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Abstract. We consider question motivated by an old problem of E. Landis in

the study of the complete set of zeros of a C∞ functions and all its derivatives.

1. Introduction

In the mid 1960’s at the Moscow State University (MSU), Dr. E. Landis, one
of the leading specialists in the qualitative theory of partial differential equations,
published an elegant problem in a popular journal Mathematical Education.

Landis: Let f(x) ∈ C∞(R) and assume that for each x ∈ R there
is some non-negative(L) integer n such that f (n)(x) = 0.

Prove that f(x) is a polynomial.

A brief solution to this problem appeared in the next volume of the same journal.
The Mathematical Education journal was the Soviet analogue of College Mathemat-
ics Journal of the MAA, but due to technical difficulties it existed less than a year
and it is now effectively inaccessible even within Russia. Fortunately after the pub-
lication of the problem (L) it has become part of the research mathematical folklore
of the MSU. Our information about the problem (L) is based completely on the
recollections of the fourth author but without benefit of the original publication.

Recently, Applicable Analysis dedicated a special volume to the memory of E.
Landis (Vol 71, Numbers 1-4, 1999, Landis Special Issue) but this volume also does
not mention the problem.

The goal of this paper is the discussion of (L) in a broader setting.

Definition 1. If f(x) ∈ C∞(R) then a point x is a generic point for f if for each
non-negative integer n, f (n)(x) 6= 0. The set of generic points of f will be denoted
as G(f).

Definition 2. A point x ∈ R is a non-generic point for f if there is a non-negative
integer n = n(x), such that f (n)(x) = 0. The set of non-generic points for f is
denoted NG(f).

It is obvious that NG(f) = R\G(f) and that G(f) belongs to the Baire class Gδ.
Similarly, NG(f) is an Fσ. Problem (L) can be formulated as: if G(f) is empty,
then f is a polynomial.
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Besides problem (L), we will also discuss some properties of the set G(f). We
will show that it cannot be an arbitrary Gδ set. In particular, it will be seen that
if G(f) is not empty then it has the full cardinality c = |R|.

However, the main focus of the present paper is on the structure of the “typical”
G(f), where “typical” will be understood either in the sense of Baire category
(in certain complete metric spaces of C∞ functions) or in the sense of measure
(probability).

2. Analytic Examples

This section contains a “herbarium” of particular (analytic) functions f and their
corresponding non-generic sets NG(f). We will use sh (x) and ch (x) to denote

the standard hyperbolic trig functions sh (x) =
ex − e−x

2
, ch (x) =

ex + e−x

2
, and

th (x) =
sh (x)
ch (x)

.th (x) = sh (x)

ch (x)
.

Example 1. f(x) = Pn(x) = anx
n + · · ·+ a1x+ a0, yields NG(f) = R.

Example 2. f(x) = ex, yields NG(f) = ∅.

Example 3. f(x) = ch (x) yields NG(f) = {0}.

Example 4. f(x) = cosx + εch (x) results in a finite set for NG(f) of arbitrarily
large finite cardinality, which is determined by a suitably small value for ε > 0.

Example 5. f(x) = sinx of course has an infinite discrete set for NG(f). In this
case NG(f) has no limit points.

Example 6. f(x) = x sinx + εchx (ε > 0) produces an example with NG(f) an
infinite set with infinitely many accumulation points (specifically, points nπ/2, n ∈
Z); these limit points are not included in NG(f).

Example 7. f(x) = x sinx gives an infinite set for NG(f) with an infinite dis-
crete set of accumulation points; in this example, some limit points are included in
NG(f).

To see this, observe that f (1)(x) = sinx + x cosx, f (2)(x) = 2 cosx − x sinx,
f (3)(x) = −3 sinx− x cosx, f (4)(x) = −4 cosx+ x sinx, etc. Thus if sinx = 0 but
x 6= 0, then x cosx 6= 0, and for each large enough odd n there will be a value of xn
near x (but different from x), such that ±n sinxn+xn cosxn is equal to 0. It follows
that each zero of sinx (except for 0) is a limit of points in NG(f). Moreover, these
points belong to NG(f). Similarly, the zeros of cosx are limit points of NG(f),
but they are not members of NG(f).

Example 8. Let εk : k = 0, 1, . . . be chosen so that 0 < εk < 1 for each k. Assume

also that εk monotonically converges to 0. Set f(x) = shx−
∞∑
k=0

εk
x2k

(2k)!
. Let us

show that for each n ≥ 0, f (2n)(x) = 0 has a unique positive solution x2n and it
satisfies limn→∞(x2n/ε2n) = 1, while f (2n+1)(x) has no roots. Therefore, we can
arrange that NG(f) will be a sequence {x0, x2, . . . , x2n, . . .} and the sequence can
decay as fast (or as slow) as we wish.
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Since f (2n) and f (2n+1) have the same form as f and f ′ respectively, it is sufficient
to study solutions of the two equations f(x) = 0 and f ′(x) = 0.

First we note that

f ′(x) = chx−
∞∑
k=1

εk
x2k−1

(2k − 1)!
≥ chx− |shx| = e−|x| > 0 .

Secondly, we have

shx− ε0chx ≤ f(x) ≤ shx− ε0.

Here all the three functions strictly increase; in addition, each of the functions
shx − ε0chx and shx − ε0 has a (unique) zero. Hence f(x) has a unique zero
(x(ε0), say) located between them:

th−1ε0 ≥ x(ε0) ≥ sh−1ε0.

It also follows that x(ε0)/ε0 → 1 as ε0 → 0+.

Now we look at examples where the set NG(f) is a dense countable subset of R.

Example 9. Let f(x) =
1

1 + x2
and note that f(x) =

1
2i

(
1

x− i
− 1
x+ i

)
.

It follows that

f (n)(x) =
1
2i

(−1)n
[

n!
(x− i)n

− n!
(x+ i)n

]
.

Thus f (n)(x) = 0 implies that
(
x+ i

x− i

)n
= 1, or

x+ i

x− i
= e2πik/n for some k ∈

{1, 2, . . . , n−1}. If xk,n is the solution to
x+ i

x− i
= e2πik/n, then a routine calculation

shows that xk,n is equal to cot(kπ/n).
This shows that the set NG(f) is equal to the set {cot(kπ/n) : 1 ≤ k ≤

n− 1, n ≥ 2}; hence it is dense in R.

Example 10. Let f(x) = e−x
2
. It is well known that f (n)(x) is equal to e−x

2
Hn(x)

where Hn(x), n = 1, 2, . . . , are the Hermite polynomials. The distribution of their
zeros is very well studied. It is known, in particular, that for each fixed interval ∆
and n → ∞, the roots {xn,i : i = 1, 2, . . . , n} are distributed on ∆ asymptotically
uniformly with a step O(n−1/2). For more details on the distribution of the roots
(their density after rescaling, etc.) the reader can consult Szego’s book [10].

3. Non-analytic examples

In the examples above, the functions f(x) were analytic in a complex region
around their domain and therefore these functions could not have an uncountable
non-generic set. To see this, note that if NG(f) is uncountable, then there would
be some n such that f (n)(x) will be equal to 0 on an uncountable set. However,
every uncountable subset of R will have a limit point, while the set of zeros of an
analytic function cannot have a limit point in its domain [7, 10.18]. In this section
we examine more complex constructions of C∞ functions with a view towards the
density of NG(f) and the countability of NG(f).
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Our fundamental example is based on Weierstrass’ construction of a nowhere
differentiable continuous function.

The significance of this example will become clear later when we study generic
properties of NG(f) in function spaces.

Example 11. Consider the following Fourier series:

f(x) =
∞∑
k=1

αk sinnkx

with

αk =
1

n
k− 1

2
k

.

Then

(3.1) f (k)(x) = n
k− 1

2
1 sin

(
n1x+

kπ

2

)
+ n

k− 3
2

2 sin
(
n2x+

kπ

2

)
+ . . .

+n
3
2
k−1 sin

(
nk−1x+

kπ

2

)
+n

1
2
k sin

(
nkx+

kπ

2

)
+n

− 1
2

k+1 sin
(
nk+1x+

kπ

2

)
+ . . .

Set nk = 24k

for each k ≥ 1, so that the series is super lacunar. It is easy to
see that for this selection of parameters, the term n

1
2
k sin(nkx + kπ

2 ) dominates all
other terms of (3.1).

