ∈ Nj,
Ni ∩ i = Nj ∩ j, and suppose further that we are given p ∈ Q∩Ni and
an isomorphism h : Ni → Nj such that h(i) = j and h is the identity
on Ni ∩ Nj. Since S ⊂ 2<ω1 , h(s) = s for each s ∈ 2<ω1 ∩ Ni. Also,
since Sp ⊂ Ni, we have that h(Sp) = Sp.

We must show that there is a q ∈ Q such that :

(1) q < p , q < h(p) and q is both Ni and Nj generic ,
(2) if r ∈ Ni ∩ P and q′ < q there is a q′′ < q′ so that

q′′ < r if and only if q′′ < h(r) .

Since Q ∈ Ni ∩ Nj, we have that {≺ω1 , τ,SB,A} ∈ Ni ∩ Nj. The
reason is that the collection {N : (∃p ∈ Q)N ∈ [Np]} is in Ni ∩Nj. It
follows that N ′i = Ni∩H(ℵ2) is an elementary submodel of (H(ℵ2),≺ω1

, τ,SB,A). N ′j, defined similarly, is as well. The definition of the
[Nq] for q is canonical. Given that [Np] = {N1,N2, . . . ,Nn}, we set
[Nq] = {N1 ∪ h(N1), . . . ,Nn ∪ h(Nn), {N ′i , N ′j}}. The existence of h

ensures that N ′i = N ′j. Since [Np] ∈ N ′i and h([Np]) = [Nh(p)] ∈ N ′j,
we have that [Nq] is an elementary matrix. Now we have to choose Sq.
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It follows from Claim 10 and Lemma 3.21, that the value of γ(N ′i) (as
in Definition 3.22) is equal to γ(N ′j). Let sp be the element in Sp with
o(sp) a maximum. Choose any s ∈ Sγ(N ′i)

such that sp < s. Now set
Sq = Sp ∪ {s}. To show that q = ([Nq], Sq) ∈ Q, we just note that if
p1 ∈ [p]P , then the function p2 equalling p1 ∪ {(N ′i , s)} is in [q]P .

We already know that q is both Ni-generic and Nj-generic from the
discussion above explaining that S × Q is proper. Finally, as in (2)
above, let r ∈ Ni ∩ Q and q′ < q with q′ ∈ Q. Towards verifying (2),
we may assume, by symmetry and by possibly extending q′, that q′ is

also below r. Let [Nq′ ] be listed as {N q′

1 , . . . ,N
q′

k } and let 1 < ` ≤ k

be chosen so that N ′i ∈ N
q′

` . For 1 ≤ m < `, let N i
m = N q′

m ∩ Ni. Of
course we have that N ∈ N ′j for each 1 ≤ m < ` and each N ∈ h(N i

m).
It is then easily verified that

{h(N i
1) ∪N q′

1 , . . . , h(N i
`−1) ∪N q′

`−1,N
q′′

` , . . . ,N q′

k }

is an elementary matrix, and so q′′ ∈ Q where Sq′′ = Sq′ and

[Nq′′ ] = {h(N i
1) ∪N q′

1 , . . . , h(N i
`−1) ∪N q′

`−1,N
q′

` , . . . ,N
q′

k } .

It is immediate that q′′ < q′, and so q′′ < r. We just have to show that
q′′ is also below h(r).

Since q′′ < r, we have that [Nr] ∈ Ni is a submatrix of {Ni ∩
N1, . . . , Ni∩N`−1}, and so [Nh(r)] ∈ Nj is a submatrix of [Nq′′ ]. Choose
p1 ∈ [h(r)]P so that h−1(p1) ∈ [r]P has an extension in P to some
p2 ∈ [q′′]P . We know that |Mp2 | = k and now let Mp2 be listed in
increasing order as {Mp2

m : 1 ≤ m ≤ k}. As above, ` ≤ k is the

value so that N ′j ∈ N
q′′

` , and we noted above that Mp1 ⊂ N ′j. Let

N̄` = N ′j, and for ` < m ≤ k, recursively choose N̄m ∈ N q′′
m so that

N̄m−1 ∈ N̄m. For 1 ≤ m < `, let N̄m = h(Mp2
m ); note that N̄m ∈ Mp1

if N̄m ∩ ω1 ∈ Cp1 . Define a function p3 so that the domain of p3

is the set Mp3 = {N̄m : 1 ≤ m ≤ k} and, for each 1 ≤ m ≤ k,
p3(N̄m) = p2(Mp2

m ). It follows that p3 ∈ [q′′]P and that p3 < p1. This
proves that q′′ < h(r). �

