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ABSTRACT. We consider question motivated by an old problem of E. Landis in
the study of the complete set of zeros of a C'*° functions and all its derivatives.

1. INTRODUCTION

In the mid 1960’s at the Moscow State University (MSU), Dr. E. Landis, one
of the leading specialists in the qualitative theory of partial differential equations,
published an elegant problem in a popular journal Mathematical Education.

Landis: Let f(x) € C*°(R) and assume that for each € R there
(L) is some non-negative integer n such that f(™(z) = 0.
Prove that f(z) is a polynomial.

A brief solution to this problem appeared in the next volume of the same journal.
The Mathematical Education journal was the Soviet analogue of College Mathemat-
ics Journal of the MAA, but due to technical difficulties it existed less than a year
and it is now effectively inaccessible even within Russia. Fortunately after the pub-
lication of the problem (L) it has become part of the research mathematical folklore
of the MSU. Our information about the problem (L) is based completely on the
recollections of the fourth author but without benefit of the original publication.

Recently, Applicable Analysis dedicated a special volume to the memory of E.
Landis (Vol 71, Numbers 1-4, 1999, Landis Special Issue) but this volume also does
not mention the problem.

The goal of this paper is the discussion of (L) in a broader setting.

Definition 1. If f(z) € C*°(R) then a point z is a generic point for f if for each
non-negative integer n, (™ (z) # 0. The set of generic points of f will be denoted

as G(f).

Definition 2. A point z € R is a non-generic point for f if there is a non-negative
integer n = n(x), such that f™(z) = 0. The set of non-generic points for f is
denoted NG(f).

It is obvious that NG(f) = R\ G(f) and that G(f) belongs to the Baire class Gs.
Similarly, NG(f) is an F,. Problem (L) can be formulated as: if G(f) is empty,
then f is a polynomial.

2000 Mathematics Subject Classification. Primary 30C15.

Key words and phrases. zeros of analytic functions.

The work of Dow and Ganguly was Supported by NSF grant DMS-0103985.
The work of S. Molchanov was supported by the NSF grant DMS-0405927.

1



2 ALAN DOW, SHIULI GANGULY, ALEXANDER Y. GORDON, AND STAS MOLCHANOV

Besides problem (L), we will also discuss some properties of the set G(f). We
will show that it cannot be an arbitrary Gy set. In particular, it will be seen that
if G(f) is not empty then it has the full cardinality ¢ = |R|.

However, the main focus of the present paper is on the structure of the “typical”
G(f), where “typical” will be understood either in the sense of Baire category
(in certain complete metric spaces of C* functions) or in the sense of measure
(probability).

2. ANALYTIC EXAMPLES

This section contains a “herbarium” of particular (analytic) functions f and their
corresponding non-generic sets NG(f). We will use sh(z) and ch(z) to denote
er —e " et +e’ "

the standard hyperbolic trig functions sh (z) = 5 ch(z) = 5 , and

) = Gt = H

Ezample 1. f(z) = Pp(z) = an2™ + - - + a1z + ag, yields NG(f) =

)
(z)

Example 2. f(x) = €®, yields NG(f) = 0.
() =

Ezample 3. f(z) = ch(x) yields NG(f) = {0}.

Ezample 4. f(x) = cosx + ech (z) results in a finite set for NG(f) of arbitrarily
large finite cardinality, which is determined by a suitably small value for ¢ > 0.

Ezample 5. f(x) = sinz of course has an infinite discrete set for NG(f). In this
case NG(f) has no limit points.

Ezample 6. f(x) = xsinx +echaz (¢ > 0) produces an example with NG(f) an
infinite set with infinitely many accumulation points (specifically, points n7/2, n €
Z); these limit points are not included in NG(f).

Ezample 7. f(x) = xsinz gives an infinite set for NG(f) with an infinite dis-
crete set of accumulation points; in this example, some limit points are included in

NG(f).

To see this, observe that f()(z) = sinz + zcosx, fP(z) = 2cosz — xsinz,
f@)(z) = =3sinz — zcosz, fP(x) = —4cosz + xsinz, etc. Thus if sinz = 0 but
x # 0, then z cosz # 0, and for each large enough odd n there will be a value of x,,
near x (but different from x), such that +n sin x,,+x,, cos z,, is equal to 0. It follows
that each zero of sinx (except for 0) is a limit of points in NG(f). Moreover, these
points belong to NG(f). Similarly, the zeros of cosz are limit points of NG(f),
but they are not members of NG(f).

FEzample 8. Let € : kK =0,1,... be chosen so that 0 < ¢ < 1 for each k: Assume

also that e, monotonically converges to 0. Set f(x) =shxz — Zsk @R Let us

show that for each n > 0, f (2”)(:5) = 0 has a unique positive Solutlon ZTo, and it
satisfies 1im,, oo (T2, /€2,) = 1, while f27+1)(2) has no roots. Therefore, we can
arrange that NG(f) will be a sequence {xg, z2, ..., Zan, ...} and the sequence can
decay as fast (or as slow) as we wish.
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Since ™) and f(2"+1) have the same form as f and f’ respectively, it is sufficient
to study solutions of the two equations f(x) =0 and f’(x) = 0.
First we note that

1,2]6

o0 -1
f/(x) =chz — ;Ek-m > chx — |Sh$| = 67‘1| >0.

Secondly, we have
shz —eopchz < f(x) <shx — &.

Here all the three functions strictly increase; in addition, each of the functions
shax — ggchx and sha — gp has a (unique) zero. Hence f(x) has a unique zero
(z(go), say) located between them:

th_1€0 > JZ(E()) > Sh_1€0.

It also follows that x(gg)/eo — 1 as g9 — 0+.

Now we look at examples where the set NG(f) is a dense countable subset of R.

1 1 1 1
Ezample 9. Let f(z) = 2 and note that f(z) = % <x — x—l—i) .

It follows that

1) = 0" [ o - ]

20 x—i)"  (z+i)"
NN .
Thus £ (z) = 0 implies that (W> =1, or L_H = ?™k/™ for some k €
- T —i

. . x+1 ; . .
{1,2,...,n—1}. If xy , is the solution to - = ¢>™*/™ then a routine calculation
T —1

shows that xy ., is equal to cot(km/n).
This shows that the set NG(f) is equal to the set {cot(kn/n) : 1 < k <
n — 1, n > 2}; hence it is dense in R.

Ezample 10. Let f(x) = e~ . Tt is well known that f™(z) is equal to 67I2Hn(13)
where H,(z), n=1,2,..., are the Hermite polynomials. The distribution of their
zeros is very well studied. It is known, in particular, that for each fixed interval A
and n — oo, the roots {x,; : ¢ = 1,2,...,n} are distributed on A asymptotically
uniformly with a step O(n~'/2). For more details on the distribution of the roots
(their density after rescaling, etc.) the reader can consult Szego’s book [10].

