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Abstract. We show that the existence of a homeomorphism between ω∗
0

and ω∗
1 entails the existence of a non-trivial autohomeomorphism of ω∗

0 . This

answers Problem 441 in [8].

We also discuss the joint consistency of various consequences of ω∗
0 and ω∗

1

being homeomorphic.

Introduction

The Katowice problem, posed by Marian Turzański, is about Čech-Stone remain-
ders of discrete spaces. Let κ and λ be two infinite cardinals, endowed with the
discrete topology. The Katowice problem asks

If the remainders κ∗ and λ∗ are homeomorphic must the cardinals κ
and λ be equal?

Since the weight of κ∗ is equal to 2κ it is immediate that the Generalized Con-
tinuum Hypothesis implies a yes answer. In joint work Balcar and Frankiewicz
established that the answer is actually positive without any additional assump-
tions, except possibly for the first two infinite cardinals. More precisely

Theorem ([1, 5]). If 〈κ, λ〉 6= 〈ℵ0,ℵ1〉 and κ < λ then the remainders κ∗ and λ∗

are not homeomorphic.

This leaves open the following problem.

Question. Is it consistent that ω∗0 and ω∗1 are homeomorphic?

Through the years various consequences of “ω∗0 and ω∗1 are homeomorphic” were
collected in the hope that their conjunction would imply 0 = 1 and thus yield a full
positive answer to the Katowice problem.

In the present paper we add another consequence, namely that there is a non-
trivial autohomeomorphism of ω∗0 . Whether this is a consequence was asked by
Nyikos in [7], right after he mentioned the relatively easy fact that ω∗1 has a non-
trivial autohomeomorphism if ω∗0 and ω∗1 are homeomorphic, see the end of Sec-
tion 1.

After some preliminaries in Section 1 we construct our non-trivial autohomeo-
morphism of ω∗0 in Section 2. In Section 3 we shall discuss the consequences alluded
to above and formulate a structural question related to them; Section 4 contains
some consistency results regarding that structural question.
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1. Preliminaries

We deal with Čech-Stone compactifications of discrete spaces exclusively. Prob-
ably the most direct way of defining βκ, for a cardinal κ with the discrete topology,
is as the space of ultrafilters of the Boolean algebra P(κ), as explained in [6] for
example.

The remainder βκ \ κ is denoted κ∗ and we extend the notation A∗ to denote
clA ∩ κ∗ for all subsets of κ. It is well known that {A∗ : A ⊆ κ} is exactly the
family of clopen subsets of κ∗.

All relations between sets of the form A∗ translate back to the original sets by
adding the modifier “modulo finite sets”. Thus, A∗ = ∅ iff A is finite, A∗ ⊆ B∗ iff
A \B is finite and so on.

This means that we can also look at our question as an algebraic problem:

Question. Is it consistent that the Boolean algebras P(ω0)/fin and P(ω1)/fin are
isomorphic?

Here fin denotes the ideal of finite sets. Indeed, the algebraically inclined reader
can interpret A∗ as the equivalence class of A in the quotient algebra and read the
proof in Section 2 below as establishing that there is a non-trivial automorphism
of the Boolean algebra P(ω0)/fin.

1.1. Auto(homeo)morphisms. It is straightforward to define autohomeomor-
phisms of spaces of the form κ∗: take a bijection σ : κ → κ and let it act in
the obvious way on the set of ultrafilters to get an autohomeomorphism of βκ that
leaves κ∗ invariant. In fact, if we want to induce an autohomeomorphism on κ∗

then it suffices to take a bijection between cofinite subsets of κ.
We shall call an autohomeomorphism of κ∗ trivial if it is induced in the above

way, otherwise we shall call it non-trivial. For example the simple shift s : n 7→ n+1
on ω0 determines an autohomeomorphism s∗ of ω∗0 .