More precisely, for an appropriate δ > 0 (namely, δ = 1/8),

(3.2) f (k)(x) = 2
1
2 4k

(
sin
(
nkx+

kπ

2

)
+O

(
2−δ4

k
))

.

The estimate (3.2) implies that NG(f) is a dense set: for each k, the distance
from any point x to the nearest root of the equation f (k)(x) = 0 is O(n−1

k ).
It is fairly difficult to determine if the set NG(f) is countable. Using a simple

randomization of the parameters (see Proposition 4 below), we can more easily get
definite answers. At this point, we do not know if for some parameters, NG(f) will
be uncountable (while f is C∞).

We will use Sard’s theorem. This is a result about the measure of the set of
critical values of a differentiable function f that maps a manifold to a manifold.
We will use it in the simplest case of f : U → R, where U is an open set in R. A
point y ∈ R is a critical value of f if there is a point x ∈ U such that f ′(x) = 0
and f(x) = y. Sard’s theorem, in this case, simply states that for a continuously
differentiable function f , the set of critical values has measure zero (see [9] for more
information).

Lemma 3. Let f, g ∈ C∞(R). Then
(a) for almost all real numbers c, the function (f − cg)(x) has only simple zeros in
the open set U = {x ∈ R : g(x) 6= 0};
(b) if a C∞ function has only simple zeros, there are at most countably many;
(c) if g has only simple zeros, then so does f − cg for almost all c ∈ R;
(d) if g has at most countably many zeros, then so does (f − cg)(x) for almost all
c ∈ R.

Proof. (a) Both f and g are in C∞(U), as is their ratio f/g. Suppose a root a ∈ U
of f − cg is not simple. Then f(a) = cg(a) and f ′(a) = cg′(a); this implies that
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(f/g)(a) = c and (f/g)′(a) = 0, so that c is a critical value of f/g. By Sard’s
theorem, such values of c form a zero measure set.

(b) Obvious.
(c) By (a), for almost all c the function f − cg can have a multiple zero only in

the set R \ U := {x ∈ R : g(x) = 0}. But for any x ∈ R \ U there exists at most
one value of c for which f − cg can have a multiple root at x – this immediately
follows from the fact that g′(x) 6= 0 by assumption. Since g has at most countably
many zeros, the statement is proven.

(d) Follows from (a) and (b). �

We can apply Lemma 3 to the above function f .

Proposition 4. Define a function

ψh(x) = h sin(n1x) +
∑
k>1

αk sin(nkx),

where nk (k ≥ 1) and αk (k ≥ 2) are defined as above. Then for almost all h,
NG(ψh) is countable and dense, and all zeros of all the derivatives ψ(k)

h are simple.

Proof. Let f(x) denote the function
∑
k>1 αk sin(nkx) and let g(x) be sin(n1x).

By Lemma 3(c), for almost all h ∈ R, f + hg has only simple zeros. Similarly, for
almost all h and each k, (f (k) + hg(k))(x) has only simple zeros. (We use the fact
that g and all its derivatives have only simple zeros.) In particular, for almost all h,
NG(ψh) is countable. That it is dense for all h, follows from the above argument
based on the estimate (3.2). �

It is interesting to also consider adding the condition that the different order
derivatives of f do not share roots. This can easily be accomplished in Proposition
4 by introducing a randomization of each of the parameters αk, but we do not know
if the single parameter h can be so chosen. Proposition 4 can also be derived from
the following fundamental result by E. Bulinskaja related to the random processes
of the class C1. We present the statement in the form from [2, 4.5]:

Proposition 5. Let g(x, ω), x ∈ [α, β], ω in a probability space (Ω,F , P ), be
random variables (r.v.) for which (d/dx) g(x, ω) is P -a.s. continuous. Assume
also that for any fixed x ∈ [α, β], the distribution of the r.v. g(x, ·) has density
Px(a) = (d/da)P{g(x, ·) < a} which is uniformly bounded: for all x ∈ [α, β],
a ∈ R, Px(a) ≤ c0 <∞. Then for any fixed u ∈ R, P -a.s. we have:

(1) the set {x ∈ [α, β] : g(x, ·) = u} is finite;
(2) all roots of the equation g(x, ·) = u are simple; i.e. the system g(x, ·) = u,

g′(x, ·) = 0 has no solutions.

Example 12. Let f(·) be the same as in the previous example and let ψ(·) ∈ C∞0
be compactly supported and strictly positive and analytic at inner points in the
support. An example of such ψ is

(3.3) ψ(x) =

{
0, x /∈ (0, 1)
exp(− 1

x −
1

1−x ), x ∈ (0, 1)

Notice that ψ(k)(0) and ψ(k)(1) are 0 for all k ≥ 0.
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Put ψε(x) = ψ(x)(1 + εf(x)), where ε 6= 0. Then the non-generic set NG(ψε)
contains R \ supp ψ and on supp ψ it is dense. In addition, for almost every ε > 0
the set NG(ψε) ∩ supp ψ is countable.

The proof of the first statement is based on the equality

ψ(k)
ε (x) = ψ(k)(x) + ε(ψ(x)f (k)(x) + kψ′(x)f (k−1)(x) + . . .+ ψ(k)(x)f(x)).

Here, as k → ∞, the first term dominates the sum for any ε > 0 in any fixed
closed interval ∆ contained in the interior of the support of ψ (due to (3.2)). The
second statement follows from Lemma 3(d) (we use the obvious fact that the set
NG(ψ) ∩ supp ψ is countable).

Example 13. If we take linear combinations of the antiderivative of functions such
as ψ from example 12, we can find, for example, C∞ functions, g, with compact
support and constantly 1 on any given interval ∆. If f is any analytic function,
then the function f · g is such that NG(f · g) ∩∆ is equal to NG(f) ∩∆.

Using such functions we can glue together different local examples as constructed
above to get quite a variety of behavior for NG(f). For instance, for any partition
{∆i : i = 1, . . . n} of R into semi-open intervals, one can construct a function
f(x) ∈ C∞(R) such that for each odd integer i, f � ∆i is any specified analytic
function and for each even integer i, NG(f)∩∆i is a dense countable subset of ∆i.

Example 14. Let ∆n (n = 1, 2, . . .) enumerate the Cantor middle third intervals
(e.g. ∆1 = (1

3 ,
2
3 )). For each n, also let

(3.4) ψn(x) =

{
0 x /∈ ∆n

exp(− 1
x−an

− 1
bn−x ) x ∈ (an, bn) = ∆n

.

For each n, let An be large enough so that |ψ(k)
n (x)| < An for all k ≤ n and

x ∈ ∆n. Then the function g =
∑
n

ψn

2n·An
is in C∞ and NG(g) is uncountable and

has measure 0. Multiplying g by 1 + εf , where f is the Weierstrass type function
from example 11, we can further arrange a function g̃ such that NG(g̃) is still
uncountable and has measure 0 and, in addition, is dense in [0, 1].

4. The proof of (L) and corollaries

Lemma 6. If f(x) ∈ C∞(R) and I = [a, b] is a closed bounded non-degenerate
interval in R such that for all x ∈ I, there is an integer n = n(x) such that
f (n)(x) = 0, then there is a non-empty subinterval I0 = (a0, b0) ⊂ I such that f(x)
is a polynomial on I0.

Proof. For each n let Γn = {x ∈ I : f (n)(x) = 0}. By the assumption, the interval
I is contained in the union of the Γn’s. By the Baire Category theorem (see [7,
5.6]), there is an integer m such that the closure of Γm contains some open interval
I0 = (a0, b0). Since f (m) is continuous on I0, it is constantly 0 on I0. It follows
now that f � I0 is a polynomial of degree at most m. �

Theorem 7. If f(x) ∈ C∞(R) is such that for all x ∈ R, there is an integer
n = n(x) such that f (n)(x) = 0, then f is a polynomial.
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Proof. By Lemma 6, it follows that every non-degenerate interval contains a subin-
terval on which f is a polynomial. Let Un denote the interior of Γn = {x ∈ I :
f (n)(x) = 0} and let F denote R \

⋃
n Un. Assume that (a, b) ⊂ Uj and (b, c) ⊂ Uk,

we first show that (a, c) ⊂ Umin(j,k). Note that f (j)(b) = f (k)(b) = 0. By sym-
metry, we may assume that k > j is minimal such that f (k) is identically 0 on
(b, c). It follows that f (k−1) is some non-zero constant on (b, c), contradicting that
f (k−1)(b) = 0. Similarly if (c, d) is an interval contained in

⋃
n Un, there is a min-

imal integer k such that f (k) is constantly 0 on (c, d) and if k > 0, then f (k−1) is
a non-zero constant function on (c, d). It follows immediately then that F has no
isolated points.

