
PFA(S) AND AUTOMORPHISMS OF P(N)/ fin

ALAN DOW

Abstract. Todorcevic introduced the forcing axiom PFA(S) and
established many consequences. We contribute to this project.
In particular, we show that forcing with the Souslin tree S, as
postulated by PFA(S), will preserve that all automorphisms of the
Boolean algebra P(N)/ fin are trivial.

1. Introduction

There are two models to consider. One is the (ground) model in
which PFA(S) holds and the second is the forcing extension by the
Souslin tree S of such a model, denote PFA(S)[S]. Farah used this
method in to show that, what is now known as, the Open Graph Axiom
(OGA) is not sufficient to prove to prove the well-known consequence
of PFA concerning ℵ1-dense sets of reals. It is not known if OGA
is sufficient to establish that there are no non-trivial automorphisms
of P(N)/ fin. We prove, though, that PFA(S)[S] does imply this. The
literature on the question of the existence of non-trivial automorphisms
on P(N)/ fin is well-known and quite extensive (see [3, 4, 6–9,13] ).

The method of applying PFA(S) to prove results about either PFA(S),
or the extension PFA(S)[S], is to produce a proper poset P and prove
that it preserves that the Souslin tree S remains Souslin.

Lemma 1.1. For a ccc poset P the following are equivalent

(1) P preserves that S is Souslin,
(2) P× S is ccc,
(3) S preserves that P is ccc.

A poset P is said to have property K if every uncountable subset of
P has an uncountable linked subset. Kunen and Tall [5] showed that if
P has property K then P× T is ccc for each Souslin tree T . Therefore
PFA(S) is a model of MAK(ω1).
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2 A. DOW

Lemma 1.2. For a proper poset P the following are equivalent

(1) P preserves that S is Souslin,
(2) P× S is proper.

Definition 1.3. A Souslin tree S ⊂ ω<ω1 is coherent if s∆t = {ξ ∈
dom(s) ∩ dom(t) : s(ξ) 6= t(ξ)} is finite for all s, t ∈ S. The axiom
PFA(S) is the statement that there is a coherent Souslin tree and for
all proper posets P such that forcing with P preserves that S is Souslin,
for each family D of at most ω1 dense subsets of P there is a D-generic
filter on P.

The homogeneous closure of a tree S ⊂ ω<ω1 will consist of all el-
ements t of ω<ω1 that satisfy s∆t is finite for each s ∈ Sdom(t). If
S is a coherent Souslin tree then its homogeneous closure is as well.
Henceforth we assume that S is equal to its homogeneous closure.
For s, t ∈ S we let s ⊕ t denote the element of S that is equal to
s ∪ (t � [dom(s), dom(t))). If g is any generic filter for S and s ∈ S,
then s⊕ g = {s⊕ t : t ∈ g} is also an S-generic filter.

2. PFA(S)[S] implies all automorphisms are trivial

We will need that the Ramsey axiom OGA holds in the PFA(S)
model. It also holds in the PFA(S)[S] model. This was proven by
Todorcevic in [12, 5.1], but also, one can deduce this fact from the
earlier results in [2].

Definition 2.1. OGA is the statement that every open graph on a
separable metric space is countably chromatic unless it contains an un-
countable complete subgraph.

Definition 2.2. If Φ is an automorphism of P(N)/ fin, then an injec-
tion h induces Φ on a ⊂ N providing a \ dom(h) is finite, and for each
c ⊂ a, h(c)/ fin is equal to Φ(c/ fin). We let Triv(Φ) denote the ideal
of sets a ⊂ N for which there is an injection ha inducing Φ on a. As
usual Φ is said to be non-trivial if Φ is a proper ideal.

Lemma 2.3. If an injection h does not induce Φ on some infinite a ⊂
dom(h), then there is an infinite c ⊂ a such that h(c)/ fin∧Φ(c) = 0
(i.e. h(c) is almost disjoint from any d in the equivalence class Φ(c)).