A non-trivial autohomeomorphism for ω∗1 . For the reader’s edification and to give
the flavour of the arguments in the next section we prove that the autohomeomor-
phism s∗ of ω∗0 , introduced above, has no non-trivial invariant clopen sets. From
this we shall deduce that if ω∗0 and ω∗1 are homeomorphic then ω∗1 must have a
non-trivial autohomeomorphism.

Assume A ⊆ ω0 is such that s∗[A∗] = A∗; translated back to ω0 this means that
the symmetric difference of s[A] and A is finite. Let K ∈ ω be so large that this
symmetric difference is contained in K.

If k > K and k ∈ A then k+1 ∈ s[A] and hence k+1 ∈ A, and likewise if k > K
and k /∈ A then k + 1 /∈ s[A] and hence k + 1 /∈ A. It follows that if K ∈ A then
ω0 \K ⊆ A and so A∗ = ω∗0 , and if K /∈ A then A ∩ (ω0 \K) = ∅ and so A∗ = ∅.

It is an elementary fact about ω1 that for every subset A of ω1 and every map
f : A → ω1 there are uncountably many α ∈ ω1 such that f [A ∩ α] ⊆ α; in
particular, if f is a bijection between cofinite sets A and B one has f [A∩α] = B∩α
for arbitrarily large α. This then implies that trivial autohomeomorphisms of ω∗1
have many non-trivial clopen invariant sets.

And so, if ω∗0 and ω∗1 are homeomorphic then ω∗1 must have a non-trivial auto-
homeomorphism. This result can be found as Corollary 1 to Theorem 4.1 in [7],
where the latter result is credited to [4]. The present argument is probably folklore.

2. A non-trivial auto(homeo)morphism

In this section we prove our main result. We let γ : ω∗0 → ω∗1 be a homeomor-
phism and use it to construct a non-trivial autohomeomorphism of ω∗0 .
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We consider the discrete space of cardinality ℵ1 in the guise of Z×ω1. A natural
bijection of this set to itself is the shift to the right, defined by σ(n, α) = 〈n+ 1, α〉.
The restriction, σ∗, of its Čech-Stone extension, βσ, to (Z× ω1)∗ is an autohome-
omorphism. We prove that ρ = γ−1 ◦ σ∗ ◦ γ is a non-trivial autohomeomorphism
of ω∗0 . To this end we assume there is a bijection g : A → B between cofinite sets
that induces ρ and establish a contradiction.

2.1. Properties of σ∗ and (Z × ω1)∗. We define three types of sets that will be
useful in the proof: vertical lines Vn = {n} × ω1, horizontal lines Hα = Z × {α}
and end sets Eα = Z× [α, ω1).

These have the following properties.

Claim 2.1.1. σ∗[V ∗n ] = V ∗n+1 for all n. �

Claim 2.1.2. {H∗α : α < ω1} is a maximal disjoint family of σ∗-invariant clopen
sets.

Proof. It is clear that σ∗[H∗α] = H∗α for all α.
To establish maximality of the family let C ⊆ Z × ω1 be infinite and such that

C ∩Hα =∗ ∅ for all α; then A = {α : C ∩Hα 6= ∅} is infinite.
For each α ∈ A let nα = max{n : 〈n, α〉 ∈ C}; then {〈nα + 1, α〉 : α ∈ A} is an

infinite subset of σ[C] \ C, and hence σ∗[C∗] 6= C∗. �

Claim 2.1.3. If C ⊆ Z × ω1 is such that H∗α ⊆ C∗ for uncountably many α then
there is a subset S of V0 such that S∗ ∩ E∗α 6= ∅ for all α and (σ∗)n[S∗] ⊆ C∗ for
all but finitely many n in Z.

Proof. For each α such that H∗α ⊆ C∗ let Fα be the finite set {n : 〈n, α〉 /∈ C}.
There are a fixed finite set F and an uncountable subset A of ω1 such that Fα = F
for all α ∈ A; S = {0} ×A is as required. �

2.2. Translation to ω0 and ω∗0 . We choose infinite subsets vn (for n ∈ Z), and hα
and eα (for α ∈ ω1) such that for all n and α we have v∗n = γ←[V ∗n ], h∗α = γ←[H∗α],
and e∗α = γ←[E∗α].