If F is empty we are done since then R is a maximal interval in
⋃
n Un. Since F is

a closed subset of R, it also satisfies the hypotheses of the Baire category theorem,
hence there is some interval (a, b) such that (a, b)∩ F is a non-empty subset of Γm
for some integer m. We obtain a contradiction by showing that (a, b) ⊂ Um. Since
F has no isolated points and f (m) is identically 0 on F ∩(a, b), it follows that f (j) is
also 0 on F ∩ (a, b) for all j ≥ m. Let (c, d) be a maximal subinterval of (a, b) \Γm.
By maximality either c or d is in the closure of Γm, let us assume it is c. Note that
(c, d) is disjoint from F . Therefore there is a minimal j > m ≥ 0 such that f (j) is
constantly 0 on (c, d), hence f (j−1) is a non-zero constant on (c, d). We now have
our contradiction since f (j−1)(c) = 0. �

We may explicitly record the following corollary which is proven by simply re-
placing R in the above proof by the interval I.

Corollary 8. If I is a non-degenerate open interval of R and f(x) ∈ C∞(R) is not
a polynomial on I, then G(f) ∩ I is not empty.

We can now show that if G(f) is not empty it is quite complex.

Corollary 9. If f ∈ C∞(R) and a < b ≤ c < d are reals such that (a, b) ∪ (c, d) ⊂
NG(f), then c, d ∈ NG(f), and (b, c) is not contained in G(f) unless b = c.
Therefore, if the set G(f) is closed, it is either empty or all of R.

Proof. By Corollary 8, there are integers j, k (minimal) so that f (j) is constant
on (a, b) and f (k) is constant on (c, d). Clearly then c, d ∈ NG(f). If b < c, and
there is a some x ∈ G(f) ∩ (b, c), then by the mean-value theorem, there is a point
y ∈ (b, c) such that f (1+j′)(y) = 0 where j′ = max(j, k). �

Corollary 10. If f ∈ C∞(R) is not a polynomial, then G(f) has cardinality c.

Proof. By Corollary 9, the set G(f) can have no isolated points. In addition, if
we set F to be the closure of G(f) in R, F will have no isolated points and will
be a complete metric space. In addition, G(f) is a dense Gδ subset of F . It is
well-known that when a complete separable metric space has no isolated points
each dense Gδ subsets has cardinality c (in fact it is itself a complete metric space
under a compatible metric). �

Theorem 11. If f ∈ C∞(R) then NG(f) is a countable union of pairwise disjoint
closed sets.

Proof. For each n, let Fn = {x ∈ R : f (n)(x) = 0}. Since f (n) is continuous, it
follows that Fn is a closed subset of R. To prove the theorem it suffices to show
that Fn+1 \ Fn can be written as a countable union of pairwise disjoint closed
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sets, which we do for n = 0. If an interval (a, b) ⊂ F1, then either [a, b] ⊂ F0

or [a, b] ⊂ F1 \ F0. Now let (a, b) be any maximal subinterval of R \ F0. Since
no interval of the form (a, a + ε) or (b − ε, b) can be contained in F1, we may
choose a < · · · < a−n < · · · < a−1 < a0 < a1 < · · · < an < · · · < b such that
a−n → a, an → b (n → ∞) and none of the an’s are in F1. For each integer n,
F1 ∩ (an−1, an) is a closed set and this collection of pairwise disjoint closed sets
covers F1 ∩ (a, b). This can be repeated for each of the countably many maximal
intervals (a, b) contained in R \ F0 which completes the proof. �

5. Generic in topology behavior of non-generic sets

In this section we continue the study of the nature of the set NG(f) for a typical
function f . Specifically we consider completely metrizable linear topological spaces
of C∞ functions and study the collection of functions f ∈ X whose non-generic
set is dense and countable. In fact, we are interested in an even stronger property
defined below.

We consider the space C∞(R) with the topology of local uniform convergence
of all derivatives (notation emphasizing the topology is C∞loc(R)). This topology is
generated by a countable set of seminorms

‖f‖n := max
0≤k≤n

max
−n−1≤x≤n+1

|f (k)(x)|, n ≥ 0,

or equivalently, by a metric

d(f, g) :=
∞∑
n=0

2−n
‖f − g‖n

1 + ‖f − g‖n
.

Throughout this section, X will denote a linear topological space of C∞ func-
tions. We will consider the following properties that X may or may not have:
(a) X is completely metrizable;
(b) the natural embedding of X into C∞loc(R) is continuous;
(c) X contains the linear space C∞0 (R) of all C∞ functions that are compactly
supported.

Definition 12. A linear topological space X of C∞ functions that has properties
(a), (b) and (c), will be called rich.

C∞loc(R) and the Schwartz space S(R) of fast decaying functions (see, e.g., [6])
are examples of rich spaces. The spaces BRσ and BRσ−0 introduced later in this
section have properties (a) and (b) but not (c).

Now we introduce notation that we will need below.
For f ∈ C∞(R) and k ∈ Z+ = {0, 1, 2, . . .}, we set

Zk(f) := {x ∈ R : f (k)(x) = 0},
so that NG(f) =

⋃∞
k=0 Zk(f).

For a collection Y of C∞ functions set

(5.1) Q0(Y ) := {f ∈ Y : NG(f) is dense in R};

(5.2) J(Y ) := {f ∈ Y : Zj(f) ∩ Zk(f) = ∅ if j 6= k};

(5.3) Q(Y ) := Q0(Y ) ∩ J(Y ).
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Theorem 13. Assume X is a rich space of C∞ functions on R. Then Q(X) is a
dense Gδ subset of X.

The proof is based on two lemmas. We formulate them and show how the
theorem follows, then prove the lemmas.

Lemma 14. (i) Let a, b ∈ R (a < b) and j, k ∈ Z+ (j 6= k). If X satisfies (b), then
the set

Jjkab (X) := {f ∈ X : Zj(f) ∩ Zk(f) ∩ [a, b] = ∅}
is open.
(ii) If X satisfies (c), then Jjkab (X) is dense.

Corollary 15. If X is rich, then J(X) is a dense Gδ subset of X.

Proof. We have

J(X) =
⋂

j,k: 0≤j<k

⋂
m≥1

Jjk−m,m ,

so the statement follows from the Baire theorem, according to which the intersection
of a countable family of dense open sets in a complete metric space is dense. �

Lemma 16. (i) Let a, b ∈ R (a < b). If X satisfies (b), then the set

Dab(X) := {f ∈ X : (∃j ∈ Z+) (∃c, d ∈ [a, b]) (f (j)(c) < 0 < f (j)(d))}

is open.
(ii) If X satisfies (c), then Dab(X) is dense.

Corollary 17. If X is rich, then the set
(5.4)

D(X) := {f ∈ X : (∀a < b) (∃j ∈ Z+) (∃c, d ∈ [a, b]) (f (j)(c) < 0 < f (j)(d))}

is a dense Gδ subset of X.

Proof. We have

D(X) =
⋂

a,b∈Q: a<b

Dab(X),

where Q denotes the set of all rationals, hence D(X) is a Gδ set, which is dense by
the Baire theorem. �

Note that

(5.5) Q(X) ≡ J(X) ∩Q0(X) = J(X) ∩D(X).

The latter set, according to Corollaries 15 and 17 and the Baire theorem, is a
dense Gδ subset of X. Therefore, to prove the theorem it remains to prove the two
lemmas.

Before proving them we will establish two auxiliary facts. Fix two numbers
a, b ∈ R (a < b) and an arbitrary compactly supported C∞ function φab(·), such
that φab(x) = 1 on the interval

(5.6) ∆ = (a− η, b+ η),

where η is an arbitrary number > 0.
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Lemma 18. Fix k ∈ Z+ and two numbers r > 0, R ≥ 0. Set

gλ(x) := φab(x) sin(λx)/λk−
1
2 .

Then there exists Λ > 0, such that for all λ ≥ Λ

(5.7) max
0≤j≤k−1

max
x∈R

|g(j)
λ (x)| ≤ r

and
max
a≤x≤b

(θg(k)
λ (x)) ≥ R for θ = ±1.

