THE KATOWICE PROBLEM AND AUTOHOMEOMORPHISMS OF ω_0^*

DAVID CHODOUNSK݆, ALAN DOW‡, KLAAS PIETER HART, AND HARM DE VRIES

The other authors dedicate this paper to Alan, who doesn't look a year over 59

ABSTRACT. We show that the existence of a homeomorphism between ω_0^* and ω_1^* entails the existence of a non-trivial autohomeomorphism of ω_0^* . This answers Problem 441 in [8].

We also discuss the joint consistency of various consequences of ω_0^* and ω_1^* being homeomorphic.

INTRODUCTION

The Katowice problem, posed by Marian Turzański, is about Čech-Stone remainders of discrete spaces. Let κ and λ be two infinite cardinals, endowed with the discrete topology. The Katowice problem asks

If the remainders κ^* and λ^* are homeomorphic must the cardinals κ and λ be equal?

Since the weight of κ^* is equal to 2^{κ} it is immediate that the Generalized Continuum Hypothesis implies a yes answer. In joint work Balcar and Frankiewicz established that the answer is actually positive without any additional assumptions, except possibly for the first two infinite cardinals. More precisely

Theorem ([1,5]). If $\langle \kappa, \lambda \rangle \neq \langle \aleph_0, \aleph_1 \rangle$ and $\kappa < \lambda$ then the remainders κ^* and λ^* are not homeomorphic.

This leaves open the following problem.

Question. Is it consistent that ω_0^* and ω_1^* are homeomorphic?

Through the years various consequences of " ω_0^* and ω_1^* are homeomorphic" were collected in the hope that their conjunction would imply 0 = 1 and thus yield a full positive answer to the Katowice problem.

In the present paper we add another consequence, namely that there is a nontrivial autohomeomorphism of ω_0^* . Whether this is a consequence was asked by Nyikos in [7], right after he mentioned the relatively easy fact that ω_1^* has a nontrivial autohomeomorphism if ω_0^* and ω_1^* are homeomorphic, see the end of Section 1.

After some preliminaries in Section 1 we construct our non-trivial autohomeomorphism of ω_0^* in Section 2. In Section 3 we shall discuss the consequences alluded to above and formulate a structural question related to them; Section 4 contains some consistency results regarding that structural question.

Date: Friday 21-08-2015 at 14:48:13 (cest).

¹⁹⁹¹ Mathematics Subject Classification. Primary: 54D40. Secondary: 03E05, 03E35, 06E05, 06E15, 54A35, 54D80.

Key words and phrases. Katowice problem, homeomorphism, non-trivial autohomeomorphism, Čech-Stone remainder, ω_0^* , ω_1^* , isomorphism, non-trivial automorphism, quotient algebra, $\mathcal{P}(\omega_0)/fin$, $\mathcal{P}(\omega_1)/fin$.

[†]Research of this author was supported by the GACR project I 1921-N25 and RVO: 67985840. ‡Research of this author was supported by NSF grant No. NSF-DMS-0901168.

1. Preliminaries

We deal with Cech-Stone compactifications of discrete spaces exclusively. Probably the most direct way of defining $\beta\kappa$, for a cardinal κ with the discrete topology, is as the space of ultrafilters of the Boolean algebra $\mathcal{P}(\kappa)$, as explained in [6] for example.

The remainder $\beta \kappa \setminus \kappa$ is denoted κ^* and we extend the notation A^* to denote $\operatorname{cl} A \cap \kappa^*$ for all subsets of κ . It is well known that $\{A^* : A \subseteq \kappa\}$ is exactly the family of clopen subsets of κ^* .

All relations between sets of the form A^* translate back to the original sets by adding the modifier "modulo finite sets". Thus, $A^* = \emptyset$ iff A is finite, $A^* \subseteq B^*$ iff $A \setminus B$ is finite and so on.

This means that we can also look at our question as an algebraic problem:

Question. Is it consistent that the Boolean algebras $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\omega_1)/fin$ are isomorphic?

Here fin denotes the ideal of finite sets. Indeed, the algebraically inclined reader can interpret A^* as the equivalence class of A in the quotient algebra and read the proof in Section 2 below as establishing that there is a non-trivial automorphism of the Boolean algebra $\mathcal{P}(\omega_0)/fin$.