3. NON-ANALYTIC EXAMPLES

In the examples above, the functions f(z) were analytic in a complex region
around their domain and therefore these functions could not have an uncountable
non-generic set. To see this, note that if NG(f) is uncountable, then there would
be some n such that f(™(z) will be equal to 0 on an uncountable set. However,
every uncountable subset of R will have a limit point, while the set of zeros of an
analytic function cannot have a limit point in its domain [7, 10.18]. In this section
we examine more complex constructions of C'*° functions with a view towards the

density of NG(f) and the countability of NG(f).
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Our fundamental example is based on Weierstrass’ construction of a nowhere
differentiable continuous function.

The significance of this example will become clear later when we study generic
properties of NG(f) in function spaces.

Example 11. Consider the following Fourier series:

oo
f(z) = Z o sinngx
k=1

with
1
ap = — .
k n:_%
Then
1 k _3 k
(3.1) f(k)(gc) = nllC 2 sin <n1z + 27T> +n§ 2 sin <n2:1: + 27T> +...
EA km 1. km -1 . km

+n,_;sin | ng_1z+ 7 +ny sin | ngT + 7 —|—nk+1 sin | Ng412 + 7 +...

Set ny = 24" for each k > 1, so that the series is super lacunar. It is easy to

1
see that for this selection of parameters, the term n} sin(ngz + %’“) dominates all
other terms of (3.1).

More precisely, for an appropriate § > 0 (namely, 6 = 1/8),

(3.2) F®) (z) = 254" <sin (nkx + k;) +0 (25‘“’)) :

The estimate (3.2) implies that NG(f) is a dense set: for each k, the distance
from any point z to the nearest root of the equation f*)(z) = 0is O(n, ).

It is fairly difficult to determine if the set NG(f) is countable. Using a simple
randomization of the parameters (see Proposition 4 below), we can more easily get
definite answers. At this point, we do not know if for some parameters, NG(f) will
be uncountable (while f is C'*).

We will use Sard’s theorem. This is a result about the measure of the set of
critical values of a differentiable function f that maps a manifold to a manifold.
We will use it in the simplest case of f : U — R, where U is an open set in R. A
point y € R is a critical value of f if there is a point € U such that f'(x) = 0
and f(x) = y. Sard’s theorem, in this case, simply states that for a continuously
differentiable function f, the set of critical values has measure zero (see [9] for more
information).

Lemma 3. Let f, g € C*°(R). Then

(a) for almost all real numbers ¢, the function (f — cg)(x) has only simple zeros in
the open set U = {x e R: g(z) # 0};

(b) if a C* function has only simple zeros, there are at most countably many;

(c) if g has only simple zeros, then so does f — cg for almost all ¢ € R;

(d) if g has at most countably many zeros, then so does (f — cq)(x) for almost all
ceR.

Proof. (a) Both f and g are in C*°(U), as is their ratio f/g. Suppose a root a € U
of f — cg is not simple. Then f(a) = cg(a) and f'(a) = cg’(a); this implies that
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(f/g)(a) = ¢ and (f/g)'(a) = 0, so that ¢ is a critical value of f/g. By Sard’s
theorem, such values of ¢ form a zero measure set.

(b) Obvious.

(c) By (a), for almost all ¢ the function f — cg can have a multiple zero only in
the set R\ U := {z € R: g(z) = 0}. But for any x € R\ U there exists at most
one value of ¢ for which f — cg can have a multiple root at z — this immediately
follows from the fact that ¢’(x) # 0 by assumption. Since g has at most countably
many zeros, the statement is proven.

(d) Follows from (a) and (b). O

We can apply Lemma 3 to the above function f.

Proposition 4. Define a function

Yp(x) = h sin(niz) + Z ay sin(ngz),
k>1

where n, (k > 1) and ar (k > 2) are defined as above. Then for almost all h,
NG(y) is countable and dense, and all zeros of all the derivatives 1/),(Lk) are simple.

Proof. Let f(x) denote the function ), ; ajsin(ngz) and let g(x) be sin(nix).
By Lemma 3(c), for almost all h € R, f + hg has only simple zeros. Similarly, for
almost all i and each k, (f*) 4+ hg®®))(z) has only simple zeros. (We use the fact
that g and all its derivatives have only simple zeros.) In particular, for almost all A,
NG(4y) is countable. That it is dense for all h, follows from the above argument
based on the estimate (3.2). O

It is interesting to also consider adding the condition that the different order
derivatives of f do not share roots. This can easily be accomplished in Proposition
4 by introducing a randomization of each of the parameters oy, but we do not know
if the single parameter h can be so chosen. Proposition 4 can also be derived from
the following fundamental result by E. Bulinskaja related to the random processes
of the class C'. We present the statement in the form from [2, 4.5]:

Proposition 5. Let g(z,w), € [a,f0], w in a probability space (Q, F,P), be
random variables (r.v.) for which (d/dx) g(z,w) is P-a.s. continuous. Assume
also that for any fixred x € [a, B], the distribution of the r.v. g(z,-) has density
P.(a) = (d/da)P{g(z,-) < a} which is uniformly bounded: for all x € [a, f],
a €R, Py(a) < cg < co. Then for any fivred u € R, P-a.s. we have:

(1) the set {z € [, O] : g(x,-) = u} is finite;

(2) all roots of the equation g(x,-) = u are simple; i.e. the system g(x,-) = u,

g'(x,) =0 has no solutions.

FEzxample 12. Let f(-) be the same as in the previous example and let ¢(-) € C§°
be compactly supported and strictly positive and analytic at inner points in the
support. An example of such v is

0, x ¢ (0,1)
3.3 =
Notice that ¥*)(0) and ¢*) (1) are 0 for all k > 0.
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Put 9. (z) = ¥(x)(1 + ef(x)), where ¢ # 0. Then the non-generic set NG(v.)
contains R \ supp ¢ and on supp % it is dense. In addition, for almost every € > 0
the set NG(1:) Nsupp % is countable.

The proof of the first statement is based on the equality
Y8 (2) = (@) + (@ (@) f P (@) + k' (@) F 5D (@) + .+ o0 (@) f(2).

Here, as k — oo, the first term dominates the sum for any € > 0 in any fixed
closed interval A contained in the interior of the support of ¢ (due to (3.2)). The
second statement follows from Lemma 3(d) (we use the obvious fact that the set
NG(y) Nsupp ¥ is countable).

Ezample 13. If we take linear combinations of the antiderivative of functions such
as ¥ from example 12, we can find, for example, C'*° functions, g, with compact
support and constantly 1 on any given interval A. If f is any analytic function,
then the function f - g is such that NG(f - g) N A is equal to NG(f) N A.

Using such functions we can glue together different local examples as constructed
above to get quite a variety of behavior for NG(f). For instance, for any partition
{A; : i = 1,...n} of R into semi-open intervals, one can construct a function
f(z) € C*(R) such that for each odd integer i, f | A; is any specified analytic
function and for each even integer i, NG(f)NA; is a dense countable subset of A;.