This completes the proof of Lemma 4.8. �

Definition 4.9. The stationary set of ordinals λ ∈ ω2 with uncountable
cofinality is denoted as S2

1 . The principle ♦(S2
1) is the statement:

There is a family {Xλ : λ ∈ S2
1} such that

(1) for each λ ∈ S2
1 , Xλ ⊂ λ,

(2) for each X ⊂ ω2, the set EX = {λ ∈ S2
1 : X ∩ λ = Xλ} is

stationary.
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Theorem 4.10. Assume CH and ♦(S2
1). There is a proper poset Pzfc

so that in the forcing extension by P there is a coherent Souslin tree
S such that, in the full forcing extension by P ∗ S, the statement GA
holds.

Proof. We construct a countable support iteration sequence 〈Pα, Q̇β :
α ≤ ω2, β < ω2〉. By induction, we assume that Pα is proper, has
cardinality at most ℵ2, and that


Pα Q̇α satisfies the ℵ2-p.i.c .

Note that by Propositions 4.2 and 4.4 we will have that, for each
α < ω2, CH holds in the forcing extension by Pα. We may assume that
Q̇0, and therefore P1 is constructed so that there is a P1-name, Ṡ of a
coherent Souslin tree (henceforth we suppress the dot on the S). We
further demand of our induction that, for α ≥ 1


Pα Q̇α is S-preserving .

For each ordinal 0 < α ∈ ω2\S2
1 , we let Q̇α denote the Pα-name of the

standard Hechler poset for adding a dominating real. This ensures that
b = ω2 in the forcing extension by Pω2 . For the rest of the construction,
fix any function h from ω2 onto H(ℵ2). Also let {Xλ : λ ∈ S2

1} be a
♦(S2

1)-sequence.

Now consider λ ∈ S2
1 and let xλ = h[Xλ]. We define Q̇λ according to

cases:

(1) if xλ is the Pλ ∗ S-name of a P-ideal on ω1 such that

1 
 [E]ℵ0 ∩ xλ is not empty for all stationary sets E ⊂ ω1,

then Q̇λ is the Pλ-name of the poset from Theorem 4.7,
(2) if xλ is the Pλ ∗ S-name of a subset of λ × λ × λ so that if we

define, for ξ, η ∈ λ, U̇(ξ, η) to be the Pλ ∗ S-name of the subset
of λ such that

{(ξ, η)} × U̇(ξ, η) = xλ ∩ ({(ξ, η)} × λ) ,

i.e. for ((p, s), (ξ, η, γ)) in the set xλ, ((p, s), γ) is in the name
U̇(ξ, η), and Pλ ∗ S forces that the family {U̇(ξ, η) : η ∈ λ} is a
local base for ξ in a sequentially compact regular topology on
λ, and that no finite subset of {U̇(ξ, η) : ξ, η ∈ λ} covers λ,

then Q̇λ is the Pλ-name of the poset from Theorem 4.8.
(3) in all other cases, Q̇λ is the Pλ-name of the Cohen poset 2<ω.