Proof. A straightforward application of the Leibnitz rule yields: if j ≤ k − 1, then
there exists such a constant C that for all λ ≥ 1

max
x∈R

|g(j)
λ (x)| ≤ Cλj−k+

1
2 ≤ Cλ−

1
2 ,

while each of the two maxima maxa≤x≤b(±g(k)
λ (x)) equals λ1/2 if λ(b−a) ≥ 2π. �

Lemma 19. Given a non-degenerate finite interval [a, b] ⊂ R and a sequence Bk →
∞, there exists a compactly supported C∞ function g(·), such that for all k ∈ Z+

(5.8) max
a≤x≤b

g(k)(x) ≥ Bk, min
a≤x≤b

g(k)(x) ≤ −Bk.

Proof. Using notation of Lemma 18, set

(5.9) g(x) :=
∞∑
k=0

gλk
(x) = φab(x)

∞∑
k=0

sin(λkx)

λ
k− 1

2
k

.

Select λk > 0 according to Lemma 18, where we put r = rk := 2−k and R = Rk;
the sequence Rk will be specified later.

By the choice of rk we have

(5.10)
∞∑

k=j+1

‖g(j)
λk

(·)‖∞ ≤ 2−j ,

so that
∑∞
k=0 ‖g

(j)
λk

(·)‖∞ < ∞ for every j ∈ Z+. This guarantees that the series∑
gλk

in (5.9) converges and its sum g(·) is in C∞0 (R).

If x is in the interval (5.6), we have

g(j)(x) =
∞∑
k=0

λ
j−k+ 1

2
k sin

(
λkx+ j

π

2

)
.

Here |
∑∞
k=j+1 | ≤ 1 by (5.10), so the inequalities (5.8) will be ensured if we choose

λj so large that λj(b− a) ≥ 2π and

λ
1/2
j ≥ Rk := Bk +

j−1∑
k=0

λ
j−k+ 1

2
k + 1.

�

Proof of Lemma 16. Statement (i) is obvious, so we only need to verify state-
ment (ii). Suppose f ∈ X and let Bk := k maxa≤x≤b |f (k)(x)|. According to
Lemma 19, there exists g ∈ C∞0 (R) satisfying (5.8) for all k ≥ 0. For m ≥ 1 set

(5.11) fm := f +
1
m
g.
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For any fixed m and all k > m we have:

max
a≤x≤b

f (k)
m (x) ≥ 1

m
max
a≤x≤b

g(k)(x) + min
a≤x≤b

f (k)(x) ≥ 1
m
Bk −

1
k
Bk > 0.

Similarly, mina≤x≤b f
(k)
m (x) < 0. Hence fm ∈ Dab(X). On the other hand, (5.11)

implies that fm → f in X as m→∞. �

Proof of Lemma 14. (i) The set Jjkab (X) can be defined equivalently as

Jjkab (X) := {f ∈ X : min
a≤x≤b

(|f (j)(x)|+ |f (k)(x)|) > 0},

which makes the statement obvious.
(ii) Set

(5.12) gλ(x) := φab(x) sin(λx+ α),

where λ > 0 and α are such that both sin(λx+ α) and cos(λx+ α) are nonzero on
the interval ∆ – the closure of the open interval (5.6). Clearly, this is true (with
the same α) not only for the initially chosen λ = λ0 but also for all λ in a small
enough open interval I centered at λ0. We may assume that 0 /∈ I. Then for any
choice of λ in I we have

(5.13) g
(l)
λ (x) 6= 0 on ∆ for all l ∈ Z+.

Given f ∈ X, we are going to prove that arbitrarily close (in X) to f there exists
a function h ∈ X, such that

(5.14) Zj(h) ∩ Zk(h) ∩ [a, b] = ∅.

Define, for any t ∈ R, a function

(5.15) ft,λ(x) := f(x) + tgλ(x).

It follows from (5.13) and Lemma 3(a) that for a.e. t ∈ R, all derivatives of ft,λ(·)
have only simple zeros (if any) in the interval ∆. Choosing such a t small enough
(so that ft,λ is arbitrarily close to f) and substituting the resulting function ft,λ(·)
for f(·), we reduce our statement to its particular case where all zeros of f (j) and
f (k) in the interval (5.6) are simple. To prove the statement in this case, we use
the same family (5.15), but this time λ ∈ I should be properly selected.

Proposition 20. There exists an at most countable set E ⊂ I, such that for any
λ ∈ I \ E and all t 6= 0 with small enough |t|, the function (5.15) satisfies

Zj(ft,λ) ∩ Zk(ft,λ) ∩ [a, b] = ∅.

Proof. Since all zeros of f (j) and f (k) in [a, b] are simple, there are only finitely
many. Let y1, y2, . . . , ym and z1, z2, . . . , zn be all the zeros of f (j) and f (k), re-
spectively, in the interval [a, b].

Consider a function F (x, t) := f
(j)
t,λ (x) = f (j)(x)+tg(j)

λ (x), x, t ∈ R. When t = 0,
the only zeros of F (·, t) in [a, b] are yl, and since they are simple, (∂F (x, t)/∂x)(yl, 0) =
f (j+1)(yl) 6= 0.

It follows easily from the Implicit Function Theorem that there exist δ > 0, β > 0
and C∞ functions Yl(t), l = 1, . . . ,m, on the interval (−δ, δ) such that
(i) for each t ∈ (−δ, δ), Y1(t), . . . , Ym(t) are the only zeros of F (·, t) ≡ f

(j)
t,λ (·) in

(a− β, b+ β);
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(ii) Yl(0) = yl, l = 1, . . . .m.
Moreover, by the same theorem,

Y ′l (0) = − ∂F (x, t)/∂t |x=yl,t=0

∂F (x, t)/∂x |x=yl,t=0
= −

g
(j)
λ (yl)

f (j+1)(yl)
= Aλj sin(λyl + α+ jπ/2),

where A is a nonzero constant.
Similarly, for small |t|, all the zeros of f (k)

t,λ (·) in some open interval containing
[a, b] are the values of n C∞ functions Zq(t) such that Zq(0) = zq (q = 1, 2, . . . , n)
and

Z ′q(0) = −
g
(k)
λ (zq)

f (k+1)(zq)
= Bλk sin(λzq + α+ kπ/2),

where B 6= 0.
Suppose f (j) and f (k) have r common zeros in [a, b]. Let yl = zq be one of them.

Then we have

(5.14)
Y ′l (0)
Z ′q(0)

= Cλj−k(tan(ylλ+ α))H ,

where C and H are constants, C 6= 0 and H ∈ {−1, 0, 1}. The right-hand side
s(λ) of (5) is real-analytic on I and, since j − k 6= 0, non-constant, so that the
set Elq := {λ ∈ I : s(λ) = 1} is at most countable. For λ ∈ I \ Elq we have
Y ′l (0) 6= Z ′q(0), hence Yl(0) 6= Zq(0) for small t 6= 0.

If we remove from I the union E of the r sets Elq, then any remaining λ has the
desired property: for all t 6= 0 with small enough |t| the two finite sets {Yl(t)}ml=1 and
{Zq(t)}nq=1 are disjoint. This completes the proof of the proposition and thereby
that of Lemma 14. �

Theorem 13 is, therefore, also proven. �

Next we are interested in the Baire category properties of the sets Q(X) and
Q0(X) (defined by (5.3) and (5.1)) in the case of certain spaces X of real-analytic
functions.

The Banach space Bσ is a classic function space of widespread interest. The
functions are restrictions to R of entire functions of exponential type ≤ σ that are
bounded on R.

Definition 21. [5] Let σ > 0. An entire function f(z) (i.e., a function f : C → C
holomorphic on the whole complex plane C) is called a function of exponential
type ≤ σ if for any ε > 0 f satisfies inequality |f(z)| < Cεe

(σ+ε)|z| with some
constant Cε.

Let C(R,C) denote the collection of all complex-valued continuous functions
on R.

Definition 22. [1], [5] The Bernstein space Bσ (σ > 0) is defined by

Bσ := {f ∈ C(R,C) : ‖f‖∞ := sup
x∈R

|f(x)| <∞

and f has a holomorphic extension to C of exponential type ≤ σ}.
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Remark. It is well-known that Bσ endowed with the sup-norm is a complex
Banach space [1].