Ezample 14. Let A,, (n = 1,2,...) enumerate the Cantor middle third intervals

(e.g. Ay = (3,2)). For each n, also let

(3.4) wwz{o L, TEA

exp(—3—a- — 5=2) T € (an,bn) =4, '

For each n, let A, be large enough so that |1/1,(1k)($)| < A, for all K < n and
x € A,. Then the function g =3 27?72" is in C*° and NG(g) is uncountable and
has measure 0. Multiplying g by 1 + €f, where f is the Weierstrass type function
from example 11, we can further arrange a function § such that NG(g) is still

uncountable and has measure 0 and, in addition, is dense in [0, 1].

4. THE PROOF OF (L) AND COROLLARIES

Lemma 6. If f(z) € C®°(R) and I = [a,b] is a closed bounded non-degenerate
interval in R such that for all © € I, there is an integer n = n(x) such that
fU)(x) =0, then there is a non-empty subinterval Iy = (ag,bo) C I such that f(x)
is a polynomial on Ij.

Proof. For each n let T',, = {x € I : f(")(z) = 0}. By the assumption, the interval
I is contained in the union of the I';,’s. By the Baire Category theorem (see [7,
5.6]), there is an integer m such that the closure of I';;, contains some open interval
Iy = (ap, bo). Since ™) is continuous on Iy, it is constantly 0 on Io. It follows
now that f [ Iy is a polynomial of degree at most m. (|

Theorem 7. If f(x) € C®(R) is such that for all x € R, there is an integer
n = n(z) such that f(x) =0, then f is a polynomial.
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Proof. By Lemma 6, it follows that every non-degenerate interval contains a subin-
terval on which f is a polynomial. Let U, denote the interior of '), = {& € T :
f(x) = 0} and let F denote R\ |J, U,,. Assume that (a,b) C U; and (b,c) C U,
we first show that (a,c) C Upin(jr)- Note that fU)(b) = f¥)(b) = 0. By sym-
metry, we may assume that k > j is minimal such that f®*) is identically 0 on
(b,c). Tt follows that f(*~1) is some non-zero constant on (b, ¢), contradicting that
fE=1(b) = 0. Similarly if (c,d) is an interval contained in | J, U,, there is a min-
imal integer k such that f(*) is constantly 0 on (¢, d) and if k£ > 0, then f(*=1 is
a non-zero constant function on (¢,d). It follows immediately then that F' has no
isolated points.

If F'is empty we are done since then R is a maximal interval in | J,, U,,. Since F is
a closed subset of R, it also satisfies the hypotheses of the Baire category theorem,
hence there is some interval (a,b) such that (a,b) N F is a non-empty subset of T',,
for some integer m. We obtain a contradiction by showing that (a,b) C U,,. Since
F has no isolated points and f(" is identically 0 on F'N(a,b), it follows that fU) is
also 0 on F'N(a,b) for all j > m. Let (¢,d) be a maximal subinterval of (a,b) \ T'y,.
By maximality either c or d is in the closure of I';,, let us assume it is c¢. Note that
(¢, d) is disjoint from F'. Therefore there is a minimal j > m > 0 such that f @) is
constantly 0 on (c,d), hence fU~Y is a non-zero constant on (c,d). We now have
our contradiction since fU~1(¢) = 0. O

We may explicitly record the following corollary which is proven by simply re-
placing R in the above proof by the interval I.

Corollary 8. If I is a non-degenerate open interval of R and f(x) € C°(R) is not
a polynomial on I, then G(f) NI is not empty.

We can now show that if G(f) is not empty it is quite complex.

Corollary 9. If f € C*(R) and a < b < ¢ < d are reals such that (a,b) U (¢c,d) C
NG(f), then ¢,d € NG(f), and (b,c) is not contained in G(f) unless b = c.
Therefore, if the set G(f) is closed, it is either empty or all of R.

Proof. By Corollary 8, there are integers j,k (minimal) so that f) is constant
on (a,b) and f* is constant on (c,d). Clearly then c¢,d € NG(f). If b < ¢, and
there is a some x € G(f) N (b, ¢), then by the mean-value theorem, there is a point
y € (b,c) such that fO+7)(y) = 0 where j/ = max(j, k). O

Corollary 10. If f € C*(R) is not a polynomial, then G(f) has cardinality c.

Proof. By Corollary 9, the set G(f) can have no isolated points. In addition, if
we set F' to be the closure of G(f) in R, F' will have no isolated points and will
be a complete metric space. In addition, G(f) is a dense Gs subset of F. Tt is
well-known that when a complete separable metric space has no isolated points
each dense G subsets has cardinality ¢ (in fact it is itself a complete metric space
under a compatible metric). ]

Theorem 11. If f € C*°(R) then NG(f) is a countable union of pairwise disjoint
closed sets.

Proof. For each n, let F,, = {z € R : f("(z) = 0}. Since f™ is continuous, it
follows that Fj, is a closed subset of R. To prove the theorem it suffices to show
that Fj,+1 \ F,, can be written as a countable union of pairwise disjoint closed
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sets, which we do for n = 0. If an interval (a,b) C Fy, then either [a,b] C Fj
or [a,b] C Fy \ Fo. Now let (a,b) be any maximal subinterval of R \ Fy. Since
no interval of the form (a,a + €) or (b — ¢,b) can be contained in Fj, we may
choose a < - < a_p, < - <a1<ag<a <--<a, < - < bsuch that
G_p — a, a, — b (n — o0) and none of the a,’s are in Fy. For each integer n,
Fi N (an—1,a,) is a closed set and this collection of pairwise disjoint closed sets
covers F; N (a,b). This can be repeated for each of the countably many maximal
intervals (a, b) contained in R\ Fy which completes the proof. O

5. GENERIC IN TOPOLOGY BEHAVIOR OF NON-GENERIC SETS

In this section we continue the study of the nature of the set NG(f) for a typical
function f. Specifically we consider completely metrizable linear topological spaces
of C'*° functions and study the collection of functions f € X whose non-generic

set is dense and countable. In fact, we are interested in an even stronger property
defined below.

We consider the space C*°(R) with the topology of local uniform convergence
of all derivatives (notation emphasizing the topology is C°.(R)). This topology is
generated by a countable set of seminorms

= (k) >
1flln = max = max S (@)] 020,

or equivalently, by a metric

n I =glln
2"
Z TS =gl

Throughout this section, X will denote a linear topological space of C'*° func-
tions. We will consider the following properties that X may or may not have:
(a) X is completely metrizable;
(b) the natural embedding of X into C%(R) is continuous;
(¢) X contains the linear space C§°(R) of all C* functions that are compactly

supported.

Definition 12. A linear topological space X of C'*° functions that has properties
(a), (b) and (c), will be called rich.

C.(R) and the Schwartz space S(R) of fast decaying functions (see, e.g., [6])
are examples of rich spaces. The spaces BR, and BR,_q introduced later in this
section have properties (a) and (b) but not (c).

Now we introduce notation that we will need below.

For f € C*(R) and k € Z, = {0,1,2,...}, we set

Zi(f) = {z e R : fP(z) = 0},
so that NG(f) = Up—o Zk(f)-
For a collection Y of C* functions set
(5.1) QoY) :={f €Y : NG(f) is dense in R};
(5.2) JY):={feY : Z;(f)NZ(f) =0 if j #k};

(5.3) QY) == QoY) N J(Y).
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Theorem 13. Assume X is a rich space of C* functions on R. Then Q(X) is a
dense G subset of X.