Assume that İ is a Pω2 ∗ S-name of a P-ideal on ω1 satisfying that
there is some (p0, s0) ∈ Pω2 ∗S forcing that [E]ℵ0∩İ is not empty for all
stationary sets E ⊂ ω1. In order to apply case (1) of the definition of
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Pω2 we construct another Pω2 ∗S-name J̇ so that (p, s) 
 J̇ = İ, and 1
forces that [E]ℵ0 ∩ İ is not empty for all stationary sets E ⊂ ω1. More
precisely, we choose J̇ so that (p, s) 
 J̇ = İ and (p′, s′) 
 J̇ = [ω1]≤ℵ0

for all (p′, s′) ∈ Pω2 ∗ S that are incompatible with (p, s). Let X ⊂ ω2

be chosen to be the set of all ξ ∈ ω2 with the property that there is a
µ < ω2 such that h(ξ) is a Pµ ∗ S-name with 1 
 h(ξ) ∈ J̇ . There is a
cub C ⊂ ω2 such that for each µ < µ′ ∈ C:

(1) the collection {h(ξ) : ξ ∈ X∩µ} is a collection of Pµ′ ∗S-names,
(2) for each countable subset {ξn : n ∈ ω} of X∩µ there is a ξ < µ′

such that 1 forces that h(ξn) is almost included in h(ξ) for each
n,

(3) every Pµ ∗ S-name that is forced by 1 to be a member of J̇ is
congruent to a name in {h(ξ) : ξ ∈ X ∩ µ′}.

Therefore, there is a λ ∈ EX ∩ C such that Xλ = X ∩ λ. We may
of course assume that p0 ∈ Pλ. Routine checking now shows that xλ
satisfies clause (1) in the definition of Q̇λ. It follows that Pω2 ∗ S is a
model of P22.

Now suppose that we have a Pω2 ∗S-name of a sequentially compact
non-compact space. We note that Pω2 ∗ S forces that 2ℵ0 = ℵ2. By
Proposition 3.3, we can assume that either the space is separable, or
equal to the sequential closure of some subspace of cardinality at most
ℵ1 that has no complete accumulation point. In either case, every point
of the space has a neighborhood that is separable. To see the latter
case, consider the (sequential) closure of a set A of size ℵ1 with no
complete accumulation point. Let x be in that (sequential) closure.
Take an open set U about x which has countable intersection with A.
That intersection is dense in U . Now we see that this local separability
ensures that every point has a neighborhood base of cardinality at most
ℵ2. Then, by possibly taking the free union with the Cantor set, we
can assume the space has cardinality exactly ω2, and that the base
set for the space is the ordinal ω2. Let Ż denote the Pω2 ∗ S-name
of this space. Let {U̇(ξ, η) : ξ, η ∈ ω2} be the list of Pω2 ∗ S-names
of the neighborhood bases of the points, and chosen so that no finite
subcollection covers. We define X to be the set of all those α ∈ ω2 such
that h(α) is a tuple of the form ((p, s), (ξ, η, γ)), i.e. a Pω2 ∗ S-name of
a member of ω2 × ω2 × ω2, where (p, s) 
 γ ∈ U̇(ξ, η).

We again want to choose a λ in EX∩C for some special cub set C and
in this case it is much simpler to make use of uncountable elementary
submodels. Let κ be any regular cardinal greater than 2ω2 , and let
{Mα : α ∈ ω2} be chosen so that, for each α ∈ ω2:

(1) X, h and Pω2 ∗ S are in Mα



HEREDITARILY NORMAL MANIFOLDS 59

(2) ω1 ⊂Mα and Mα has cardinality ℵ1,
(3) for each β < α, every countable subset of Mβ is an element of

Mα,
(4) Mα is an elementary submodel of H(κ),
(5) if α is a limit ordinal, then Mα =

⋃
{Mβ : β < α}.

Items (2) and (4) guarantee that Mα ∩ ω2 is an initial segment of ω2.
The chain {Mα : α ∈ ω2} is a continuous chain because of item (5), and
so C = {α ∈ ω2 : Mα∩ω2 = α} is a closed and unbounded subset of ω2.
Now we choose λ ∈ EX ∩ C. Using items (1), (3) and (4) and the fact
that λ ∈ S2

1 , it is now easy to show that xλ will satisfy the requirement

(2) in the construction of Q̇λ. It then follows, as in the proof of Lemma
3.27, that Pλ+1 ∗S will force the existence of the necessary ω1-sequence
showing that Ż is not a counterexample to PPI+. �
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