A fundamental fact about Bσ is given by Bernstein’s inequality (see [1], [5], [3]):

(5.15) If f ∈ Bσ then for all n ≥ 0, ‖f (n)‖∞ ≤ σn‖f‖∞.

Definition 23. [4, p. 592] Bσ−0 := cl (∪τ∈(0, σ)Bτ ), where cl denotes the closure
in Bσ.

It may seem at first glance that Bσ−0 and Bσ must coincide, but it is not the case.
In fact, the quotient space Bσ/Bσ−0 is infinite-dimensional, even non-separable (see
[4, p. 592] for this result). Our results will further illustrate this distinction.

We will denote by BRσ and BRσ−0 the subcollection of real-valued members
of Bσ and Bσ−0, respectively. Each of them endowed with the sup-norm is a real
Banach space.

Our goal is to answer a natural question: is Q(X) (or at least Q0(X)) topologi-
cally generic (i.e., contains a dense Gδ subset of X) when X is BRσ or BRσ−0?

The answer is given by theorems 24 and 25.

Theorem 24. The set Q0(BRσ) is not dense in BRσ.

Note that Q(BRσ) ⊂ Q0(BRσ); therefore, the set Q(BRσ) is not dense in BRσ
either.

Proof. By scale transformation y = σx we may assume that σ = 1. The function
f0(x) = sin x = 1

2i (e
ix − e−ix) belongs to BR1 and has maximal possible type 1.

On the interval ∆0 = (π/6, π/3), this function and all its derivatives (i.e. ± sin x,
± cos x) are large:

| sin x| > 1
2
, | cos x| > 1

2
.

Let us consider the ball of radius 1
2 centered at f0 in BR1:

B 1
2
(f0) =

{
f ∈ BR1 : ‖f − f0‖∞ ≤ 1

2

}
.

By Bernstein’s inequality, we have that for each n ≥ 0,

‖f (n) − f
(n)
0 ‖∞ ≤ 1

2
.

This implies that each function f in B 1
2
(f0) and all its deriviatives are non-zero

on ∆0. Indeed, for x ∈ ∆0 we have

|f (n)(x)| ≥ |f (n)
0 (x)| − ‖f (n) − f

(n)
0 ‖∞ >

1
2
− 1

2
= 0,

hence B 1
2
(f0) is disjoint from Q0(BR1). �

Theorem 25. The set Q(BRσ−0) is a dense Gδ subset of BRσ−0.

The proof is based on two lemmas formulated similarly to Lemmas 14 and 16.

Lemma 26. (i) Let a, b ∈ R (a < b) and j, k ∈ Z+ (j 6= k). The set

Jjkab (Bσ−0) = {f ∈ Bσ−0 : Zj(f) ∩ Zk(f) ∩ [a, b] = ∅}
is open.
(ii) The set Jjkab (Bσ−0) is dense.
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Proof. Statement (i) is a particular case of Lemma 14(i). The proof of (ii) mimics
that of Lemma 14(ii) while being different in two points. First, instead of the
compactly supported function (5.12) (which is not in Bσ−0) we use the function
sin(λx + α) itself. Secondly, in order that this function be in Bσ−0 we need to
subject λ to an additional restriction λ < σ. �

Lemma 27. (i) Let a, b ∈ R (a < b). The set

Dab(Bσ−0) = {f ∈ Bσ−0 : (∃j ∈ Z+)(∃c, d ∈ [a, b])(f (j)(c) < 0 < f (j)(d)}.
is open.
(ii) The set Dab(Bσ−0) is dense.

Proof. Part (i) follows directly from Lemma 16(i), so it remains to prove (ii). We
want to prove, therefore, that any f ∈ Bσ−0 can be approximated by elements of
the set Dab(Bσ−0). We may assume that f ∈ Bτ , where τ < σ. By a suitable
scale transformation, we may also assume that τ < 1 < σ. Let c := (a + b)/2 and
g(x) := sin(x− c). Set fε := f + εg, so that fε ∈ Bσ−0. By Bernstein’s inequality,

‖f (4k)
ε − εg‖∞ ≤ τ4k‖f‖∞ → 0 as k →∞.

It follows that f (4k)
ε with large k changes sign in [a, b]. Hence we have Dab(Bσ−0) 3

fε → f as ε→ 0. �

Proof of Theorem 25. Just as in the proof of Theorem 13, we conclude from Lem-
mas 26 and 27 and the Baire theorem that each of the sets J(BRσ−0) andD(BRσ−0)
and consequently their intersection Q(BRσ−0) is a dense Gδ set. �

6. Generic in measure behavior of non-generic sets

In this next example we find a function for which NG(f) is a proper dense open
set. We will later investigate varying the values of the measure of G(f).

Example 15. There is a C∞ compactly supported function f such that G(f) is
non-empty and has measure 0. That is, the function f has polynomial structure on
intervals outside the uncountable set G(f).

Proof. Let Y1, . . . , Yn, . . . be a family of i.i.d.r.v with uniform distribution on [−1, 1]
and corresponding density function ρ(y) = 1

2I[−1,1](y). Its Fourier transform is∫ 1

−1

ρ(y)eitydx =
sin t
t

= ϕ(t) .

We note that |ϕ(t)| ≤ c
1+t .

Set Z =
Y1

3
+
Y2

32
+ · · ·+ Yn

3n
+ · · ·, hence

E eitz = Π∞
n=1

(
3n sin t

3n

t

)
= ϕZ(t) .

This function has estimation

|ϕZ(t)| ≤ cn
(1 + |t|)n

, (∀n ≥ 0) .

This means that there exists a density

PZ(x) ∈ C∞ .



A PROBLEM BY E. LANDIS AND GENERIC BEHAVIOR OF NON-GENERIC SETS 15

Of course

|Z| ≤
1
3

1− 1
3

=
1
2

i.e. the support PZ(·) = [− 1
2 ,

1
2 ], and the density PZ(·) is strictly positive on

(− 1
2 ,

1
2 ).

We must prove that it is polynomial outside the Cantor set consisting of the
ternary points {

∑∞
k=1

εk

3k : εk = ±1} = Γ.
The proof is based on the following elementary lemma.

Lemma 28. Let µ be measure supported on [−δ, δ] and f(x), x ∈ R be a continuous
function, which coincides on some interval [a, b] of length greater than 2δ, with a
polynomial Pn(x) of degree n. Then the convolution f ∗ µ =

∫
R f(x − y)dµ is a

polynomial of the same degree n on the interval [a+ δ, b− δ].

Proof. If x ∈ (a+ δ, b− δ), then

(f ∗ µ)(x) =
∫ δ

−δ
Pn(x− y)µ(dy) =

∫ δ

−δ

n∑
k=0

P
(k)
n (x)
k!

(−y)kµ(dy) = Qn(x) �

Now we return to the function PZ(x) and study it using approximations (in C∞):

PZ(x) = lim
n→∞

PZn
(x) , Zn =

Y1

3
+ · · ·+ Yn

3n
.

Let us note that PZn(x) is a polynomial of degree at most (n − 1) outside the
finite set Γn = {x : x = ± 1

3 ,±
1
32 ± · · · ± 1

3n } and that |Γn| = 2n.
For instance

PZ1(x) =

{
3/2 x ∈ [− 1

3 ,
1
3 ]

0 x /∈ [− 1
3 ,

1
3 ]

PZ2(x) =


0 x ≤ −1

3 −
1
9 or x ≥ 1

3 + 1
9

27
4 (x+ 1

3 + 1
9 ) x ∈ [− 1

3 −
1
9 ,−

1
3 + 1

9 ]
3
2 x ∈ [− 1

3 + 1
9 ,

1
3 −

1
9 ]

27( 1
3 + 1

9 − x) x ∈ [ 13 −
1
9 ,

1
3 + 1

9 ]

etc.
Let Z̃n = Yn+1

3n+1 + Yn+2
3n+2 + . . ., hence |Z̃n| ≤ 1

2·3n = εn. But PZ(x) = PZn
∗ PZ̃n

and the lemma shows that PZ(x) must be polynomial of degree at most (n− 1) on
the intervals that are complementary to the εn-neighborhoods of the set Γn. Let
Γεn
n denote the union of these intervals. Of course the sum of the lengths of the

intervals in Γεn
n , i.e. |Γεn

n |, will equal 2n · 1
2·3n = 1

2 (2/3)n → 0.
Let us note also that the set of the limit points for the sequence {Γn : n =

1, 2, . . .} is a Cantor set of measure 0.
Therefore we have proven that G(PZ(·)) ⊂ Γ, hence the measure of G(PZ(·)) is

0. It is probably true that Γ \G(PZ(·)) is countable but we were not able to verify
this conjecture. �

The function PZ(x) is self-similar. It satisfies the following functional equation:

PZ(x) = 3
∫ 1

3

− 1
3

PZ(3(x− y))dy , x ∈
[
−1

2
,
1
2

]
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i.e. P ′Z(x) = 3[PZ(3x+ 1)− PZ(3x− 1)], which is equivalent to the relation

Z =
Y1

3
+
Z

3
.