1.1. Auto(homeo)morphisms. It is straightforward to define autohomeomorphisms of spaces of the form κ^* : take a bijection $\sigma : \kappa \to \kappa$ and let it act in the obvious way on the set of ultrafilters to get an autohomeomorphism of $\beta \kappa$ that leaves κ^* invariant. In fact, if we want to induce an autohomeomorphism on κ^* then it suffices to take a bijection between cofinite subsets of κ .

We shall call an autohomeomorphism of κ^* trivial if it is induced in the above way, otherwise we shall call it non-trivial. For example the simple shift $s: n \mapsto n+1$ on ω_0 determines an autohomeomorphism s^* of ω_0^* .

A non-trivial autohomeomorphism for ω_1^* . For the reader's edification and to give the flavour of the arguments in the next section we prove that the autohomeomorphism s^* of ω_0^* , introduced above, has no non-trivial invariant clopen sets. From this we shall deduce that if ω_0^* and ω_1^* are homeomorphic then ω_1^* must have a non-trivial autohomeomorphism.

Assume $A \subseteq \omega_0$ is such that $s^*[A^*] = A^*$; translated back to ω_0 this means that the symmetric difference of s[A] and A is finite. Let $K \in \omega$ be so large that this symmetric difference is contained in K.

If $k \ge K$ and $k \in A$ then $k+1 \in s[A]$ and hence $k+1 \in A$, and likewise if $k \ge K$ and $k \notin A$ then $k+1 \notin s[A]$ and hence $k+1 \notin A$. It follows that if $K \in A$ then $\omega_0 \setminus K \subseteq A$ and so $A^* = \omega_0^*$, and if $K \notin A$ then $A \cap (\omega_0 \setminus K) = \emptyset$ and so $A^* = \emptyset$.

It is an elementary fact about ω_1 that for every subset A of ω_1 and every map $f : A \to \omega_1$ there are uncountably many $\alpha \in \omega_1$ such that $f[A \cap \alpha] \subseteq \alpha$; in particular, if f is a bijection between cofinite sets A and B one has $f[A \cap \alpha] = B \cap \alpha$ for arbitrarily large α . This then implies that trivial autohomeomorphisms of ω_1^* have many non-trivial clopen invariant sets.

And so, if ω_0^* and ω_1^* are homeomorphic then ω_1^* must have a non-trivial autohomeomorphism. This result can be found as Corollary 1 to Theorem 4.1 in [7], where the latter result is credited to [4]. The present argument is probably folklore.

2. A NON-TRIVIAL AUTO(HOMEO)MORPHISM

In this section we prove our main result. We let $\gamma : \omega_0^* \to \omega_1^*$ be a homeomorphism and use it to construct a non-trivial autohomeomorphism of ω_0^* .

We consider the discrete space of cardinality \aleph_1 in the guise of $\mathbb{Z} \times \omega_1$. A natural bijection of this set to itself is the shift to the right, defined by $\sigma(n, \alpha) = \langle n+1, \alpha \rangle$. The restriction, σ^* , of its Čech-Stone extension, $\beta\sigma$, to $(\mathbb{Z} \times \omega_1)^*$ is an autohomeomorphism. We prove that $\rho = \gamma^{-1} \circ \sigma^* \circ \gamma$ is a non-trivial autohomeomorphism of ω_0^* . To this end we assume there is a bijection $g: A \to B$ between cofinite sets that induces ρ and establish a contradiction.

2.1. **Properties of** σ^* and $(\mathbb{Z} \times \omega_1)^*$. We define three types of sets that will be useful in the proof: vertical lines $V_n = \{n\} \times \omega_1$, horizontal lines $H_\alpha = \mathbb{Z} \times \{\alpha\}$ and end sets $E_\alpha = \mathbb{Z} \times [\alpha, \omega_1)$.

These have the following properties.

Claim 2.1.1.
$$\sigma^*[V_n^*] = V_{n+1}^*$$
 for all *n*.

Claim 2.1.2. $\{H_{\alpha}^* : \alpha < \omega_1\}$ is a maximal disjoint family of σ^* -invariant clopen sets.