Thus we obtain an almost disjoint family {vn : n ∈ Z} ∪ {hα : α ∈ ω1} with
properties analogous to those of the family {Vn : n ∈ Z}∪ {Hα : α ∈ ω1}, these are

Claim 2.2.1. g[vn] =∗ vn+1 for all n. �

Claim 2.2.2. {h∗α : α < ω1} is a maximal disjoint family of g∗-invariant clopen
sets. �

Claim 2.2.3. If c is such that hα ⊆∗ c for uncountably many α then there is a
subset s of v0 such that s ∩ eα is infinite for all α and such that gn[s] ⊆∗ c for all
but finitely many n in Z. �

2.3. Orbits of g. By defining finitely many extra values we can assume that at
least one of A and B is equal to ω and, upon replacing σ by its inverse, we may as
well assume that A = ω.

For k ∈ ω we let Ik = {n ∈ Z : gn(k) is defined} and Ok = {gn(k) : n ∈ Ik} (the
orbit of k).

We shall say that a set a splits a set b if both b ∩ a and b \ a are nonempty.

Claim 2.3.1. Each hα splits only finitely many orbits.

Proof. If hα splits Ok then there is an n ∈ Ik such that gn(k) ∈ hα but (at
least) one of gn+1(k) and gn−1(k) is not in hα. So either gn+1(k) ∈ g[hα] \ hα or
gn(k) ∈ hα \ g[hα].
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It follows that each orbit split by hα meets the symmetric difference of g[hα]
and hα; as the latter set is finite and orbits are disjoint only finitely many orbits
can intersect it. �

We divide ω into two sets: F , the union of all finite g-orbits, and G, the union
of all infinite g-orbits.

Claim 2.3.2. If Ok is infinite then there are at most two αs for which Ok ∩ hα is
infinite.

Proof. First we let k ∈ ω \B; in this case Ik = ω. The set O∗k is g∗-invariant, hence
Ok ∩ hα is infinite for some α. In fact: Ok ⊆∗ hα (and so α is unique); for let
J = {n : gn(k) ∈ hα and gn+1(k) /∈ hα}, then {gn+1(k) : n ∈ J} ⊆ g[hα] \ hα so
that J is finite.

It follows that the set X =
⋃
{Ok : k ∈ ω \ B} is, save for a finite set, covered

by finitely many of the hα.
Next let k ∈ ω \ X; in this case Ik = Z and both sets {gn(k) : n < 0}∗

and {gn(k) : n > 0}∗ are g∗-invariant. The argument above applied to both
sets yields α1 and α2 (possibly identical) such that {gn(k) : n < 0} ⊆∗ hα1 and
{gn(k) : n > 0} ⊆∗ hα2

. �

The following claim is the last step towards our final contradiction.

Claim 2.3.3. For all but countably many α we have hα ⊆∗ F .

Proof. By Claim 2.3.2 the set D of those α for which hα meets an infinite orbit in
an infinite set is countable: each such orbit meets at most two hαs and there are
only countably many orbits of course.

If α /∈ D then hα meets every infinite orbit in a finite set and it splits only finitely
many of these, which means that it intersects only finitely many infinite orbits, and
hence that it meets G in a finite set. �

2.4. The final contradiction. We now apply Claim 2.2.3 to F . It follows that
there is an infinite subset s of v0 such that gn[s] ⊆∗ F for all but finitely many n.
In fact, as F is g-invariant one n0 suffices: we can then first assume that gn0 [s] ⊆ F
(drop finitely many points from s) and then use g-invariance of F to deduce that
gn[s] ⊆ F for all n.

Let E =
⋃
k∈sOk; as a union of orbits this set is g-invariant. There must

therefore be an α such that E ∩hα is infinite. Now there are infinitely many k ∈ E
such that hα intersects Ok; by Claim 2.3.1 hα must contain all but finitely many of
these. This means that Ok ⊂ hα for infinitely many k ∈ s and hence that hα ∩ v0

is infinite, which is a contradiction because hα and v0 were assumed to be almost
disjoint.