Proof. Assuming that h does not induce Φ on a, there is some infinite
b ⊂ a such that h(b)/ fin is not equal to Φ(b/ fin). Let bΦ ⊂ N be any
representative of Φ(b/ fin). If h(b) \ bΦ is infinite, then set c = {k ∈ b :
h(k) /∈ bΦ}. It follows that h(c) ∩ bΦ is empty, and since Φ(c/ fin) ≤
Φ(b/ fin), we have that (h(c)/ fin)∧Φ(c/ fin) = 0 as required. Otherwise
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we have that bΦ\h(b) is infinite. Choose any c ⊂ b such that Φ(c/ fin) =
(bΦ\h(b))/ fin. Then again, since h(c) ⊂ h(b), we have that (h(c)/ fin)∧
Φ(c/ fin) = 0. �

Borrowing from [11] and [13] we define two separation conditions on
an almost disjoint family.

Definition 2.4. A family A of subsets of N is σ-separated if there is a
countable family B of subsets of N such that for all distinct a, a′ ∈ A,
there is a b ∈ B such that a ⊂∗ b and a′ ⊂∗ N \ b.

Say that A is (σ, 2)-separated if there are σ-separated families A1,A2

such that A is contained in the ideal generated by A1 ∪ A2 ∪ [N]<ℵ0.

The next result is due to Velickovic [13] but we need to verify that
the poset used has property K.

Proposition 2.5. If A is an almost disjoint family of subsets of N
then there is a property K poset P = P(A) that forces A to be (σ, 2)-
separated.

Proof. Let p ∈ P if p = (〈kpi : i ≤ np〉, 〈ϕpa : a ∈ Ap〉) where

(1) 〈kpi : i ≤ np〉 is a strictly increasing sequence of integers,
(2) Ap is a finite subset of A,
(3) a ∩ a′ ⊂ kpn for distinct a, a′ ∈ Ap,
(4) ϕpa is a function from np into {0, 1, 2} such that (ϕpa)

−1(0) is an
initial segment,

(5) if 0 < ϕpa(i) = ϕpa′(i) and if a ∩ [kpi , k
p
i+1) 6= a′ ∩ [kpi , k

p
i+1), then

a ∩ a′ ⊂ kpi .

The ordering on P is that p < q providing n = np ≥ nq, k
p
i = kqi for

i ≤ nq, Ap ⊃ Aq and ϕqa ⊂ ϕpa for all a ∈ Aq.
If q ∈ P, a′ is any member of A \ Aq, n = nq + 1, and kn > kqnq is

any value such that a ∩ a′ ⊂ kn for all a ∈ Aq, then each of

(〈kqi : i < n〉_kn, {ϕqa ∪ {(nq, 1)} : a ∈ Aq} ∪ {ϕa′,2}) and

(〈kqi : i < n〉_kn, {ϕqa ∪ {(nq, 2)} : a ∈ Aq} ∪ {ϕa′,1})
are extensions of q, where ϕa′,1(i) = ϕa′,2(i) = 0 for i < nq, ϕa′,1(nq) = 1
and ϕa′,2(nq) = 2.

Suppose that {pξ : ξ ∈ ω1} is a subset of P. By thinning we may
assume that the collection {Apξ : ξ ∈ ω1} is a ∆-system with root C.
Furthermore, we can assume that there is an enumeration {aξ` : ` < m}
of Apξ such that, for each ξ, η and ` < m,

(1) n = npξ = npη , and 〈kpξi : i ≤ n〉 = 〈kpξi : i ≤ n〉,
(2) aξ` ∩ kn = aη` ∩ kn,
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(3) ϕ
a
pξ
`

= ϕapη`
,

(4) aξ` ∈ C iff aη` ∈ C.
We now prove that this (uncountable subcollection) of elements are
pairwise compatible. For any ξ, η we define a condition p ∈ P below
each of pξ and pη. We let np = npξ + 1 and choose 〈kpi : i ≤ np〉 so

that kpi = k
pξ
i for i < np and kpnp is large enough so that ∆(a, a′) < kpnp

for all distinct a, a′ ∈ Ap = Apξ ∪ Apη . We define ϕpnp(a) = 1 for all

a ∈ Apξ and ϕpnp(a
′) = 2 for all a′ ∈ Apη \ Apξ .