Proof. It is clear that $\sigma^*[H^*_{\alpha}] = H^*_{\alpha}$ for all α .

To establish maximality of the family let $C \subseteq \mathbb{Z} \times \omega_1$ be infinite and such that $C \cap H_{\alpha} =^* \emptyset$ for all α ; then $A = \{\alpha : C \cap H_{\alpha} \neq \emptyset\}$ is infinite.

For each $\alpha \in A$ let $n_{\alpha} = \max\{n : \langle n, \alpha \rangle \in C\}$; then $\{\langle n_{\alpha} + 1, \alpha \rangle : \alpha \in A\}$ is an infinite subset of $\sigma[C] \setminus C$, and hence $\sigma^*[C^*] \neq C^*$.

Claim 2.1.3. If $C \subseteq \mathbb{Z} \times \omega_1$ is such that $H^*_{\alpha} \subseteq C^*$ for uncountably many α then there is a subset S of V_0 such that $S^* \cap E^*_{\alpha} \neq \emptyset$ for all α and $(\sigma^*)^n[S^*] \subseteq C^*$ for all but finitely many n in \mathbb{Z} .

Proof. For each α such that $H_{\alpha}^* \subseteq C^*$ let F_{α} be the finite set $\{n : \langle n, \alpha \rangle \notin C\}$. There are a fixed finite set F and an uncountable subset A of ω_1 such that $F_{\alpha} = F$ for all $\alpha \in A$; $S = \{0\} \times A$ is as required.

2.2. Translation to ω_0 and ω_0^* . We choose infinite subsets v_n (for $n \in \mathbb{Z}$), and h_α and e_α (for $\alpha \in \omega_1$) such that for all n and α we have $v_n^* = \gamma^{\leftarrow}[V_n^*]$, $h_\alpha^* = \gamma^{\leftarrow}[H_\alpha^*]$, and $e_\alpha^* = \gamma^{\leftarrow}[E_\alpha^*]$.

Thus we obtain an almost disjoint family $\{v_n : n \in \mathbb{Z}\} \cup \{h_\alpha : \alpha \in \omega_1\}$ with properties analogous to those of the family $\{V_n : n \in \mathbb{Z}\} \cup \{H_\alpha : \alpha \in \omega_1\}$, these are

Claim 2.2.1. $g[v_n] =^* v_{n+1}$ for all n.

Claim 2.2.2. $\{h_{\alpha}^* : \alpha < \omega_1\}$ is a maximal disjoint family of g^* -invariant clopen sets.

Claim 2.2.3. If c is such that $h_{\alpha} \subseteq^* c$ for uncountably many α then there is a subset s of v_0 such that $s \cap e_{\alpha}$ is infinite for all α and such that $g^n[s] \subseteq^* c$ for all but finitely many n in \mathbb{Z} .

2.3. Orbits of g. By defining finitely many extra values we can assume that at least one of A and B is equal to ω and, upon replacing σ by its inverse, we may as well assume that $A = \omega$.

For $k \in \omega$ we let $I_k = \{n \in \mathbb{Z} : g^n(k) \text{ is defined}\}$ and $O_k = \{g^n(k) : n \in I_k\}$ (the orbit of k).

We shall say that a set a splits a set b if both $b \cap a$ and $b \setminus a$ are nonempty.

Claim 2.3.1. Each h_{α} splits only finitely many orbits.

Proof. If h_{α} splits O_k then there is an $n \in I_k$ such that $g^n(k) \in h_{\alpha}$ but (at least) one of $g^{n+1}(k)$ and $g^{n-1}(k)$ is not in h_{α} . So either $g^{n+1}(k) \in g[h_{\alpha}] \setminus h_{\alpha}$ or $g^n(k) \in h_{\alpha} \setminus g[h_{\alpha}]$.

It follows that each orbit split by h_{α} meets the symmetric difference of $g[h_{\alpha}]$ and h_{α} ; as the latter set is finite and orbits are disjoint only finitely many orbits can intersect it.

We divide ω into two sets: F, the union of all finite g-orbits, and G, the union of all infinite g-orbits.