2.5. An alternative contradiction. For each α the set H∗α splits into two mini-
mal σ∗-invariant clopen sets, to wit {〈n, α〉 : n < 0}∗ and {〈n, α〉 : n > 0}∗ (apply
the argument in subsection 1.1). Therefore the same is true for each h∗α with re-
spect to ρ. However, with the notation as above we find infinitely many ρ-invariant
clopen subsets of h∗α, for every infinite subset t of s we can take (

⋃
k∈tOk)∗. Now

split s into infinitely many infinite subsets.

3. A question

Our result does not settle the Katowice problem but it may point toward a final
solution. We list the known consequences of the existence of a homeomorphism
between ω∗0 and ω∗1 .

(1) 2ℵ0 = 2ℵ1



THE KATOWICE PROBLEM 5

(2) d = ℵ1

(3) there is a strong-Q-sequence
(4) there is a strictly increasing ω1-sequence O of clopen sets in ω∗0 such that⋃

O is dense and ω∗0 \
⋃
O contains no P -points

The first consequence simply says that the weights of ω∗0 and ω∗1 are equal.
Equality (2) was established in [1] as a major step in the proof of the theorem in
the Introduction and statement (4) is [7, Theorem 3.5]

To explain (3) we need to define what a strong-Q-sequence is: a sequence 〈Aα :
α ∈ ω1〉 of infinite subsets of ω with the property that for every choice 〈xα : α ∈ ω1〉
of subsets (xα ⊆ Aα) there is a single subset x of ω such that xα =∗ Aα ∩ x for
all α. In [9] Steprāns showed the consistency of the existence of strong-Q-sequences
with ZFC.

Not only is each of these consequences consistent with ZFC but in [2] Chodounský
provides a model where these consequences hold simultaneously.

We shall now reprove the three structural consequences using the same sets that
we employed in the construction of the non-trivial autohomeomorphism. We use
the sets vn to make ω resemble Z× ω: first make them pairwise disjoint and then
identify vn with {n} × ω via some bijection between ω and Z× ω.

Our consequences are now obtained as follows:

(2) For every α < ω1 define fα : Z → ω by fα(m) = min{n : 〈m,n〉 ∈ eα};
the family {fα : α < ω1} witnesses d = ℵ1: for every f : Z → ω there
is an α such that {n : f(n) > fα(n)} is finite. Indeed, take A such that
A∗ = γ

[
{〈m,n〉 : n 6 f(m)}∗

]
and observe that there is an α such that

Eα ∩A = ∅.
(3) The family {hα : α ∈ ω1} is a strong-Q-sequence: assume a subset xα

of hα is given for all α; then there is a single subset x of ω such that
x∗ ∩ h∗α = x∗α for all α. To see this take Xα ⊆ Hα such that X∗α = γ[x∗α]
and put X =

⋃
αXα then X ∩Hα = Xα and hence γ←[X∗] ∩ h∗α = x∗α for

all α.
(4) Let bα be the complement of eα and let Bα be the complement of Eα. Then
〈b∗α : α < ω1〉 is the required sequence: in ω∗1 the complement of

⋃
αB
∗
α

consists of the uniform ultrafilters on ω1; none of these is a P-point.

To this list we can now add the existence of a non-trivial auto(homeo)morphism ρ
and a disjoint family {vn : n ∈ Z} of infinite subsets of ω0 such that

(5) {vn : n ∈ Z} ∪ {hα : α < ω1} is almost disjoint,
(6) ρ[v∗n] = v∗n+1 for all n,
(7) {h∗α : α < ω1} is a maximal disjoint family of ρ-invariant sets, and
(8) for each α the sets (hα∩

⋃
n<0 vn)∗ and (hα∩

⋃
n>0 vn)∗ are minimal clopen

ρ-invariant sets.