Such kinds of equations are known as differential-functional equations and do have
important probabilistic applications. A systematic study of the function PZ(·),
with applications to the interpolation theory, can be found in [8].

This first example shows that probabilistically the set NG(f) is going to be a
countable dense subset of R. In the next section we investigate the topological
properties of the collection of analytic f for which NG(f) is a countable dense set.

Example 16. Let Wζ(ω), ζ ∈ R be the Brownian motion (Wiener process), i.e.
random Gaussian process with zero mean, EWζ ≡ 0 and the correlator

B(ζ, ζ ′) = EWζWζ′ =

{
|ζ| ∧ |ζ ′| ζ · ζ ′ ≤ 0
0 ζ · ζ ′ > 0

In particular, varWζ = B(ζ, ζ) = |ζ|. It means that Wζ , ζ ≥ 0 and W−ζ , ζ > 0
are two independent standard Wiener processes.

Let us introduce also Ŵζ , ζ ∈ R: the independent copy of W .
If ϕ(ζ) is a bounded continuous function decreasing faster than any degree of ζ,

i.e. |ϕ|(1 + |ζ|n) ∈ L1(R) for any n ≥ 1

then one can consider the following Gaussian homogeneous random process

f(x, ω) =
∫

R
ϕ(ζ) cosxζ dWζ +

∫
R
ϕ(ζ) sinxζdŴζ

(Stochastic integrals, hence one can understand in the usual Riemannian sense).
Of course, one can identify ω and realizations (W0, Ŵ0).

As is easy to see, the process f(x, ω) ∈ C∞ and for its derivatives one has

f (n)(x, ω) =
∫

R
ϕ(ζ)ζn cos(x+

πn

2
)dWζ +

∫
R
ϕ(ζ)ζn sin(x+

πn

2
)d Ŵζ

It gives the following expressions for the correlations

E f (n)(x, ·) ≡ 0 , n ≥ 0

E f (n)(x) f (n)(y) =
∫

R
cos ζ(x− y) ζ2nϕ2(ζ)d ζ = B2n(x− y)

E f (n)(x) f (m)(y) = Bm+n(x− y)(6.1)
=
∫

R± cos ζ(x− y) ζm+nϕ2(ζ)d ζ ,m+ n ≡ 0 mod 2(6.2)

=
∫

R± sin ζ(x− y) ζm+nϕ2(ζ)d ζ ,m+ n ≡ 1 mod 2(6.3)

We concentrate on the particular cases when

ϕ(ζ) = exp(−|ζ|α/2) , α > 0

ϕ(ζ) = I[σ,σ](ζ) , (here α = ∞).

I.e. the spectral densities for f(·), f (n)(·) are given by

ϕ2(ζ) = exp(−|ζ|α) , α > 0

ζ2nϕ2(ζ) = ζ2n exp(−|ζ|α) , α = ∞.
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Corresponding processes f(x, ·), f (n)(x, ·) will be called fα(x), f (n)
α (x) to specify

the dependence on the parameter α.
For α ≥ 1, one can extend f(x, ·) into the complex plane z = x + iy. Namely,

for complex z,
| cos ζz| ≤ e|ζ||z| and | sin ζz| ≤ e|ζ||z|

and (by the Laplace method)

σ2
n,α(z) = E|f (n)(z)| ≤

∫
R2
e|ζ||z|ζ2ne−|ζ|

α

dζ '

log
' ec(α)|z|

α
α−1

, c(α) =
α− 1

α
α−1

α

.

One can prove now that P-a.s. for α > 1, f(z, ω) is an entire function of the
order α

α−1 and of the type c(α)/2. If α = ∞, then the order is equal to 1 and the
type is σ (calculations are very similar).

For α = 1 the function f(x, ω) has analytic continuation in the strip |Im(z)| <
1. Finally for α < 1, the functions f(x, ·) are C∞ on R but have no analytic
continuation.

The variances of all derivatives can be calculated explicitly:

(6.4) E[f (n)(·)]2 = B2n(0) = 2
∫ ∞

0

ζ2ne−ζ
α

dζ =
2
α

Γ
(

2n+ 1
α

)
, α <∞

E[f (n)(·)]2 = 2
∫ σ

0

ζ2ndζ =
2σ2n+1

2n+ 1
, α = ∞

Theorem 29. For any 0 < α ≤ ∞, the random function f = fα(x, ω) has a
countable dense non-generic set NG(f) (with probability 1, P-a.s.)

We will prove the theorem for α < ∞ as the case for α = ∞ is much simpler.
We will also provide some asymptotical formulas.

We consider, instead of f (n)(x), n ≥ 0, the normalized versions. Set

ξn(x) =
f (n)(αnx)

βn
, αn =

√
B2n(0)
B2n+2(0)

∼
( α

2n

)1/α

=
c(α)
n1/α

.

The process ξn(·) is a stationary one and its correlation function b2n(z) is the
normalization of B2n(z). Namely

(6.5) b2n(z) = E ξn(x)ξn(x+ z) =
B2n(αnz)
B2n(0)

= 1 +
B′′2n(0)α2

n

2B2n(0)
+
B

(4)
2n (0)α4

nz
4

24B2n(0)
+O(z6)

= 1− z2 + γ4,n
z4

24
+O(z6) ,

where γ4,n =
B2n+4(0)B2

2n(0)
B2n(0)B2n+2(0)

→ 1, n→∞ .

We used the obvious relations B′′2n(0) = B2n+2(0), B(4)
2n (0) = B2n+4(0) and

explicity formula 6.4 for B2n(0).
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Formula 6.5 gives

(6.6) Eξn(x)ξ′n(x) =
∂b2n
∂z

(0) = 0 , Eξ′n(0)ξ′n(0) = −∂
2b2n
∂z2

(0) = 1 .

For different n,m, the processes ξ(n)(x), ξ(m)(x) are not stationary connected
(due to different scalings αn, αm in the arguments of the derivatives). We have
however

bk,m(x1, x2) = Eξn(x1)ξm(x2) =
Ef (n)(αnx1)f (m)(αmx2)√

B2n(0)B2m(0)
=

Bm+n(αnx1 − αmx2)√
B2n(0)B2m(0)

and

|bn,m(x1, x2)| ≤
∫

R |ζ|
m+ne−|ζ|

α

dζ√
B2n(0)B2m(0)

≤
Γ
(
m+n+1

α

)√
Γ
(

2n+1
α

)
Γ
(

2m+1
α

)
The following estimation is very important for the coming asymptotical analysis.

It shows that ξn(·) and ξm(·) are “almost independent” if |n−m|>>
√
m+ n.

Lemma 30. Assume that m ≤ n, m = n−ζ, and ζ = o(n2/3). Then asymptotically
(for n→∞)

(6.7) h(ζ) =
Γ
(

2n−ζ+1
α

)
√

Γ
(

2n+1
α

)
Γ
(

2n+1−2ζ
α

) ∼ exp
(
− ζ2

2nα

)

For fixed n, the function h(ζ) is decreasing.
The proof of this lemma can be based on the direct calculations using the Stirling

formula
Γ(1 + x) =

√
2πx

(x
e

)x
e

θ
12x .

The following observation shows that in reality 6.7 is equivalent to the local CLT
for Bernoulli r.v (De Moivre-Laplace theorem). Assume temporarily that numbers
2m+1
α , 2n+1

α are odd integers. Put

2X =
2m+ 1
α

+ 1 , 2Y =
2n+ 1
α

+ 1 ,
m+ n+ 1

α
= X + Y + 1 ,

then

(6.8)
Γ
(
m+n+1

α

)√
Γ
(

2n+1
α

)
Γ
(

2m+1
α

) =
Γ(X + Y )√
Γ(2X)Γ(2Y )

=

√
(2X + 2Y )!
(2X)!(2Y )!