The proof is based on two lemmas. We formulate them and show how the
theorem follows, then prove the lemmas.

Lemma 14. (i) Let a,b € R (a < b) and j,k € Z4 (j # k). If X satisfies (b), then
the set
T (X)={f € X : Z;(HNZx(f)N[a.b] = 0}
1S open. '
(i) If X satisfies (c), then J;llf(X) is dense.
Corollary 15. If X is rich, then J(X) is a dense Gs subset of X.

Proof. We have

JX)= () ) .

7,k 0<j<k m>1
so the statement follows from the Baire theorem, according to which the intersection
of a countable family of dense open sets in a complete metric space is dense. O

Lemma 16. (i) Let a,b € R (a <b). If X satisfies (b), then the set
Dap(X) = {f € X : (Fj € Z4) (e, d € [a,B]) (FV(c) <0 < fV(d))}

1S open.
(i) If X satisfies (c), then Dqp(X) is dense.

Corollary 17. If X is rich, then the set
(5.4)
D(X):={f€X : (Ya<b) (3 €Zy)Bc,deab]) (fP(c) <0< f9(d))}

is a dense Gg subset of X.

Proof. We have
DX)= (] Da(X),

a,beQ: a<b
where Q denotes the set of all rationals, hence D(X) is a G5 set, which is dense by
the Baire theorem. O
Note that
(5.5) Q(X) = J(X) N Qo(X) = J(X) N D(X),

The latter set, according to Corollaries 15 and 17 and the Baire theorem, is a
dense G subset of X. Therefore, to prove the theorem it remains to prove the two
lemmas.

Before proving them we will establish two auxiliary facts. Fix two numbers
a,b € R (a < b) and an arbitrary compactly supported C*° function ¢u(-), such
that ¢qp(z) = 1 on the interval

(5.6) A=(a—nb+mn),

where 7 is an arbitrary number > 0.
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Lemma 18. Fiz k € Z4 and two numbers r > 0, R > 0. Set

r () == dap(z) sin(Az) /N2
Then there exists A > 0, such that for all A > A

5.7 <
(5.7) Jna max|ol) (@)] < v

and
max (QgA (x)) > R for 6 = +1.

a<z<b

Proof. A straightforward application of the Leibnitz rule yields: if j < k — 1, then
there exists such a constant C that for all A > 1

max |g{) (z)| < CNF+3 < OA3,
rER

while each of the two maxima maxa<m<b(:|:g( )( )) equals A'/2 if \(b—a) > 27. O

Lemma 19. Given a non-degenerate finite interval [a,b] C R and a sequence By, —
o0, there exists a compactly supported C™ function g(-), such that for all k € Z

(k) - _
(5.8) ax g (z) > By, Jin, g (z) < —By.

Proof. Using notation of Lemma 18, set

(5.9) }:gM = fula) Y ToNT)

k=0 A

Select A\, > 0 according to Lemma 18, where we put 7 = r;, := 2% and R = Ry;
the sequence Ry will be specified later.
By the choice of r; we have

(5.10) §j|w“> o <27,

k=j+1
so that >, ||g(])( Ileo < oo for every j € Z,. This guarantees that the series
> gx, in (5.9) converges and its sum g(-) is in C§°(R).

If x is in the interval (5.6), we have

. > i—k+L1 LT
g9 (z) = Z)\i T2 gin ()xkac -‘rj§> .
k=0
Here | ZZ;H | <1 by (5.10), so the inequalities (5.8) will be ensured if we choose
Aj so large that A;(b—a) > 27 and

Jj—=1 )
AP > Re= B+ Y AT L
k=0
0

Proof of Lemma 16. Statement (i) is obvious, so we only need to verify state-
ment (ii). Suppose f € X and let By := k max,<,<p|f* (z)|. According to
Lemma 19, there exists g € C§°(R) satistying (5.8) for all k& > 0. For m > 1 set

(5.11) fm=F+ g
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For any fixed m and all £k > m we have:

1 1
B) () > — (k) in &) () > =
Jnax, (@) 2 o max g (x) + min fE(@) 2 By — o

Similarly, ming<z<p fy(f)(x) < 0. Hence f;, € Dgp(X). On the other hand, (5.11)
implies that f,, — fin X as m — oo. O
Proof of Lemma 14. (i) The set Jgf(X) can be defined equivalently as

T (X):={f € X : min (If9 ()] +|fP(@)]) > 0},

which makes the statement obvious.

(ii) Set
(5.12) 9A(@) = dup(x) sin(Az + a),
where A > 0 and « are such that both sin(Az + «) and cos(A\x + a) are nonzero on
the interval A — the closure of the open interval (5.6). Clearly, this is true (with
the same «) not only for the initially chosen A = A\¢ but also for all A in a small

enough open interval I centered at A\g. We may assume that 0 ¢ I. Then for any
choice of A in I we have

(5.13) gg\l)(x) #0on A foralll € Z,;.

Given f € X, we are going to prove that arbitrarily close (in X ) to f there exists
a function h € X, such that

(5.14) Zj(h,) n Zk(h) N [a, b] = @
Define, for any ¢ € R, a function
(5.15) fia(z) == f(x) + tgr(z).

It follows from (5.13) and Lemma 3(a) that for a.e. ¢ € R, all derivatives of f; x(+)
have only simple zeros (if any) in the interval A. Choosing such a ¢ small enough
(so that f; x is arbitrarily close to f) and substituting the resulting function f; »(-)
for f(-), we reduce our statement to its particular case where all zeros of f (@) and
%) in the interval (5.6) are simple. To prove the statement in this case, we use
the same family (5.15), but this time A € I should be properly selected.

Proposition 20. There exists an at most countable set E C I, such that for any
XA €I\ E and all t # 0 with small enough |t|, the function (5.15) satisfies

Zi(fe2) N Zi(fex) N [a, b] = 0.

Proof. Since all zeros of fU) and f®*) in [a, b] are simple, there are only finitely
many. Let y1, Y2,..., Ym and z1, 22, ..., 2z, be all the zeros of f@) and f(¥), re-
spectively, in the interval [a, b].

Consider a function F(z,t) := ft(])\) () = f(j)(z)+tgf\j)(z), x,t € R. Whent =0,
the only zeros of F(-,t) in [a, b] are y;, and since they are simple, (OF (x,t)/0z)(y;, 0) =
FI (y1) # 0.

It follows easily from the Implicit Function Theorem that there exist § > 0, § > 0
and C* functions Y;(¢), [ =1,...,m, on the interval (=4, §) such that
(i) for each t € (=94, 8), Yi(t),..., Y, (t) are the only zeros of F(-,t) = ft(’j/\)() in
(a’ - ﬁa b+ ﬁ)a
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(i) i(0) =y, 1=1,....m.
Moreover, by the same theorem,
OF (2,6) /0t [omyrimo _ 95" (1) » .
— : = = AN sin(A\y; + o + jn/2),
OF(2.0)/0 |y~ T (a1 Port et gnf2)
where A is a nonzero constant.
Similarly, for small |¢|, all the zeros of ft(lg\)() in some open interval containing
[a,b] are the values of n C* functions Z,(t) such that Z,(0) =z, (¢ =1,2,...,n)
and

Y/(0) =

k
gg\ )(Zq)

%0 = 50,

= BA\sin(\z, + o + kr1/2),
where B # 0.