Claim 2.3.2. If O_k is infinite then there are at most two αs for which $O_k \cap h_{\alpha}$ is infinite.

Proof. First we let $k \in \omega \setminus B$; in this case $I_k = \omega$. The set O_k^* is g^* -invariant, hence $O_k \cap h_\alpha$ is infinite for some α . In fact: $O_k \subseteq^* h_\alpha$ (and so α is unique); for let $J = \{n : g^n(k) \in h_\alpha \text{ and } g^{n+1}(k) \notin h_\alpha\}$, then $\{g^{n+1}(k) : n \in J\} \subseteq g[h_\alpha] \setminus h_\alpha$ so that J is finite.

It follows that the set $X = \bigcup \{O_k : k \in \omega \setminus B\}$ is, save for a finite set, covered by finitely many of the h_{α} .

Next let $k \in \omega \setminus X$; in this case $I_k = \mathbb{Z}$ and both sets $\{g^n(k) : n < 0\}^*$ and $\{g^n(k) : n \ge 0\}^*$ are g^* -invariant. The argument above applied to both sets yields α_1 and α_2 (possibly identical) such that $\{g^n(k) : n < 0\} \subseteq^* h_{\alpha_1}$ and $\{g^n(k) : n \ge 0\} \subseteq^* h_{\alpha_2}$.

The following claim is the last step towards our final contradiction.

Claim 2.3.3. For all but countably many α we have $h_{\alpha} \subseteq^* F$.

Proof. By Claim 2.3.2 the set D of those α for which h_{α} meets an infinite orbit in an infinite set is countable: each such orbit meets at most two h_{α} s and there are only countably many orbits of course.

If $\alpha \notin D$ then h_{α} meets every infinite orbit in a finite set and it splits only finitely many of these, which means that it intersects only finitely many infinite orbits, and hence that it meets G in a finite set.

2.4. The final contradiction. We now apply Claim 2.2.3 to F. It follows that there is an infinite subset s of v_0 such that $g^n[s] \subseteq^* F$ for all but finitely many n. In fact, as F is g-invariant one n_0 suffices: we can then first assume that $g^{n_0}[s] \subseteq F$ (drop finitely many points from s) and then use g-invariance of F to deduce that $g^n[s] \subseteq F$ for all n.

Let $E = \bigcup_{k \in s} O_k$; as a union of orbits this set is *g*-invariant. There must therefore be an α such that $E \cap h_{\alpha}$ is infinite. Now there are infinitely many $k \in E$ such that h_{α} intersects O_k ; by Claim 2.3.1 h_{α} must contain all but finitely many of these. This means that $O_k \subset h_{\alpha}$ for infinitely many $k \in s$ and hence that $h_{\alpha} \cap v_0$ is infinite, which is a contradiction because h_{α} and v_0 were assumed to be almost disjoint.

2.5. An alternative contradiction. For each α the set H^*_{α} splits into two minimal σ^* -invariant clopen sets, to wit $\{\langle n, \alpha \rangle : n < 0\}^*$ and $\{\langle n, \alpha \rangle : n \ge 0\}^*$ (apply the argument in subsection 1.1). Therefore the same is true for each h^*_{α} with respect to ρ . However, with the notation as above we find infinitely many ρ -invariant clopen subsets of h^*_{α} , for every infinite subset t of s we can take $(\bigcup_{k \in t} O_k)^*$. Now split s into infinitely many infinite subsets.

3. A QUESTION

Our result does not settle the Katowice problem but it may point toward a final solution. We list the known consequences of the existence of a homeomorphism between ω_0^* and ω_1^* .

(1) $2^{\aleph_0} = 2^{\aleph_1}$

THE KATOWICE PROBLEM

- (2) $\mathfrak{d} = \aleph_1$
- (3) there is a strong-Q-sequence
- (4) there is a strictly increasing ω_1 -sequence \mathcal{O} of clopen sets in ω_0^* such that $\bigcup \mathcal{O}$ is dense and $\omega_0^* \setminus \bigcup \mathcal{O}$ contains no *P*-points

The first consequence simply says that the weights of ω_0^* and ω_1^* are equal. Equality (2) was established in [1] as a major step in the proof of the theorem in the Introduction and statement (4) is [7, Theorem 3.5]

To explain (3) we need to define what a strong-Q-sequence is: a sequence $\langle A_{\alpha} : \alpha \in \omega_1 \rangle$ of infinite subsets of ω with the property that for every choice $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ of subsets $(x_{\alpha} \subseteq A_{\alpha})$ there is a single subset x of ω such that $x_{\alpha} = A_{\alpha} \cap x$ for all α . In [9] Steprāns showed the consistency of the existence of strong-Q-sequences with ZFC.