Let G be a filter on P satisfying that for all a ∈ A and n ∈ ω,
there is a p ∈ G such that np > n and a ∈ Ap. Let {ki : i ∈ ω} =⋃
{{kpi : i ≤ np} : p ∈ G} (listed in increasing order). For each a ∈ A,

let ϕa =
⋃
{ϕpa : p ∈ G and a ∈ Ap}. For each a ∈ Ap, the set⋃

{a ∩ [ki, ki+1) : ϕa(i) = 1} is in the family A1. Similarly the set⋃
{a ∩ [ki, ki+1) : ϕa(i) = 2} is in the family A2.
Suppose that a1, a2 are distinct members of A and that there is a

i such that 0 < e = ϕa1(i) = ϕa2(i) and ∆(a1, a2) < ki. Let c =
a1 ∩ [ki, ki+1) and define

b(e, c) =
⋃
{a ∩ [kj, kj+1) : i ≤ j , ϕa(j) = e = ϕa(i)

and a ∩ [ki, ki+1) = a1 ∩ [ki, ki+1)}.
Clearly

⋃
{a1 ∩ [kj, kj+1) : i ≤ j and ϕa1(j) = e} is contained in

b(e, c). We prove that
⋃
{a2 ∩ [kj, kj+1) : i ≤ j and ϕa2(j) = e}

is disjoint from b(c, e). To see this choose j > i so that ϕa2(j) =
e and any a3 so that ϕa3(i) = ϕa3(j) = e and c = a3 ∩ [ki, ki+1).
Choose a condition p ∈ G so that np > j and {a1, a2, a3} ⊂ Ap. Since
a3∩[ki, ki+1) 6= a2∩[ki, ki+1), condition (5) of the definition of P ensures
that ∆(a2, a3) < ki. Therefore it follows that a2 \ki is disjoint from a3,
and therefore from b(c, e).

This completes the proof. �

Corollary 2.6. PFA(S) implies that every almost disjoint family of
cardinality ℵ1 is (σ, 2)-separated.

The following well-known result is due to Velickovic [13].

Proposition 2.7 (OGA). If A is a (σ, 2)-separated family of subsets of
N and Φ is an automorphism of P(N)/ fin, then A\Triv(Φ) is countable.

We will also need the following result of Todorcevic that appeared
in [1, 3.13] as well as in [13].

Proposition 2.8. OGA implies that if {hf : f ∈ ωω} is a family of
integer-valued functions satisfying that hf ⊂∗ hg whenever f ≤∗ g, then
there is a single function h satisfying that hf ⊂∗ h for all f ∈ ωω.



PFA(S) AND AUTOMORPHISMS OF P(N)/ fin 5

An ideal is a P-ideal if it is countably upwards directed mod finite.

Lemma 2.9. PFA(S)[S] implies that Triv(Φ) is a dense P-ideal for
each automorphism Φ of P(N)/ fin.

Proof. Of course Triv(Φ) is a dense ideal by Proposition 2.7 and the
fact that OGA holds. We show that it is a P-ideal. Let {an : n ∈ ω}
be an increasing sequence of elements of Triv(Φ). For each n, let hn
induce Φ on an. For each n there is a kn so that for each j ≤ n and
m ∈ aj \ kn, hj(m) = hn(m). Evidently h′ =

⋃
{hn � an \ kn : n ∈ ω}

is a 1-to-1 function that induces Φ on each an.
By OGA, b = d = ω2 holds in the PFA(S) model and so we may

choose there a family {fγ : γ ∈ ω2} ⊂ ωω that is mod finite increasing
and cofinal in the mod finite ordering on ωω. Since forcing with S adds
no new subsets of ω and preserves cardinals, the family {fγ : γ ∈ ω2}
remains a dominating family in the PFA(S)[S] model.