Suppose f) and f*) have  common zeros in [a, b]. Let y; = 24 be one of them.
Then we have
Y/ (0)
Z4(0)

where C' and H are constants, C' # 0 and H € {—1,0,1}. The right-hand side
s(A) of (5) is real-analytic on I and, since j — k # 0, non-constant, so that the
set By :={A €I : s(A) = 1} is at most countable. For A € I\ Ej, we have
Y/ (0) # Z;(0), hence Y;(0) # Z,(0) for small ¢ # 0.

(5.14) = CN ¥ (tan(y X + o)),

If we remove from I the union E of the r sets Ejq, then any remaining A has the
desired property: for all ¢ # 0 with small enough |¢| the two finite sets {Y;(¢)};", and
{Z,(t)}4—1 are disjoint. This completes the proof of the proposition and thereby
that of Lemma 14. O

Theorem 13 is, therefore, also proven. ([l

Next we are interested in the Baire category properties of the sets Q(X) and
Qo(X) (defined by (5.3) and (5.1)) in the case of certain spaces X of real-analytic
functions.

The Banach space B, is a classic function space of widespread interest. The
functions are restrictions to R of entire functions of exponential type < ¢ that are
bounded on R.

Definition 21. [5] Let ¢ > 0. An entire function f(z) (i.e., a function f: C — C
holomorphic on the whole complex plane C) is called a function of exponential
type < o if for any € > 0 f satisfies inequality |f(z)| < C.el®t9)I*l with some
constant C..

Let C(R,C) denote the collection of all complex-valued continuous functions
on R.

Definition 22. [1], [5] The Bernstein space B, (0 > 0) is defined by
Bo:={f € C(R,C) : [flloc := sup|f(z)| < 00
TE

and f has a holomorphic extension to C of exponential type < o}.
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Remark. Tt is well-known that B, endowed with the sup-norm is a complex
Banach space [1].
A fundamental fact about B, is given by Bernstein’s inequality (see [1], [5], [3]):

(5.15) If f € B, then for all n >0, [[f™ s < 0™[|f]loo-

Definition 23. [4, p. 592] B, ¢ := cl(Ur¢(0, ) B7), where cl denotes the closure
in B,.

It may seem at first glance that B, _g and B, must coincide, but it is not the case.
In fact, the quotient space B, /B, _¢ is infinite-dimensional, even non-separable (see
[4, p. 592] for this result). Our results will further illustrate this distinction.

We will denote by BR, and BR,_( the subcollection of real-valued members
of B, and B,_g, respectively. Each of them endowed with the sup-norm is a real
Banach space.

Our goal is to answer a natural question: is Q(X) (or at least Qo(X)) topologi-
cally generic (i.e., contains a dense G subset of X) when X is BR, or BR,_o?

The answer is given by theorems 24 and 25.

Theorem 24. The set Qo(BR,) is not dense in BR,.

Note that Q(BR,) C Qo(BR,); therefore, the set Q(BR,) is not dense in BR,
either.

Proof. By scale transformation y = oz we may assume that ¢ = 1. The function
fo(x) = sin z = (" — e7*) belongs to BR; and has maximal possible type 1.
On the interval Ag = (7/6,7/3), this function and all its derivatives (i.e. +sin x,
=+ cos z) are large:
. 1 1
|sin z| > 5 | cos x| > 5 -

Let us consider the ball of radius % centered at fy in BRy:

1
By = {r e BRI - flle < 3 }
By Bernstein’s inequality, we have that for each n > 0,
. 1
1 = £ e < 5
This implies that each function f in B%( fo) and all its deriviatives are non-zero
on Ag. Indeed, for x € Ag we have
n n 1 1
FP @) 2 1157 @) = 1 = f§7ee > 5 = 5 =0,
hence By (fo) is disjoint from Qo(BR;1). O

Theorem 25. The set Q(BR,_g) is a dense G subset of BR,_g.
The proof is based on two lemmas formulated similarly to Lemmas 14 and 16.
Lemma 26. (i) Let a,b € R (a <b) and j,k € Z (j # k). The set
iy (Ba—0) = {f € Bowo = Z;(f) N Z1(f) N [a,b] = 0}

1S open. .
(ii) The set J7¥(B,_o) is dense.
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Proof. Statement (i) is a particular case of Lemma 14(i). The proof of (ii) mimics
that of Lemma 14(ii) while being different in two points. First, instead of the
compactly supported function (5.12) (which is not in B,_g) we use the function
sin(Az 4+ «) itself. Secondly, in order that this function be in B,_¢ we need to
subject A to an additional restriction A < o. O

Lemma 27. (i) Let a,b € R (a < b). The set
Dab(Bo—o) = {f € Bo—o : (3j € Zy)(3c,d € [a,8])(fV)(c) < 0 < f9(d)}.

s open.
(i) The set Dap(By—o) is dense.

Proof. Part (i) follows directly from Lemma 16(i), so it remains to prove (ii). We
want to prove, therefore, that any f € B,_¢ can be approximated by elements of
the set Dgp(Bo—o). We may assume that f € B, where 7 < 0. By a suitable
scale transformation, we may also assume that 7 < 1 < 0. Let ¢ := (a + b)/2 and
g(x) :=sin(x — ¢). Set f. := f + &g, so that f. € B,_o. By Bernstein’s inequality,

||fs(4k) —eg)loe <7 flloc — 0 as k — oo.

It follows that f5(4k) with large k changes sign in [a, b]. Hence we have Dyp(By—¢) 3
fe— fase—0. O

Proof of Theorem 25. Just as in the proof of Theorem 13, we conclude from Lem-
mas 26 and 27 and the Baire theorem that each of the sets J(BRy—_o) and D(BRy—_¢)
and consequently their intersection Q(BR,_g) is a dense Gy set. O

6. GENERIC IN MEASURE BEHAVIOR OF NON-GENERIC SETS

In this next example we find a function for which NG(f) is a proper dense open
set. We will later investigate varying the values of the measure of G(f).

Ezample 15. There is a C*° compactly supported function f such that G(f) is
non-empty and has measure 0. That is, the function f has polynomial structure on
intervals outside the uncountable set G(f).

Proof. Let Y1,...,Y,,... be a family of i.i.d.r.v with uniform distribution on [—1, 1]
and corresponding density function p(y) = $Ij_1,1)(y). Its Fourier transform is

! i sint
[ ptwretis = 5 = ot

~1
We note that |p(t)] < %

T+°
SetZ=%+%+~--+§—Z+-~-, hence
pets =, (TIE) <o)
This function has estimation
ezl < e+ (2 0)

This means that there exists a density

Py(z) € O
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Of course
3 1
1Z| < 3+ =<
-1 2
i.e. the support Pz(-) = [—3,3%], and the density Pz(-) is strictly positive on
(_%7 %)

We must prove that it is polynomial outside the Cantor set consisting of the
ternary points {d ;7 £ :ep = £1} =T
The proof is based on the following elementary lemma.