Not only is each of these consequences consistent with ZFC but in [2] Chodounský provides a model where these consequences hold simultaneously.

We shall now reprove the three structural consequences using the same sets that we employed in the construction of the non-trivial autohomeomorphism. We use the sets v_n to make ω resemble $\mathbb{Z} \times \omega$: first make them pairwise disjoint and then identify v_n with $\{n\} \times \omega$ via some bijection between ω and $\mathbb{Z} \times \omega$.

Our consequences are now obtained as follows:

- (2) For every $\alpha < \omega_1$ define $f_\alpha : \mathbb{Z} \to \omega$ by $f_\alpha(m) = \min\{n : \langle m, n \rangle \in e_\alpha\}$; the family $\{f_\alpha : \alpha < \omega_1\}$ witnesses $\mathfrak{d} = \aleph_1$: for every $f : \mathbb{Z} \to \omega$ there is an α such that $\{n : f(n) \ge f_\alpha(n)\}$ is finite. Indeed, take A such that $A^* = \gamma[\{\langle m, n \rangle : n \le f(m)\}^*]$ and observe that there is an α such that $E_\alpha \cap A = \emptyset$.
- (3) The family $\{h_{\alpha} : \alpha \in \omega_1\}$ is a strong-*Q*-sequence: assume a subset x_{α} of h_{α} is given for all α ; then there is a single subset x of ω such that $x^* \cap h_{\alpha}^* = x_{\alpha}^*$ for all α . To see this take $X_{\alpha} \subseteq H_{\alpha}$ such that $X_{\alpha}^* = \gamma[x_{\alpha}^*]$ and put $X = \bigcup_{\alpha} X_{\alpha}$ then $X \cap H_{\alpha} = X_{\alpha}$ and hence $\gamma^{\leftarrow}[X^*] \cap h_{\alpha}^* = x_{\alpha}^*$ for all α .
- (4) Let b_{α} be the complement of e_{α} and let B_{α} be the complement of E_{α} . Then $\langle b_{\alpha}^* : \alpha < \omega_1 \rangle$ is the required sequence: in ω_1^* the complement of $\bigcup_{\alpha} B_{\alpha}^*$ consists of the uniform ultrafilters on ω_1 ; none of these is a P-point.

To this list we can now add the existence of a non-trivial auto(homeo)morphism ρ and a disjoint family $\{v_n : n \in \mathbb{Z}\}$ of infinite subsets of ω_0 such that

- (5) $\{v_n : n \in \mathbb{Z}\} \cup \{h_\alpha : \alpha < \omega_1\}$ is almost disjoint,
- (6) $\rho[v_n^*] = v_{n+1}^*$ for all n,
- (7) $\{h_{\alpha}^*: \alpha < \omega_1\}$ is a maximal disjoint family of ρ -invariant sets, and
- (8) for each α the sets $(h_{\alpha} \cap \bigcup_{n < 0} v_n)^*$ and $(h_{\alpha} \cap \bigcup_{n \ge 0} v_n)^*$ are minimal clopen ρ -invariant sets.

Since the family $\{h_{\alpha} : \alpha < \omega_1\}$ is a strong-*Q*-sequence one can find for any (uncountable) subset *A* of ω_1 an infinite set X_A such that $h_{\alpha} \subseteq^* X_A$ if $\alpha \in A$ and $h_{\alpha} \cap X_A =^* \emptyset$ if $\alpha \notin A$.

Our proof shows that ρ is in fact non-trivial on every such set X_A whenever A is uncountable.