Since the family {hα : α < ω1} is a strong-Q-sequence one can find for any (un-
countable) subset A of ω1 an infinite set XA such that hα ⊆∗ XA if α ∈ A and
hα ∩XA =∗ ∅ if α /∈ A.

Our proof shows that ρ is in fact non-trivial on every such set XA whenever A is
uncountable.

Remark 3.1. Consequence (1) above is the equality 2ℵ0 = 2ℵ1 ; it does not specify
the common value any further. We can actually assume, without loss of generality,
that 2ℵ0 = 2ℵ1 = ℵ2. Indeed, one can collapse 2ℵ1 to ℵ2 by adding a Cohen
subset of ω2; this forcing adds no new subsets of ω1 of cardinality ℵ1 or less, so any
isomorphism between P(ω0)/fin and P(ω1)/fin will survive.

Remark 3.2. It is straightforward to show that the completions of P(ω0)/fin and
P(ω1)/fin are isomorphic, e.g., by taking maximal almost families of countable sets
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in both P(ω0) and P(ω1) of cardinality c. These represent maximal antichains in the
completions consisting of mutually isomorphic elements and a global isomorphism
will be the result of combining the local isomorphisms. This argument works for
all cardinals κ that satisfy κℵ0 = c, that is, for every cardinal κ in the interval
[ℵ0, c] the completion of P(κ)/fin is isomorphic to the completion of P(ω0)/fin,
see [2, Corollary 1.2.7].

Thus, it will most likely be the incompleteness properties of the algebras that
decide the outcome of the Katowice problem.

4. Some consistency

To see what is possible consistency-wise we indicate how some of the features of
the edifice that we erected, based on the assumption that ω∗0 and ω∗1 are homeo-
morphic, can occur simultaneously. For this we consider the ideal I generated by
the finite sets together with the sets bα (the complements of the sets eα). This ideal
satisfies the following properties:

(1) I is non-meager,
(2) I intersects every P-point,
(3) I is generated by the increasing tower {bα : α < ω1}, and
(4) the differences bα+1 \ bα form a strong-Q-sequence.

We have already established properties (2), (3) and (4).
We are left with property (1); that I must be non-meager was already known to

B. Balcar and P. Simon.
We recall that a family of subsets of ω0 is said to be meager if, upon identifying

sets with their characteristic functions, it is meager in the product space 2ω.

Lemma 4.1. I is not meager.

Proof. We assume I is meager and apply [10, Théorème 25] to find a sequence
〈Fn : n ∈ ω〉 of pairwise disjoint finite sets with the property that {n : I ∩ Fn 6= ∅}
is finite whenever I ∈ I. By contraposition we find that whenever X is an infinite
subset of ω the set FX =

⋃
n∈X Fn does not belong to I; this means that if γ[F ∗X ] =

G∗X then GX must be an uncountable subset of Z× ω1.
Fix a family {Xs : s ∈ <ω2} of infinite subsets of ω such that Xs ⊇ Xt, and

hence GXs ⊇∗ GXt , whenever s ⊆ t, and Xs ∩Xt = ∅, and hence GXs ∩GXt =∗ ∅,
whenever s and t are incompatible. Using this we can fix α ∈ ω1 such that all
exceptions in the previous sentence occur in Z× α.

So, the family {GXs
∩ Eα : s ∈ <ω2} satisfies the relations above without the

modifier ‘modulo finite sets’. This implies that if n ∈ Z and β > α then there is at
most one branch yn,β in the binary tree <ω2 such that 〈n, β〉 ∈ GXs for all s ∈ yn,β .

Now, since 2ℵ0 = 2ℵ1 there is a branch, y, different from all yn,β . We can take
an infinite set X such that X ⊆∗ Xs for all s ∈ y. This means of course that GX is
uncountable and that GX ⊆∗ GXs for all s ∈ y, and hence that there is β > α
such that GX \GXs

⊆ Z× β for all s. However, if 〈n, γ〉 ∈ GX and γ > β then we
should have both 〈n, γ〉 ∈

⋂
s∈y GXs

by the above and 〈n, γ〉 /∈
⋂
s∈y GXs

because
y 6= yn,γ . �

The methods from [2] and [3] can be used to establish the consistency of d = ℵ1

with the existence of an ideal with the properties (1) through (4) of I — let us call
such an ideal countable-like.