Lemma 28. Let pu be measure supported on [—6, 6] and f(x), x € R be a continuous
function, which coincides on some interval [a,b] of length greater than 25, with a
polynomial P,(x) of degree n. Then the convolution f pu = [, f(x — y)du is a
polynomial of the same degree n on the interval [a + §,b — §].

Proof. If x € (a+6,b— 0), then

()
(f * p)(a /P (x — y)u(dy) = /ZP Douldy) = Qu(z) O

9 k=0

Now we return to the function Pz (x) and study it using approximations (in C*°):

: Y Y,
Py(z) = nlirr;o Py () , Z,= St
Let us note that Pz (z) is a polynomial of degree at most (n — 1) outside the
finite set ', = {& : & = £3,+£35 +--- £ =} and that |T,| = 2™
For instance

3/2 wel-3,3]
PZl() ?i)
0 v [— gag}
0 xﬁ—%—é or xZ%—i—%
27 1 1 11 1,1
Pat = STl e Ty e s
2 z€[-5+35.3 ol
1,1 1 11,1
27(§+§*$) $€[§*§,§+§}
etc. _
Let Z,, = 321}4—3;‘15 , hence \Z|< 23n =¢,. But Pz(x):PZn*PZn

and the lemma shows that PZ( ) must be polynomial of degree at most (n — 1) on
the intervals that are complementary to the e,-neighborhoods of the set I',,. Let
I~ denote the union of these intervals. Of course the sum of the lengths of the
intervals in T5", i.e. [T5], will equal 2" - 51 = £(2/3)" —

Let us note also that the set of the limit pomts for the sequence {I';, : n =
1,2,...} is a Cantor set of measure 0.

Therefore we have proven that G(Pz(-)) C T', hence the measure of G(Pz(+)) is
0. It is probably true that I\ G(Pz(+)) is countable but we were not able to verify
this conjecture. O

The function Py(x) is self-similar. It satisfies the following functional equation:

Py(x) 23/'11]32(3( —y)dy , € [—;ﬂ

3
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i.e. P,(x) =3[Pz(3z + 1) — Pz(3z — 1)], which is equivalent to the relation
i Z
Z = 3 + 3 -

Such kinds of equations are known as differential-functional equations and do have
important probabilistic applications. A systematic study of the function Pz(-),
with applications to the interpolation theory, can be found in [8].

This first example shows that probabilistically the set NG(f) is going to be a
countable dense subset of R. In the next section we investigate the topological
properties of the collection of analytic f for which NG(f) is a countable dense set.

Ezample 16. Let W¢(w), ¢ € R be the Brownian motion (Wiener process), i.e.
random Gaussian process with zero mean, £ W, = 0 and the correlator

ICIAIC ¢-¢"<0

In particular, var W, = B((, () = |(|. It means that W, ( > 0 and W_,, ¢ >0
are two independent standard Wiener processes.

Let us introduce also WC, ¢ € R: the independent copy of W.

If p(¢) is a bounded continuous function decreasing faster than any degree of (|

ie. |o|(1+1[¢]") € LY(R) for any n>1

then one can consider the following Gaussian homogeneous random process
fa.) = [ 0(0) cosscaiWe + [ () sinacdil
R R

(Stochastic integrals, hence one can understand in the usual Riemannian sense).

Of course, one can identify w and realizations (W, /WO).
As is easy to see, the process f(z,w) € C* and for its derivatives one has

£0,0) = [ Q) costa + AW+ [ 006" e + T
R R
It gives the following expressions for the correlations

Ef(”)(:v,~)£0 , n>0

B (@) ) = [ cosgla =9 (MHOAC = Banle =)

(6.2) = [JpE£cosC(z —y) ("3 (()d¢ ,m+n=0 mod 2
(6.3) = [pEsinC(z —y) (" (()d¢ ,m+n=1 mod 2

We concentrate on the particular cases when
p(¢) = exp(=[¢[*/2) ,a>0

SO(C) = I[(r,a] (C) 7(here Q= OO)
Le. the spectral densities for f(-), f()(-) are given by

©*(¢) = exp(—[¢|*) ,a >0
22 (¢) = (M exp(—[¢]%) , a = oo.
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Corresponding processes f(z,-), £ (z,-) will be called f,(z), ) (x) to specify
the dependence on the parameter a.
For @ > 1, one can extend f(x,-) into the complex plane z = x + iy. Namely,
for complex z,
| cos Cz| < el and | sin¢z| < el¢II7!
and (by the Laplace method)

720l2) = Elf V@) < [

el¢llzl¢2ne=Iel® g¢ ~
R2

o «

One can prove now that P-a.s. for a > 1, f(z,w) is an entire function of the
order —%5 and of the type c(a)/2. If a = oo, then the order is equal to 1 and the
type is o (calculations are very similar).

For o = 1 the function f(z,w) has analytic continuation in the strip |[Im(2)| <
1. Finally for @ < 1, the functions f(z,-) are C* on R but have no analytic
continuation.

The variances of all derivatives can be calculated explicitly:

20_2n+1

my1 ¥

BU™OP =2 [ g =
0
Theorem 29. For any 0 < a < oo, the random function f = fo(x,w) has a
countable dense non-generic set NG(f) (with probability 1, P-a.s.)

We will prove the theorem for a < oo as the case for a = oo is much simpler.
We will also provide some asymptotical formulas.
We consider, instead of f (”)(:v)7 n > 0, the normalized versions. Set

_ f(n)(anx) . an(O) a1/ _ c(a)
gn(ﬂf)—T, Qp —\/;2(0)’\‘(2”) _nl/a'

The process &,(+) is a stationary one and its correlation function bs,(z) is the
normalization of Bs,(z). Namely

Bay, (o z)
. b n = E n n = —_——
(6.5)  ban(z) En(z)n(z + 2) Bon (0)
" 2 (4) 4.4
-1 + BZn(O)an BQn (O)O‘nz =+ 0(26)
2B5,(0) 24B5,(0)
4
1.2 z 6
7]‘ z +’Y47n24+0(z)7
Bay+4(0)B3,(0)
where n=—"F—"——"2>—1 n—oo.
7 7 Byn(0) Bang2(0)

We used the obvious relations Bj, (0) = Ba,42(0), Béi)(O) = Bap+4(0) and
explicity formula 6.4 for Bay,(0).
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Formula 6.5 gives

2
66) B = 220 = 0 B 00 = 22

For different n,m, the processes £ (x), €™ (x) are not stationary connected
(due to different scalings a,, @, in the arguments of the derivatives). We have
however

0 = 1.