Remark 3.1. Consequence (1) above is the equality $2^{\aleph_0} = 2^{\aleph_1}$; it does not specify the common value any further. We can actually assume, without loss of generality, that $2^{\aleph_0} = 2^{\aleph_1} = \aleph_2$. Indeed, one can collapse 2^{\aleph_1} to \aleph_2 by adding a Cohen subset of ω_2 ; this forcing adds no new subsets of ω_1 of cardinality \aleph_1 or less, so any isomorphism between $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\omega_1)/fin$ will survive.

Remark 3.2. It is straightforward to show that the completions of $\mathcal{P}(\omega_0)/fin$ and $\mathcal{P}(\omega_1)/fin$ are isomorphic, e.g., by taking maximal almost families of countable sets

in both $\mathcal{P}(\omega_0)$ and $\mathcal{P}(\omega_1)$ of cardinality \mathfrak{c} . These represent maximal antichains in the completions consisting of mutually isomorphic elements and a global isomorphism will be the result of combining the local isomorphisms. This argument works for all cardinals κ that satisfy $\kappa^{\aleph_0} = \mathfrak{c}$, that is, for every cardinal κ in the interval $[\aleph_0, \mathfrak{c}]$ the completion of $\mathcal{P}(\kappa)/fin$ is isomorphic to the completion of $\mathcal{P}(\omega_0)/fin$, see [2, Corollary 1.2.7].

Thus, it will most likely be the incompleteness properties of the algebras that decide the outcome of the Katowice problem.

4. Some consistency

To see what is possible consistency-wise we indicate how some of the features of the edifice that we erected, based on the assumption that ω_0^* and ω_1^* are homeomorphic, can occur simultaneously. For this we consider the ideal \mathcal{I} generated by the finite sets together with the sets b_{α} (the complements of the sets e_{α}). This ideal satisfies the following properties:

(1) \mathcal{I} is non-meager,

(2) \mathcal{I} intersects every P-point,

(3) \mathcal{I} is generated by the increasing tower $\{b_{\alpha} : \alpha < \omega_1\}$, and

(4) the differences $b_{\alpha+1} \setminus b_{\alpha}$ form a strong-*Q*-sequence.

We have already established properties (2), (3) and (4).

We are left with property (1); that \mathcal{I} must be non-meager was already known to B. Balcar and P. Simon.

We recall that a family of subsets of ω_0 is said to be *meager* if, upon identifying sets with their characteristic functions, it is meager in the product space 2^{ω} .

Lemma 4.1. \mathcal{I} is not meager.

Proof. We assume \mathcal{I} is meager and apply [10, Théorème 25] to find a sequence $\langle F_n : n \in \omega \rangle$ of pairwise disjoint finite sets with the property that $\{n : I \cap F_n \neq \emptyset\}$ is finite whenever $I \in \mathcal{I}$. By contraposition we find that whenever X is an infinite subset of ω the set $F_X = \bigcup_{n \in X} F_n$ does not belong to \mathcal{I} ; this means that if $\gamma[F_X^*] = G_X^*$ then G_X must be an uncountable subset of $\mathbb{Z} \times \omega_1$.

Fix a family $\{X_s : s \in {}^{<\omega}2\}$ of infinite subsets of ω such that $X_s \supseteq X_t$, and hence $G_{X_s} \supseteq^* G_{X_t}$, whenever $s \subseteq t$, and $X_s \cap X_t = \emptyset$, and hence $G_{X_s} \cap G_{X_t} = {}^* \emptyset$, whenever s and t are incompatible. Using this we can fix $\alpha \in \omega_1$ such that all exceptions in the previous sentence occur in $\mathbb{Z} \times \alpha$.

So, the family $\{G_{X_s} \cap E_{\alpha} : s \in {}^{<\omega}2\}$ satisfies the relations above without the modifier 'modulo finite sets'. This implies that if $n \in \mathbb{Z}$ and $\beta \ge \alpha$ then there is at most one branch $y_{n,\beta}$ in the binary tree ${}^{<\omega}2$ such that $\langle n, \beta \rangle \in G_{X_s}$ for all $s \in y_{n,\beta}$.