Sacrificing completeness for brevity we shall only give a sketch of the proof
of the following result, which is Theorem 4.5.1 from [2]. The sketch should be
comprehensible to anyone familiar with the various terms employed, such as ωω-
bounding, Grigorieff forcing etc. We refer the reader in search for definitions and
more details to [2].
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Theorem 4.2. It is consistent with ZFC that d = ℵ1 and there is countable-like
ideal I on ω.

Proof. We start with a model of ZFC+GCH and take an increasing tower T = {Tα :
α ∈ ω1} in P(ω) that generates a non-meager ideal and let A denote the almost
disjoint family of differences {Tα+1 \ Tα : α ∈ ω1} — we write Aα = Tα+1 \ Tα.
Because of the GCH we can arrange that {ω \ Tα : α ∈ ω1} generates a P-point,
which more than suffices for our purposes.

We set up an iterated forcing construction, with countable supports, of proper
ωω-bounding partial orders that will produce a model in which d = ℵ1 and the
ideal I generated by T is countable-like. By the ωω-bounding property we get
d = ℵ1 and the non-meagerness of I for free.

To turn A into a strong-Q-sequence we use guided Grigorieff forcing, as in [3]:
given a choice F = 〈Fα : α ∈ ω1〉, where each Fα is a subset of Aα, we let Gr(T , F )
be the partial order whose elements are functions of the form p : Tα → 2, with
the property that p←(1) ∩ Aβ =∗ Fβ for all β 6 α. The ordering is by extension:
p 6 q if p ⊇ q. This partial order is proper and ωω-bounding and if G is generic
on Gr(T , F ) then X = (

⋃
G)←(1) is such that X∩Aα =∗ Fα for all α. As indicated

in [3], by appropriate bookkeeping one can set up an iteration that turns A into a
strong-Q-sequence.

One can interleave this iteration with one that destroys all P-points; this estab-
lishes property (2) of countable-like ideals in a particularly strong way. For every
ideal I that is dual to a non-meager P-filter one considers the ‘normal’ Grigorieff
partial order Gr(I) associated to I, which consists of functions with domain in I
and {0, 1} as codomain. The power Gr(I)ω is proper and ωω-bounding and forcing
with it creates countably many sets that prevent the filter dual to I from being
extended to a P-point, even in further extensions by proper ωω-bounding partial
orders.

All bookkeeping can be arranged so that all potential choices for A and all
potential non-meager P-filters can be dealt with. �

The question arises naturally whether this argument can be adapted so as to
include an automorphism of P(ω0)/fin that acts in the same way as our non-trivial
automorphism ρ. On the surface this seems unlikely.

The construction has the tendency of going completely in the wrong direction
as regards autohomeomorphisms of ω∗0 . As explained in Chapter 5 of [2], if one
has an autohomeomorphism ϕ that is not trivial on any element of the filter dual
to I then the generic filter on Gr(I) destroys ϕ in the following sense: there is
no possible value for ϕ(X∗), where X = (

⋃
G)←(1). The reason is that this value

should satisfy ϕ(p←(1)∗) ⊆ ϕ(X∗) and ϕ(p←(0)∗) ∩ ϕ(X∗) = ∅ for all p ∈ G and a
density argument shows that no such set exists in V [G].

Thus, if things go really wrong one ends up with a model in which for every
non-meager P-filter F and every autohomeomorphism there is a member of F on
which the autohomeomorphism must be trivial. This would be in contradiction
with the last sentence just before Remark 3.1, which says that our ρ is non-trivial
on any set that contains uncountably many hαs.

In fact, Theorem 5.3.12 in [2] shows that by interleaving some extra partial orders
in the iteration this ubiquity of triviality can actually be made to happen.
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