For each γ ∈ ω2, let f ↑γ denote the set
⋃
{an \ fγ(n) : n ∈ ω}.

Similarly we can let f ↓γ denote N \ f ↑γ . We must show that there is a

α ∈ ω2 so that f ↑α is in Triv(Φ).
First we show that it suffices to find α ∈ ω2 so that there is a single

h that induces Φ on f ↑α ∩ f
↓
δ for all δ ∈ ω2; so assume that h is such

a function. First note that if c ⊂ f ↑α and (h(c)/ fin) ∧ Φ(c) = 0, then
there is an n ∈ ω such that c ⊂ an and {k ∈ c : h′(k) = h(k)} is finite.
Now let a = {k ∈ f ↑α : h′(k) 6= h(k)} and assume that a \ an is infinite
for each n. If there is an n such that h induces Φ on a\an then, by the
previous sentence and Lemma 2.3, h induces Φ on f ↑α \an. Therefore, if
a∩aj+1\aj is finite for all j > n, then h induces Φ on f ↑α\an. Otherwise,
let J be an infinite subset of ω such that a∩aj+1 \aj is infinite for each
j ∈ J . By a standard Hausdorff disjoint refinement argument, there is
c ⊂ a such that h(c)∩h′(c) = ∅ and c∩aj+1 \aj is infinite for all j ∈ J .
Let d ⊂ N be a representative of Φ(c) in that (d/ fin) = Φ(c). Then
d∩ h′(am+1 \ am) is almost equal h′(c∩ (am+1 \ am)) for all m ∈ ω. For

each j ∈ J , dj = h(c ∩ (aj+1 \ aj)) is almost disjoint from h(f ↓δ ∩ f ↑α)
for each δ ∈ ω2. Therefore, since we are assuming that h induces Φ
on f ↓δ ∩ f ↑α, we have that (dj/ fin) ∧ Φ(f ↓δ ∩ f ↑α) = 0 for all δ ∈ ω2. It
then follows that there is an m such that h(c∩ (aj+1 \aj)) is mod finite
contained in h′(am). This all put together means that we can choose
a value vj ∈ c ∩ (aj+1 \ aj) such that h(vj) /∈ d. We finally have our
contradiction since h({vj : j ∈ J}) is disjoint from d while there is a

δ ∈ ω2 such that {vj : j ∈ J} is almost contained in f ↓δ ∩ f ↑α, implying
that h induces Φ on {vj : j ∈ J}.
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Now we show that there is an α ∈ ω2 as above. There is a cub
C ⊂ ω2 such that for each α < δ ∈ C, if Φ is trivial on f ↑α ∩ f

↓
δ , then

Φ is trivial on f ↑α ∩ f
↓
δ for all δ ∈ ω2. Since S is ccc, there is a ground

model (PFA(S)) cub contained in C. Therefore we may assume that C
is in the PFA(S) model. For each δ ∈ C let δ+ be the minimal member
of C above δ. Since C is in the ground model, each ℵ1-sized subset of
{f ↑δ ∩ f

↓
δ+ : δ ∈ C} is (σ, 2)-separated. Therefore, by Lemma 2.7, there

is an α ∈ C such that f ↑α ∩ f
↓
α+ is in Triv(Φ). By the definition of C

it follows that f ↑α ∩ f
↓
δ is in Triv(Φ) for all δ > α. For each δ ∈ C \ α,

choose hδ that induces Φ on f ↑α ∩ f
↓
δ . For any f ∈ ωω, set hf = hfδ

where δ ∈ C \ α is minimal such that f ≤∗ fδ. By Proposition 2.8 we

have our desired h that induces Φ on f ↑α ∩ f
↓
δ for all δ ∈ ω2. �

We are ready to finish the proof of the main theorem.

Theorem 2.10. Each of PFA(S) and PFA(S)[S] imply that all auto-
morphisms of P(N)/ fin are trivial.