Now, since $2^{\aleph_0} = 2^{\aleph_1}$ there is a branch, y, different from all $y_{n,\beta}$. We can take an infinite set X such that $X \subseteq^* X_s$ for all $s \in y$. This means of course that G_X is uncountable and that $G_X \subseteq^* G_{X_s}$ for all $s \in y$, and hence that there is $\beta \ge \alpha$ such that $G_X \setminus G_{X_s} \subseteq \mathbb{Z} \times \beta$ for all s. However, if $\langle n, \gamma \rangle \in G_X$ and $\gamma \ge \beta$ then we should have both $\langle n, \gamma \rangle \in \bigcap_{s \in y} G_{X_s}$ by the above and $\langle n, \gamma \rangle \notin \bigcap_{s \in y} G_{X_s}$ because $y \ne y_{n,\gamma}$.

The methods from [2] and [3] can be used to establish the consistency of $\mathfrak{d} = \aleph_1$ with the existence of an ideal with the properties (1) through (4) of \mathcal{I} — let us call such an ideal countable-like.

Sacrificing completeness for brevity we shall only give a sketch of the proof of the following result, which is Theorem 4.5.1 from [2]. The sketch should be comprehensible to anyone familiar with the various terms employed, such as ω^{ω} bounding, Grigorieff forcing etc. We refer the reader in search for definitions and more details to [2]. **Theorem 4.2.** It is consistent with ZFC that $\mathfrak{d} = \aleph_1$ and there is countable-like ideal \mathcal{I} on ω .

Proof. We start with a model of $\mathsf{ZFC}+\mathsf{GCH}$ and take an increasing tower $\mathcal{T} = \{T_\alpha : \alpha \in \omega_1\}$ in $\mathcal{P}(\omega)$ that generates a non-meager ideal and let \mathcal{A} denote the almost disjoint family of differences $\{T_{\alpha+1} \setminus T_\alpha : \alpha \in \omega_1\}$ — we write $A_\alpha = T_{\alpha+1} \setminus T_\alpha$. Because of the GCH we can arrange that $\{\omega \setminus T_\alpha : \alpha \in \omega_1\}$ generates a P-point, which more than suffices for our purposes.

We set up an iterated forcing construction, with countable supports, of proper ${}^{\omega}\omega$ -bounding partial orders that will produce a model in which $\mathfrak{d} = \aleph_1$ and the ideal \mathcal{I} generated by \mathcal{T} is countable-like. By the ${}^{\omega}\omega$ -bounding property we get $\mathfrak{d} = \aleph_1$ and the non-meagerness of \mathcal{I} for free.

To turn \mathcal{A} into a strong-Q-sequence we use guided Grigorieff forcing, as in [3]: given a choice $F = \langle F_{\alpha} : \alpha \in \omega_1 \rangle$, where each F_{α} is a subset of A_{α} , we let $\operatorname{Gr}(\mathcal{T}, F)$ be the partial order whose elements are functions of the form $p : T_{\alpha} \to 2$, with the property that $p^{\leftarrow}(1) \cap A_{\beta} =^* F_{\beta}$ for all $\beta \leq \alpha$. The ordering is by extension: $p \leq q$ if $p \supseteq q$. This partial order is proper and ${}^{\omega}\omega$ -bounding and if G is generic on $\operatorname{Gr}(\mathcal{T}, F)$ then $X = (\bigcup G)^{\leftarrow}(1)$ is such that $X \cap A_{\alpha} =^* F_{\alpha}$ for all α . As indicated in [3], by appropriate bookkeeping one can set up an iteration that turns \mathcal{A} into a strong-Q-sequence.

One can interleave this iteration with one that destroys all P-points; this establishes property (2) of countable-like ideals in a particularly strong way. For every ideal \mathcal{I} that is dual to a non-meager P-filter one considers the 'normal' Grigorieff partial order $\operatorname{Gr}(\mathcal{I})$ associated to \mathcal{I} , which consists of functions with domain in \mathcal{I} and $\{0,1\}$ as codomain. The power $\operatorname{Gr}(\mathcal{I})^{\omega}$ is proper and $^{\omega}\omega$ -bounding and forcing with it creates countably many sets that prevent the filter dual to \mathcal{I} from being extended to a P-point, even in further extensions by proper $^{\omega}\omega$ -bounding partial orders.