Ef(n)(anxl)f(m)(ame) _
B2a(0)Bam(0)
Bin(anr — amzo)
BZn(O)BQm(O)

bk,m(xlv-%?) = Egn(ml)gm(x2) =

and

f |<|’m+n€ |C|(’d< F(m+§+1)
VBB E ) £ ()

The following estimation is very important for the coming asymptotical analysis.
It shows that &, () and &, () are “almost independent” if [n — m|>>/m + n.

|bn m(fE1,.’E2 ‘ >~

Lemma 30. Assume thatm <n, m =n—_, and { = 0(n2/3). Then asymptotically
(for n — c0)

2n—C+1 9
(6.7) hQ) = L) ~emp<—2fm)
() (e

For fixed n, the function h(({) is decreasing.
The proof of this lemma can be based on the direct calculations using the Stirling
formula

(14 2x) =V2rz (E) e
e
The following observation shows that in reality 6.7 is equivalent to the local CLT

for Bernoulli r.v (De Moivre-Laplace theorem). Assume temporarily that numbers

2mfj1’ % are odd integers. Put
2 1 2) 1 1
ox =Ly oy =y MEREL v iy,
«Q «
then
I (mtntl (X +Y
(6.8) ( a ) _ (X+Y)

JrE T () VIRNTEY)

(2X +2Y)! 2X+2Y (2X + 2Y)! 1\ 2X+2Y B
(@2x)12Y)! (X +Y)(X+Y)\2 B

b(2X +2Y,2X, 1)
b(2X +2Y,X +Y, 1)
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where b(n,z,p) = (7)p®¢""®, (0<g=1-p <1, 0<p<1)is the standard

notation for the binomial probabilities. It is well known that
b(n xp)w;e_% C:xfnpzo(nz/q)
) K /27rnpq ) N

Application of this result to equation 6.8 gives the asymptotics 6.7. The mono-
tonicity also follows from well known properties of binomial coefficients. But the
proof of the De Moivre-Laplace theorem is based completely on the Stirling formula
for T'(1 4+ z), which is true for general (very large) x.

Let us return to the proof of the theorem 29.

Lemma 31. Let vy(n,A) = #{z; € A: M (x;) = 0}, then

(6.9) EuAmA)zgﬁ, EY va(k,A) = (n+1)|A|
k=0

Proof. 1t follows from the general theory of the smooth Gaussian random processes
that for the roots of £(™)(-) on fixed interval A one can use the following “symbolic”
Kac-Rice formula (see [2, ch10,3]).

(6.10) va(n, A) = /A 50(6) (2)) €™+ () e

The justification of this formula is based on the Bulinskaja theorem as used
above. It yields

mn>&umw=/E%@WWWHWmm:
A
:/ dx/ 50(Z1)|22‘Pn,x(21,22)d21 dZQ
A R2

where P, ,(-) is the joint distribution density for the r.v. & (z),£+Y (). This
(gaussian) density does not depend on z (process &(™)(-) is the stationary one) and
given by the formula

(X2, 2)
(_ 2 ) )

Pn,z(zh ZZ) =

1
ex
2m/det> P

where

EEM ()¢t (2)  BEMHD ()6 (2) 0 1 :

(This is due to 6.5. In fact E[¢(™(2)]? = bg,(0) = 1, E[¢M™(2)6Cn T (z)] =
~0,(0) =0, BE V@) = ~54(0) = 1).
Finally

Al [ 5 A
Evy(n, A) = |A] / Po,n(0, 22)|22|dze = 2u/ 29" 2 dzg = 141 .
R 21 Jo

™

The second statement of the lemma is now obvious. O
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Unfortunately the estimation of the first moment is not sufficient for the proof
of theorem 29. We have to check that, for instance,

var (Z va (K, A)) =0 (Z Euv, (k, A)) = o(n?) .
k=0 k=0

In fact we will prove more:
Theorem 32. For any fized interval A and any § > 0,
(1) var(X_gva(k, A)) = o(n3*?),

(2) M TN

and for appropriate sequences N,, — 00, e.g. N, =n?T9 5, >0,

—

M — |A| (P-a.s.) .

Proof. Of course

var (Z va (K, A)) = varva(k, A) +2 Y Cov(va(k, A),va(m,A)) .
k=0

k=1 k<m

Let us start from the estimation of var v, (k, A). It is based on the general results
of [2, 10.6,10.77]. First of all we will use the following (Kac-Rice type) formula for
the second factorial moment of v, (k, A):

[A|
P A) o0k, 8) =1) =2 [ (A1~ Wy

where ¢ (h) = [ [po |21]|22| Prk11(0,0, 21, 22)dz1dzp and Py, 41 (+) is the joint gauss-
ian distribution density for the vector &k (x), &k(x + h), (), Ex(x+ h). Tt is given
by the covariance matrix

1 boy (h) 0 —bh, ()
| bak(R)  1b5,(R) 0
0l | R A 1 R W—— ()
—bly.(h) 0 —bai(h) 1
0
Due to formula 6.5,
h2 ]’L4
bau(h) =1 = %+ 7‘;’; +O(h)

and the coefficient 74 5, is uniformly bounded in k. In fact, 74 converges to 1 as
k — oo.

Let bog(h) =1 — %2 + 7(h). Then for appropriate constants ¢; > 0 (i = 0,1)
uniformly in k,

/
vl < O <
and, as a result, for |A| << 1, Ev, (k, A)(va(k, A)—1) = O(|A]®), i.e. var(vy(k,A)) =
Eva(k, A)+)(|A]2), and Bu,(k,A) = 21
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This means that Y ,_, var v, (k, A) = O(n) and for n — oo and |A| — 0,

Zvarva (k,A) n|A|

Let us estimate the covariances Cov (vq (k, A), va(m, A)). If [k—m| < (max(k, m))z 19,
i.e. k and m are “close” enough then

|Cov(va (k, A), v (m, A))| <v/var(va (k, A))(varve (m, A)) = O(1) .
Due to [2, 10.6], for Ev,(k, A)ve(m, A) one can use the formula

(6.12) / / 5(€ (1)) (Em (22)) €4 (1) |E (2) s dir

:// dl’1d$2// |21]|22]| Pr,m a1 20 (0, 21, 0, 22)dz1d 2o
AXA R2

where Py 2,20 (Y1, 21, Y2, 22) is the (gaussian) joint distribution density for the vec-
tor (§kx(z1), &L (1), Em(x2), &L, (22)) given by the covariance matrix by (21, 22) =

Egk(z1)Sk(x1)  E&k(1)€ (1) | E&e(21)Em(x2)  Ek(21)E, (22)
_ | _EB& (@) (x1)  EG (x1)& (x1) | EE (21)6m(w2)  EE (21)), (x2)
B (v2)8k(21)  E&m(22)8), (1) | Eém(22)&m(72)  E&m(22)&, (22)
E&, (w2)8k(21)  EE, (22)€)(21) | BE, (22)6m (22)  EE, (22)€,(22)
_ I ‘ ek,mC
- Ek’mo* ‘ I ’
where ||C|| = 1 (we can use here, for instance, the Hilbert-Schmidt norm : ||C||14s =

Tr(C - C*) ) and, due to Lemma 6.7, €, < exp (7 ‘g;:’f), k<mand|k—m|=
O(m?/3).