Proof. It suffices to prove that PFA(S)[S] implies that all automor-
phisms are trivial since a non-trivial automorphism from the ground
model would remain a non-trivial automorphism after forcing with S.
We work in the PFA(S) model. Let Φ̇ be an S-name of an automor-
phism of P(N)/ fin. We assume, for a contradiction, that some con-
dition forces that Φ̇ is not trivial. Since S is coherent, and therefore
homogeneous, we may assume that condition is the root of S.

Let I denote the ideal of subsets of N where a ∈ I providing the
root of S forces that a ∈ Triv(Φ̇). If every element of some level forces
that a ∈ Triv(Φ̇), then a is in I.

Claim 1. I is a dense P -ideal.

Proof of Claim: It is immediate from Lemma 2.7 that I is a dense
ideal. Let {an : n ∈ ω} ⊂ I. There is a δ ∈ ω1 such that, for each
s ∈ Sδ, there is an as ⊂ N such that s 
 as ∈ Triv(Φ̇) and, for each
n ∈ ω, an ⊂∗ as. Since Sδ is countable, there is an a ⊂ N such that for
all n ∈ ω and all s ∈ Sδ, an ⊂∗ a ⊂∗ as. It follows that each s ∈ Sδ
forces that a ∈ Triv(Φ̇), and so a ∈ I.

Let ≺ be any well-ordering of H(ω1) in order-type ω2. For each

a ∈ I, ḣa is the ≺-minimal S-name such that the root of S forces that
ḣa evaluates to the ≺-minimal 1-to-1 function (in V ) that induces Φ̇ on
a. Also, for each countable M ≺ H(ω3) such that {S, Φ̇, I,≺} is in M ,
let aM denote the ≺-least element of I satisfying that every element of
M ∩ I is mod finite contained in aM .



PFA(S) AND AUTOMORPHISMS OF P(N)/ fin 7

Now we define our poset P for applying PFA(S). A condition p ∈ P
will be a tuple (Mp, Cp, {spδ , c

p
δ : δ ∈ Cp}) where

(1) Mp is a finite ∈-chain of countable elementary submodels of

(H(ω3),∈, S, Φ̇, I,≺),
(2) Cp = {M ∩ ω1 : M ∈Mp},
(3) we use {Mp

δ : δ ∈ Cp} to enumerate Mp in increasing order,
(4) we use apδ to denote aMp

δ
,

(5) spδ ∈ S is not in Mp
δ and forces a value hpδ on ḣapδ ,

(6) if β < δ are in Cp, then spβ ∈M
p
δ ,

(7) cpδ is a finite subset of apδ ,
(8) cpδ ∩ a

p
β = cpβ ∩ a

p
δ for β, δ ∈ Cp,

(9) we let Lp denote the maximum element of
⋃
{cpδ : δ ∈ Cp},

(10) for β < δ are both in Cp such that spβ < spδ , there are mβ ∈
aβ ∩ Lp, and mδ ∈ aδ ∩ Lp such that hpβ(mβ) = hpδ(mδ) and

(cpβ ∪ c
p
δ) ∩ {mβ,mδ} is a singleton.

We define p < q providing Mp ⊃ Mq, s
p
δ = sqδ and cpδ ∩ Lq = cqδ for

δ ∈ Cq.
Suppose that G is a filter of conditions of P satisfying that CG =⋃
{Cp : p ∈ G} is uncountable. For each δ ∈ Cp, let cδ =

⋃
{cpδ : δ ∈

Cp}. Similarly, for each δ ∈ C, let aδ, hδ be the unique pair such that
aδ = apδ and hδ = hpδ for some p ∈ G. The family {spδ : p ∈ G, δ ∈ Cp}
is an uncountable subset of S, so there is a generic branch g such that
E = {δ ∈ C : spδ ∈ g} is uncountable. Let Y =

⋃
{cδ : δ ∈ E} and

notice that Y ∩ aδ = cδ for all δ ∈ E. The contradiction is that there
is no possible value for Φ̇(Y ) because condition (10) of the definition
of P ensures that the collection {(aδ \ hδ(cδ), hδ(cδ)) : δ ∈ E} is an
unsplittable gap.

Now we prove a general fact to assist with the proof that P × S is
proper.