(
1
2

)2X+2Y

�
�

�
√

(2X + 2Y )!
(X + Y )!(X + Y )!

(
1
2

)2X+2Y

=

√
b(2X + 2Y, 2X, 1

2 )
b(2X + 2Y,X + Y, 1

2 )
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where b(n, x, p) =
(
n
x

)
pxq(n−x), (0 < q = 1 − p < 1, 0 < p < 1) is the standard

notation for the binomial probabilities. It is well known that

b(n, x, p) ∼ 1√
2πnpq

e−
ζ2

2npq , ζ = x− np = o(n2/q) .

Application of this result to equation 6.8 gives the asymptotics 6.7. The mono-
tonicity also follows from well known properties of binomial coefficients. But the
proof of the De Moivre-Laplace theorem is based completely on the Stirling formula
for Γ(1 + x), which is true for general (very large) x.

Let us return to the proof of the theorem 29.

Lemma 31. Let vα(n,∆) = #{xi ∈ ∆ : ξ(n)(xi) = 0}, then

(6.9) E vα(n,∆) =
|∆|
π

, E
n∑
k=0

vα(k,∆) = (n+ 1)|∆|

Proof. It follows from the general theory of the smooth Gaussian random processes
that for the roots of ξ(n)(·) on fixed interval ∆ one can use the following “symbolic”
Kac-Rice formula (see [2, ch10,3]).

(6.10) vα(n,∆) =
∫

∆

δ0(ξ(n)(x))|ξ(n+1)(x)|dx

The justification of this formula is based on the Bulinskaja theorem as used
above. It yields

(6.11) Evα(n,∆) =
∫

∆

E δ0(ξ(n)(x))|ξ(n+1)(x)|dx =

=
∫

∆

dx

∫
R2
δ0(z1)|z2|Pn,x(z1, z2)dz1 dz2

where Pn,x(·) is the joint distribution density for the r.v. ξ(n)(x), ξ(n+1)(x). This
(gaussian) density does not depend on x (process ξ(n)(·) is the stationary one) and
given by the formula

Pn,x(z1, z2) =
1

2π
√

detΣ
exp(− (Σ1z, z)

2
) ,

where

Σ =
[

E[ξ(n)(x)]2 Eξ(n)(x)ξ(n+1)(x)
Eξ(n)(x)ξ(n+1)(x) Eξ(n+1)(x)ξ(n+1)(x)

]
=
[

1 0
0 1

]
= I .

(This is due to 6.5. In fact E[ξ(n)(x)]2 = b2n(0) = 1, E[ξ(n)(x)ξ(2n+1)(x)] =
−b′n(0) = 0, E[ξ(n+1)(x)]2 = − ∂2b

∂z2 (0) = 1).
Finally

Evα(n,∆) = |∆|
∫

R
P0,n(0, z2)|z2|dz2 = 2

|∆|
2π

∫ ∞

0

z2e
− z

2
2
2 dz2 =

|∆|
π

.

The second statement of the lemma is now obvious. �
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Unfortunately the estimation of the first moment is not sufficient for the proof
of theorem 29. We have to check that, for instance,

var

(
n∑
k=0

vα(k,∆)

)
= o

 (
n∑
k=0

Evα(k,∆)

)2
 = o(n2) .

In fact we will prove more:

Theorem 32. For any fixed interval ∆ and any δ > 0,

(1) var (
∑n
k=0 vα(k,∆)) = o(n

3
2+δ),

(2)
∑n
k=0 vα(k,∆)

n

P→ |∆|

and for appropriate sequences Nn →∞, e.g. Nn = n2+δ1 , δ1 > 0,∑n
k=0 vα(n,∆)

n
→ |∆| (P-a.s.) .

Proof. Of course

var

(
n∑
k=0

vα(k,∆)

)
=

n∑
k=1

var vα(k,∆) + 2
∑
k<m

Cov(vα(k,∆), vα(m,∆)) .

Let us start from the estimation of var vα(k,∆). It is based on the general results
of [2, 10.6,10.77]. First of all we will use the following (Kac-Rice type) formula for
the second factorial moment of vα(k,∆):

Evα(k,∆)(vα(k,∆)− 1) = 2
∫ |∆|

0

(|∆| − h)ψk(h)dh

where ψk(h) =
∫ ∫

R2 |z1||z2|Pk,k+1(0, 0, z1, z2)dz1dz2 and Pk,k+1(·) is the joint gauss-
ian distribution density for the vector ξk(x), ξk(x+ h), ξk(x), ξk(x+ h). It is given
by the covariance matrix

Λk(h) =


1 b2k(h) 0 −b′2k(h)

b2k(h) 1b′2k(h) 0
0 b+ 2k′(h) 1 −b2k(h)

−b′2k(h) 0 −b2k(h) 1

 .

�

Due to formula 6.5,

b2k(h) = 1− h2

2
+
γ4,hh

4

2h
+O(h6)

and the coefficient γ4,h is uniformly bounded in k. In fact, γ4,h converges to 1 as
k →∞.

Let b2k(h) = 1 − h2

2 + τ(h). Then for appropriate constants ci > 0 (i = 0, 1)
uniformly in k,

ψk(h) ≤
c0θ

′(h)
h2

≤ c1h

and, as a result, for |∆|<< 1, Evα(k,∆)(vα(k,∆)−1) = O(|∆|3), i.e. var(vα(k,∆)) =
Evα(k,∆)+)(|∆|2), and Evα(k,∆) = |∆|

π .
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This means that
∑n
k=0 var vα(k,∆) = O(n) and for n→∞ and |∆| → 0,

n∑
k=0

var vα(k,∆) ∼ n|∆|
π

.

Let us estimate the covariances Cov (vα(k,∆), vα(m,∆)). If |k−m| ≤ (max(k,m))
1
2+δ,

i.e. k and m are “close” enough then

|Cov(vα(k,∆), vα(m,∆))| ≤
√

var(vα(k,∆))(varvα(m,∆)) = O(1) .

Due to [2, 10.6], for Evα(k,∆)vα(m,∆) one can use the formula

(6.12) E

∫
∆

∫
∆

δ(ξk(x1))δ(ξm(x2))|ξ′k(x1)| |ξ′m(x2)|dx1dx2

=
∫ ∫

∆×∆

dx1dx2

∫ ∫
R2
|z1||z2|Pk,m,x1,x2(0, z1, 0, z2)dz1dz2

where Pk,m,x1,x2(y1, z1, y2, z2) is the (gaussian) joint distribution density for the vec-
tor (ξk(x1), ξ′k(x1), ξm(x2), ξ′m(x2)) given by the covariance matrix bk,m(x1, x2) =

=


Eξk(x1)ξk(x1) Eξk(x1)ξ′k(x1) Eξk(x1)ξm(x2) Eξk(x1)ξ′m(x2)
Eξ′k(x1)ξk(x1) Eξ′k(x1)ξ′k(x1) Eξ′k(x1)ξm(x2) Eξ′k(x1)ξ′m(x2)
Eξm(x2)ξk(x1) Eξm(x2)ξ′k(x1) Eξm(x2)ξm(x2) Eξm(x2)ξ′m(x2)
Eξ′m(x2)ξk(x1) Eξ′m(x2)ξ′k(x1) Eξ′m(x2)ξm(x2) Eξ′m(x2)ξ′m(x2)


=
[

I εk,mC
εk,mC

∗ I

]
,

where ‖C‖ = 1 (we can use here, for instance, the Hilbert-Schmidt norm : ‖C‖1+S =√
Tr(C · C∗) ) and, due to Lemma 6.7, εk,m ≤ exp

(
− |k−m|2

2mα

)
, k ≤ m and |k−m| =

O(m2/3).

Lemma 33. Let B =
[

I εC
εC∗ I

]
be a 2n× 2n matrix, let ‖C‖HS = 1 and let ε

be a small parameter. Then the determinant of B is 1 + ε2‖C‖2HS +O(ε3) and

B−1 =
[
I + ε2CC∗ −εC
−εC∗ I + ε2C∗C

]
+O(ε3)

(of course, the remainder is a matrix with H-S norm which is O(ε3)).