All bookkeeping can be arranged so that all potential choices for \mathcal{A} and all potential non-meager P-filters can be dealt with.

The question arises naturally whether this argument can be adapted so as to include an automorphism of $\mathcal{P}(\omega_0)/fin$ that acts in the same way as our non-trivial automorphism ρ . On the surface this seems unlikely.

The construction has the tendency of going completely in the wrong direction as regards autohomeomorphisms of ω_0^* . As explained in Chapter 5 of [2], if one has an autohomeomorphism φ that is not trivial on any element of the filter dual to \mathcal{I} then the generic filter on $\operatorname{Gr}(\mathcal{I})$ destroys φ in the following sense: there is no possible value for $\varphi(X^*)$, where $X = (\bigcup G)^{\leftarrow}(1)$. The reason is that this value should satisfy $\varphi(p^{\leftarrow}(1)^*) \subseteq \varphi(X^*)$ and $\varphi(p^{\leftarrow}(0)^*) \cap \varphi(X^*) = \emptyset$ for all $p \in G$ and a density argument shows that no such set exists in V[G].

Thus, if things go really wrong one ends up with a model in which for every non-meager P-filter \mathcal{F} and every autohomeomorphism there is a member of \mathcal{F} on which the autohomeomorphism must be trivial. This would be in contradiction with the last sentence just before Remark 3.1, which says that our ρ is non-trivial on any set that contains uncountably many h_{α} s.

In fact, Theorem 5.3.12 in [2] shows that by interleaving some extra partial orders in the iteration this ubiquity of triviality can actually be made to happen.

References

Bohuslav Balcar and Ryszard Frankiewicz, To distinguish topologically the spaces m^{*}. II, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 26 (1978), no. 6, 521–523 (English, with Russian summary). MR511955 (80b:54026)

- [2] David Chodounský, On the Katowice problem, PhD thesis, Charles University, Prague, 2011, http://www.math.cas.cz/fichier/preprints/other/other_series_20150721163718_ 88.pdf.
- [3] _____, Strong-Q-sequences and small d, Topology and its Applications 159 (2012), no. 13, 2942–2946, DOI 10.1016/j.topol.2012.05.012. MR2944766
- W. W. Comfort, Compactifications: recent results from several countries, Topology Proceedings 2 (1977), no. 1, 61–87 (1978). MR540597 (80m:54035)
- [5] Ryszard Frankiewicz, To distinguish topologically the space m^{*}, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 25 (1977), no. 9, 891–893 (English, with Russian summary). MR0461444 (57 #1429)
- [6] Jan van Mill, An introduction to $\beta\omega$, Handbook of set-theoretic topology (Kenneth Kunen and Jerry E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 503–567. MR776630 (86f:54027)
- [7] Peter J. Nyikos, Čech-Stone remainders of discrete spaces, Open problems in topology. II (Elliott Pearl, ed.), Elsevier B.V., Amsterdam, 2007, pp. 207–216.
- [8] Elliott Pearl (ed.), Open problems in topology. II, Elsevier B.V., Amsterdam, 2007. MR2367385 (2008j:54001)
- Juris Steprāns, Strong-Q-sequences and variations on Martin's axiom, Canadian Journal of Mathematics 37 (1985), no. 4, 730–746, DOI 10.4153/CJM-1985-039-6. MR801424 (87c:03106)
- [10] Michel Talagrand, Compacts de fonctions mesurables et filtres non mesurables, Studia Mathematica 67 (1980), no. 1, 13–43 (French). MR579439 (82e:28009)

INSTITUTE OF MATHEMATICS, AS CR, ŽITNÁ 25, 115 67 PRAHA I, CZECH REPUBLIC *E-mail address:* david.chodounsky@matfyz.cz

Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001

E-mail address: adow@uncc.edu URL: http://www.math.uncc.edu/~adow

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE, TU DELFT, POSTBUS 5031, 2600 GA DELFT, THE NETHERLANDS

E-mail address: k.p.hart@tudelft.nl *URL*: http://fa.its.tudelft.nl/~hart

LEVENDAAL 143-A, 2311 JH LEIDEN, THE NETHERLANDS *E-mail address*: vries1010gmail.com

8