Fact 1. Suppose that Φ is a non-trivial automorphism of P(N)/ fin and
I is a dense P-ideal contained in Triv(Φ). Suppose also that H = {ha :
a ∈ I} is a fixed assignment of 1-to-1 functions where ha induces Φ on
a for each a ∈ I. If H ∈ M for an elementary submodel M of H(θ)
for a sufficiently large θ and E ∈M is a cofinal subset of I and a ∈ I
contains, mod finite, every member of E ∩M , then for any integer L,
there is an e ∈ E ∩M , and a distict pair m1 ∈ a, m2 ∈ e such that
ha(m1) = he(m2) > L.

Proof of Fact 1. Set R =
⋃
{he : e ∈ E} and note that R ∈ M .

Let J = {j ∈ N : |R ∩ (N × {j})| = 1}, which is also in M . Let
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hR = R ∩ (N × J) and note that hR is a 1-to-1 function in M . Since
Φ is not trivial, hR does not induce Φ. By Lemma 2.3, there is an
infinite c ⊂ N in M such that (hR(c)/ fin) ∧ Φ(c) = 0 (it may be that
c ∩ dom(hR) = ∅). Since I is dense and E is cofinal in I, there is an
e ∈ E ∩M such that c ⊂∗ e. Note that he(c) ∩ hR(c) is finite. Since
a mod finite contains e, ha mod finite contains he. Choose m1 ∈ a ∩ c
such that L < n = ha(m1) = he(m1) /∈ hR(c). Since n 6= hR(c) and
(m1, n) ∈ R, we have that n /∈ J . Choose m2 6= m1 so that (m2, n) ∈ R.
Also choose e2 ∈ E∩M so that he2(m2) = n. This completes the proof
of the Fact.

Now we prove that P × S is proper. Let θ be a sufficiently large
regular cardinal and let P×S be an element of a countable elementary
submodelM ofH(θ). We may assume also that Φ̇ and the well-ordering
≺ are elements of M . It suffices to prove that any condition (p, s) ∈
P× S satisfying that M ∩H(ω3) = M0 ∈Mp is an (M,P× S)-generic
condition. Choose any dense open set D ∈ M (of P× S) and suppose
that some (p, s) is D and that M0 ∈ Mp. There is no loss to assume
that s satisfies that there is some elementary submodel M ′ of H(θ)
such that p ∈M ′ and s /∈M ′.

Let δ0 = M ∩ ω1, and let Cp \M = {δ0, δ1, . . . , δm−1} be listed in
increasing order. Next let {s0, . . . , sn−1} be a listing of {spi � δ0 : i <
m − 1} so that s0 = s � δ0. Let σ be the map from m to n such that
sσ(`) < s` for ` < m.

Choose an α ∈ M large enough so that Cp ∩ δ0 ⊂ α and, since S is
coherent, spi (ξ) = sp0(ξ) for all i < n − 1 and all α < ξ < δ0. Now let,
for i < n, s̄i = si � α. Let I = {` < m− 1 : s̄0 ⊕ spδ` = s0 ⊕ spδ` ⊂ s}.

Now we can select a promising subset D1 of D. Let (r, s′) ∈ D1

providing the following properties of (p, s) are shared by (r, s′):

(1) (r, s′) ∈ D and Cp ∩ α is an initial segment of Cr,
(2) M r

β = Mp
β for β ∈ Cp ∩ α,

(3) Cr \ α equals {βr` : ` < m} listed in increasing order,
(4) s′ � α = s̄0, and for each ` < m, s̄σ(`) ⊕ srβ0 ⊂ srβ` ,
(5) I = {` < m− 1 : s̄0 ⊕ srβ` ⊂ s′},
(6) for each β ∈ Cr ∩ α, crβ = cpβ,

(7) for each ` < m, crβ` = cpδ` .