Proof. First, we have that

ln B = ln
(
I +

[
0 εC
εC∗ 0

])
= ε

[
0 C
C∗ 0

]
+
ε2

2

[
CC∗ 0

0 C∗C

]
+O(ε2)

and detB = exp (Tr lnB) =
ε2

2
(‖C‖2HS + ‖C‖2HS) +O(ε3) .

Secondly,

B−1 =
(
I + ε

[
0 C
C∗ 0

])−1

= I − ε

[
0 C
C∗ 0

]
+ ε2

[
0 C
C∗ 0

]2
+O(ε3)

=
[
I + ε2CC∗ −εC

εC∗ I + ε2C∗C

]
+O(ε3) .

�
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Now we can easily complete the proof of the theorem 32.

Proof of Theorem 32. Set ~x = (0, z1, 0, z2)∗ and

p(0)(0, z1, 0, z2) =
e−

~x2

2

(2π)2
=

1
(2π)2

e−
z2
1+z2

2
2 .

Lemma 31 gives that

Evα(k,∆)Evα(m,∆) =
∫

∆

∫
∆

dx1dx2

∫ ∫
R2
p(0)(0, z1, 0, z2)|z1||z2|dz1dz2

(6.13) i.e. Cov (vα(k,∆), vα(m,∆)) =∫
∆

∫
∆

dx1dx2

∫ ∫
R2
|z1||z2|(Pk,m,x1,x2(·)− p(0)(·))dz1dz2

=
∫

∆

∫
∆

dx1dx2

∫ ∫
R2
|z1||z2|

e−
z2
1+z2

2
2

(2π)2

(
e(−(b−1

k,m−I)~x,~x)/2√
det bk,m(·)

− 1

)
dz1dz2

But (((bk,m − I)~x, ~x)) =([
0 εk,mC

εk,mC
∗ 0

]
~x, ~x

)
+ εk,m

([
CC∗ 0

0 C∗C

]
~x, ~x

)
+O(ε3k,m) .

Divide
∫ ∫

R2 into two parts:
∫ ∫

|~x|≤ 1√
ε

+
∫ ∫

|~x|> 1√
ε

and use the formula eεf−1 =

εf +O(ε2), if |f | ≤ 1. Let us note that∫ ∫
|~x|≤ 1√

ε

|z1||z2|
([

0 εk,mC
εk,mC

∗ 0

]
~x, ~x

)
dz1dz2 = 0 .

It gives that∫ ∫
|~x|≤ 1√

ε

|z1||z2|
([

0 εk,mC
εk,mC

∗ 0

]
~x, ~x

)
dz1dz2 ≤ c · ε2k,m .

Obviously∫ ∫
|~x|> 1√

ε

|z1||z2|
([

0 εk,mC
εk,mC

∗ 0

]
~x, ~x

)
dz1dz2 = O(e

− c1
εk,m )

and we have proven that

Cov (fα(k,∆), vα(m,∆)) = O(ε2k,m) = O

(
exp

(
− |k −m|2

αmax (k,m)

))
This estimation implies the relation 1 in the Theorem 32. Other relations are trivial
consequences of the Chebyshev’s inequality and the Borel-Cantelli lemma. �

Some further development of the ideas in Theorem 32 gives the next theorem.

Theorem 34. Let N(k,∆) = #{x ∈ ∆ : f (k)(x) = 0}. Then for α <∞,

EN(k,∆) =
|∆|
π

√
B2k+2(0)
B2k(0)

∼ |∆|
π

(
2n
α

)1/α

and

(1) E

(
n∑
k=0

N(k,∆)

)
∼

n→∞|∆|
π

(
2
α

)1/α
αn1+αα

1 + α
,
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(2)
∑n
k=0N(k,∆)

n
1+α

α

P→|∆|
π

(
2
α

)1/α
α

1 + α
= |∆|cα

Proof. The proof of part 1 is the direct repetition of the Lemma 31. The proof of
part 2 requires slightly longer calculations of the second moment, but essentially is
also the same proof as that in Theorem 32. The central point is the “decorelation”
Lemma 31 �

Corollary 35. Let fα(x) be an entire function of the exponential order α (i.e.
|fα(z)| ≤ c0 exp(c1|z|α) as |z| → ∞). Then for any ε > 0 and fixed interval ∆, one
can find an entire function fα′(x), α′ > α > 0 such that NG(fα + εfα′) is dense in
∆. In fact, one can take fα′(x, ω) is a stationary gaussian process with the spectral
density ψ2(ζ) = exp(−2|ζ|α′) and prove the statement holds P-a.s.

Corollary 36. Let f be a C∞ function supported on the compact interval ∆ ⊂ R
and which is analytic on the interior of ∆. Then for α′ < 1 and f̃ε(x) = f(x)(1 +
εfα′(x, ω)), the function f̃ε almost surely has NG(f̃ε) intersecting ∆ in a countable
dense subset.

For example if we use ∆ = [0, 1] and

f(x) =

{
0 x /∈ (0, 1)
e−( 1

x + 1
1−x ) = e−

1
x(1−x) x ∈ (0, 1)

we will also have that NG(f̃) contains R \ [0, 1].
The proof is based on two facts. For any ε > 0, ∆′ = (α, β), ∆′

ε = (α+ ε, β− ε),
the function f(x) admits the estimation

|f (n)(x)| ≤ n!An(ε) , x ∈ ∆′
ε .

At the same time (as we know), |f (n)
α′ (x)| = O

(
(n!)1/α

′
)

and for large n and fixed
ε, the random term εfα′(x, ω) will dominate.

Using functions from Corollary 36 and their integrals one can define for any two
analytic functions, f1(x), f2(x) (including polynomials) and given interval [α, β]
some C∞ interpolation F (x) such that

F (x) =

{
f1(x) x ≤ α

f2(x) x ≥ β

and arrange that NG(F ) ∩ [α, β] is a dense countable subset.
This yields the next example.

Example 17. For any partition of R into intervals

∆0 = (∞, x1],∆1 = (x1, x2], . . .∆n−1 = (xn−1, xn],∆n = (xn,∞)

and any assignment of “empty” or “contains” to each of the even intervals, there is
a C∞ function F (x) such that the set NG(F ) contains all the even indexed intervals
assigned as “contains” and is disjoint from all the even indexed intervals assigned
as “empty”. NG(F ) will meet each of the odd indexed intervals in a countable
dense set.

In particular, one can construct a C∞ function F which has polynomial structure
outside a given finite set of intervals (with arbitrarily small measure) and such that
NG(F ) is countable and dense on these intervals.
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7. Open Problems

Question 1. Assume that D is a countable subset of R; is there an analytic function
f such that NG(f) = D?

Question 2. Assume that Γn (n = 0, 1, 2, . . .) is a sequence of pairwise disjoint
countable subsets of R, such that each Γn has no finite accumulation points. Also
assume that the Γn’s satisfy the intermittency condition

(7.1) if x, y ∈ Γn and x < y then there exists such z ∈ Γn+1 that x < z < y.

Is there an analytic function f such that for each n, Γn is exactly the set of zeros
of f (n)?

Even the finite (polynomial) version of the previous question does not seem to
have a known answer.

Question 3. Let Γn (n = 0, 1, 2, . . . , N) be disjoint finite subsets of R such that
|Γn| = N − n. Assume they satisfy the intermittency condition (7.1) for n =
0, 1, 2, . . . , N − 2. Under what additional conditions is there a polynomial P (x)
such that for each n = 0, 1, . . . , N , Γn is the set of zeros of P (n)(x)? For example,
if Γ0 = {x, y} and Γ1 = {z}, then z has to be (x+ y)/2.

Question 4. What is NG(e−
1
x )? If f(x) = e−

1
x , and f (n)(x) is written as e−

1
x ·

Pn(x)/x2n, is there a natural recurrence relation between Pn−1(x), Pn(x) and
Pn+1(x) ?

Question 5. If Fn (n = 0, 1, 2, . . .) is an increasing family of closed subsets of R
satisfying the intermittency condition

(∀n) (∀x < y ∈ Fn) (∃z ∈ Fn+1) (x < z < y)

is there a function f ∈ C∞(R) such that NG(f) =
⋃
n Fn?

Question 6. If NG(f) is dense and has measure 0, and f ∈ C∞ is the sum of a
convergent series of analytic functions, is NG(f) necessarily countable?

Question 7. Is the set Q0(BRσ) nowhere dense?
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