I |eC
eC* | 1
be a small parameter. Then the determinant of B is 14 €2||C||% ¢ + O(e®) and

. I +e2CCr —eC :
1_ 3
B = [ —eC* | T4 e2CC } +0(e7)

(of course, the remainder is a matriz with H-S norm which is O(g3)).

Lemma 33. Let B = [ ] be a 2n x 2n matriz, let ||Cllgs =1 and let €

Proof. First, we have that
0 eC
lnB-ln(I—F[gc* 0 ])

2
and det B = exp (Tt n B) = —(|C|4s + [Clihs) + O(=*) -

0o C e[ ccs 0 9
:5{0* 0}4—2[ 0 0*0}4—0(6)

Secondly,

-1 2
Bl = (I+s[69* g]) Is[co* (07}+52[00* g] +0(e%)
I+ 2o —eC
:{ eC* I+EQC*C:|+O(ES)'
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Now we can easily complete the proof of the theorem 32.

Proof of Theorem 32. Set T = (0, 21,0, 22)* and
51 e

p9(0,21,0,20) = ° = e

Lemma 31 gives that

Eva(k,A)Eva(m,A):/ / d:z:lde// 00, 21,0, 22)| 21| | 22| dz1d 22
AJA R2

(6.13) ie. Cov (va(k,A),va(m,A)) =

[ [ maes [ [ lalPonnn () - #O Oz
z1+ 3 e(—(b;}m—z)f,f)/z
//dildxg// |21H22‘ detbk () —1 ledZQ

But (b — 1)7, 7)) =
0 exmC . - ccr 0 .. 5
(ol %512 ([ o ]a5) ot

Divide [ [5. into two parts: [ flflﬁﬁ + [ flf\>f and use the formula e?/ —1 =
ef +O(e?), if |f| < 1. Let us note that

0 cemC | o o
[ alal(] L e #5C ) anda =0,
|i‘§ﬁ ,m

It gives that

0 mC | o -
// ) |21]] 22| ({ o O Ek’o } x,x) dzidzy < ¢ €3, -
EEES m

NG

Obviously

0 mC |- 2 _ e
[ alal(] L e *5€ | a) ands = o3
1Z]>—= )

and we have proven that

Cov (fal(k,A),va(m,A)) = O(e},,,) = O <eXp <|kmz>)

amax (k,m)

This estimation implies the relation 1 in the Theorem 32. Other relations are trivial
consequences of the Chebyshev’s inequality and the Borel-Cantelli lemma. O

Some further development of the ideas in Theorem 32 gives the next theorem.

Theorem 34. Let N(k,A) = #{z € A: f®)(2) = 0}. Then for a < oo,

\A\ Bays2(0)  [A] [20)"°
N(k,A) = Bor(0) — 3 and

n 1/ 1+
(ZNI{A> |A|( ) an oz7
T \« 1+«

0
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n 1/
Mﬂ@ (2) @ _ |A|ca

2
(2) niL= T \a 1+«

Proof. The proof of part 1 is the direct repetition of the Lemma 31. The proof of
part 2 requires slightly longer calculations of the second moment, but essentially is
also the same proof as that in Theorem 32. The central point is the “decorelation”
Lemma 31 (Il

Corollary 35. Let f,(z) be an entire function of the exponential order « (i.e.
|fa(2)| < coexp(er]z]®) as |z] — o0). Then for any e > 0 and fized interval A, one
can find an entire function fo(x), &' > a > 0 such that NG(fo +¢efo) is dense in
A. In fact, one can take for(x,w) is a stationary gaussian process with the spectral
density 12(¢) = exp(—=2|¢|*") and prove the statement holds P-a.s.

Corollary 36. Let f be a C°° function supported on the compact interval A C R
and which is analytic on the interior of A. Then for o/ <1 and f.(x) = f(x)(1 +
efor(x,w)), the function f. almost surely has NG(f.) intersecting A in a countable
dense subset.

For example if we use A = [0, 1] and

fa) = {0 z¢(0,1)

e GHTR) — Tz e (0,1)

we will also have that NG(f) contains R\ [0, 1].
The proof is based on two facts. For any € > 0, A’ = (o, 8), AL = (a+¢,5—¢),
the function f(x) admits the estimation

If™M(@)] < nlA™e) ,z e AL,
At the same time (as we know), |f(§7) (z)|=0 ((n!)l/a/> and for large n and fixed

g, the random term ¢ f,/ (2, w) will dominate.

Using functions from Corollary 36 and their integrals one can define for any two
analytic functions, fi(x), f2(x) (including polynomials) and given interval [«, ]
some C'* interpolation F'(x) such that

Fla) = filz) z<a
f2(z) z>p

and arrange that NG(F) N [a, 0] is a dense countable subset.
This yields the next example.

Ezample 17. For any partition of R into intervals

Ag = (00, m1], A1 = (21,22, . .. A1 = (Tn—1, 0], Ap = (T, 00)
and any assignment of “empty” or “contains” to each of the even intervals, there is
a C* function F(x) such that the set NG(F') contains all the even indexed intervals
assigned as “contains” and is disjoint from all the even indexed intervals assigned

as “empty”. NG(F) will meet each of the odd indexed intervals in a countable
dense set.

In particular, one can construct a C* function F’ which has polynomial structure
outside a given finite set of intervals (with arbitrarily small measure) and such that
NG(F) is countable and dense on these intervals.
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7. OPEN PROBLEMS

Question 1. Assume that D is a countable subset of R; is there an analytic function
f such that NG(f) = D?

Question 2. Assume that T',, (n = 0,1,2,...) is a sequence of pairwise disjoint
countable subsets of R, such that each I',, has no finite accumulation points. Also
assume that the I'),’s satisfy the intermittency condition

(7.1) if z,y € T, and = < y then there exists such z € I',,11 that < z < y.

Is there an analytic function f such that for each n, I';, is exactly the set of zeros
of f(M)?

Even the finite (polynomial) version of the previous question does not seem to
have a known answer.

Question 3. Let T, (n = 0,1,2,...,N) be disjoint finite subsets of R such that
IT'n] = N —n. Assume they satisfy the intermittency condition (7.1) for n =
0,1,2,..., N — 2. Under what additional conditions is there a polynomial P(z)
such that for each n = 0,1,..., N, T',, is the set of zeros of P(")(z)? For example,
if g = {x,y} and 'y = {z}, then z has to be (x + y)/2.

Question 4. What is NG(e~)? If f(z) = e 7, and f(z) is written as e+ -
P,(x)/x?", is there a natural recurrence relation between P,_i(z), P,(x) and
Pn+1($) ?

Question 5. If F,, (n = 0,1,2,...) is an increasing family of closed subsets of R
satisfying the intermittency condition

(Vn)Vz <y €F,)(Fz€ Fhp1)(z<2<y)
is there a function f € C°°(R) such that NG(f) =, Fn?

Question 6. If NG(f) is dense and has measure 0, and f € C* is the sum of a
convergent series of analytic functions, is NG(f) necessarily countable?

Question 7. Is the set Qo(BR,) nowhere dense?
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