Assume we are able to find (r, s′) ∈ D1 such that s′ < s and such
that there is a sequence of pairs {{m`

1,m
`
2} : ` ∈ I} such that for each

` ∈ I
(1) Lp = Lr < min{m`

1,m
`
2},

(2) max{m`
1,m

`
2} < min{m`′

1 ,m
`′
2 } for ` < `′ ∈ I
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(3) m`
1 ∈ arβ` and m`

2 ∈ a
p
δ`

, and hrβ`(m
`
1) = hpδ`(m

`
2),

then we have that (r, s′) is compatible with (p, s). Define the (potential)
condition q whereMq =Mr∪Mp, {sqβ : β ∈ Cq} = {spδ : δ ∈ Cp}∪{srβ :
β ∈ Cr}, {cqγ : γ ∈ Cp ∩ α} = {cpγ : γ ∈ Cp ∩ α}, and, for β ∈ Cq \ α
we define cqβ to be crβ ∪ (arβ ∩ {m`

1 : ` ∈ I}) if β ∈ Cr and similarly,

to be cpδ ∪ (apδ ∩ {m`
1 : ` ∈ I}) if β ∈ Cp. If we show that q ∈ P,

then it is immediate that (q, s) is below each of (r, s′) and (p, s). The
only non-trivial detail of q being in P are showing that conditions (8)
and (10) of the definition hold. Condition (8) is follows easily from the
facts that (r, s′) being in D1 ensures that r is isomorphic to p and from
the uniform definition of cqβ for each β ∈ Cq. Similarly, for β < δ as
in condition (10), the only case that needs checking is when there is
an ` < m such that β = βr` and δ = δ`. So assume that ` < m and
that srβ` < spδ` . It suffices to show that ` ∈ I because then the pair

{m`
1,m

`
2} serves as the required pair in (10). We have that s′ < s and

that s̄σ(`) ⊕ srβ` = srβ` < spδ` and so srβ` < sσ(`). But now, s̄0 ⊕ srβ` < s0

and so s̄0 ⊕ srβ` < s′. By the isomorphism condition between r and p,
this implies that s̄0 ⊕ spβ` < s, which is the condition that ` ∈ I.

Now we prove that we can find such an (r, s′) ∈ D1 and required
sequence {{m`

1,m
`
2} : ` ∈ I}. We start by noting that D1 is an element

of M . This means that the set

E = {({arβr` : ` ∈ I}, s′) : (r, s′) ∈ D1}

is also in M ∩H(ω3) = Mp
δ0

. We will treat E as an S-name a family of
I-tuples from I (in this proof we have the advantage that membership
in I does not depend on the generic). Let g be any generic branch of
S such that s ∈ g. We will use that M [g] is an elementary submodel
of the H(θ) in the forcing extension, and similarly, for ` ∈ I, Mp

δ`
[g] is

an elementary submodel of H(ω3) in the forcing extension.
Let

E[g] = { {e` : ` ∈ I} : ({e` : ` ∈ I}, s′) ∈ E and s′ ∈ g}

and we now go through the standard argument that E[g] has a “large
branching” subset. By default, members of E[g] will be ordered by
mod finite inclusion. We recursively define a sequence {E` : ` ∈ I}
(proceeding in descending order on I) so that E` ⊂ E`′ ⊂ E[g] for
` < `′ in I. For ` = max(I), let E+

` = E[g], and having defined
E`′ for ` < `′ ∈ I, let E+

` = E`′ where `′ is the minimal element of
I that is larger than `. For any ` and {ek : k ∈ I} ∈ E[g], we let
E+
` 〈{ek : k ∈ I ∩ `}〉 denote the set of e such that there is a sequence



10 A. DOW

{e′k : k ∈ I} ∈ E+
` extending {ek : k ∈ I ∩ `} such that e′k = e. The

definition of E` is simply that {ek : k ∈ I} ∈ E` providing {ek : k ∈ I}
is in E+

` and E+
` 〈{ek : k ∈ I ∩ `}〉 is a cofinal subset of I.

Now E[g] is in Mp
δ0

[g], and so, if ` = max(I), E+
` (〈{apδk : k ∈ I ∩ `}〉)

is an element of Mp
δ`

. Since apδ` is in E+
` (〈{apδk : k ∈ I ∩ `}〉) and

contains, mod finite, every member of I ∩Mp
δ`

[g] = I ∩Mp
δ`

, it follows
that {apδk : k ∈ I}) is in E`. By the same reasoning, we have that
{apδk : k ∈ I}) is in E` where ` = min(I). Certainly each E` is in M [g],
and so Emin(I) ∩M [g] is not empty.

We are now ready to recursively choose a sequence {{e`k : k ∈ I} :
` ∈ I}} ⊂ Emin(I) ∩M so that for each ` < `′ from I, e`

′

` = e``. We
let he`` denote the ≺-minimal 1-to-1 function that is forced by s̄σ(`) ⊕ s
to induce Φ̇ on e``. Let us note that if (r, s′) ∈ D1 and arβr` = e``,

then hrβr` will be equal to he`` . When we choose e`` we must ensure that

there is a pair {m`
1,m

`
2} so that m`

1 ∈ e``, m`
2 ∈ a

p
δ`

, the maximum of

Lp ∪ {m`′
1 ,m

`′
2 : `′ ∈ I ∩ `} is less than each of {m`

1,m
`
2} and so that

he``(m
`
1) = hapδ`

(m`
2).

Recall that, since S is coherent, the forcing extension V [s⊕g] is equal
to V [g] for all s ∈ S. Similarly, for each ` ∈ I, M [s̄σ(`) ⊕ g] is equal
to M [g] and so is an elementary submodel of H(θ) in V [s̄σ(`)] = V [g].

Suppose now we have chosen {e`′k : k ∈ I} ∈ Emin(L) ∩M [g] for `′ < `

in I. Let L be the maximum of Lp ∪ {m`′
1 ,m

`′
2 : `′ ∈ I ∩ `}. We

will apply Fact 1 to find the required {e`k : k ∈ `} ∈ Emin(I) ∩M and

pair {m`
1,m

`
2}. We have that Emin(L)(〈{e`

′

k : k ∈ I ∩ `}〉) is cofinal
in I. We also have that s̄σ(`) ⊕ spδ` is in the generic s̄σ(`) ⊕ g because
` ∈ I. Therefore applying Fact 1 with a = apδ` and similarly ha, we

can choose e`` ∈ Emin(L)(〈{e`
′

k : k ∈ I ∩ `}〉) ∩ M (and any witness
{e`k : k ∈ I} ∈M [g]∩Emin(I)) so that there is a required pair {m`

1,m
`
2}.

This completes the proof. �
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MR1119303

[2] Ilijas Farah, OCA and towers in P(N)/fin, Comment. Math. Univ. Carolin.
37 (1996), no. 4, 861–866. MR1440716

[3] , Analytic quotients: theory of liftings for quotients over analytic ideals
on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177, DOI
10.1090/memo/0702. MR1711328

[4] Ilijas Farah and Saharon Shelah, Trivial automorphisms, Israel J. Math. 201
(2014), no. 2, 701–728, DOI 10.1007/s11856-014-1048-5. MR3265300



PFA(S) AND AUTOMORPHISMS OF P(N)/ fin 11

[5] Kenneth Kunen and Franklin D. Tall, Between Martin’s axiom and Souslin’s
hypothesis, Fund. Math. 102 (1979), no. 3, 173–181. MR532951

[6] Walter Rudin, Note of correction, Duke Math. J. 23 (1956), 633. MR0080903
[7] Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940,

Springer-Verlag, Berlin-New York, 1982. MR675955
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[10] Stevo Todorčević, A note on the proper forcing axiom, Axiomatic set theory
(Boulder, Colo., 1983), Contemp. Math., vol. 31, Amer. Math. Soc., Provi-
dence, RI, 1984, pp. 209–218, DOI 10.1090/conm/031/763902, (to appear in
print). MR763902

[11] , Analytic gaps, Fund. Math. 150 (1996), no. 1, 55–66. MR1387957
[12] , Forcing with a coherent Souslin tree. Canad. J. Math., to appear.
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