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Abstract

This note provides a correct proof of the result claimed by the
second author that locally compact normal spaces are collectionwise
Hausdorff in certain models obtained by forcing with a coherent Souslin
tree. Together with other improvements, this enables the consistent
characterization of locally compact hereditarily paracompact spaces as
those locally compact, hereditarily normal spaces that do not include
a copy of wi.

1 Introduction

The space of countable ordinals is locally compact, normal, but not para-
compact. The question of what additional conditions make a locally compact
normal space paracompact has a long history. At least 45 years ago, it was
recognized that subparacompactness plus collectionwise Hausdorffness would
do (see e.g. [35]), as would perfect normality plus metacompactness [2]. Z.
Balogh proved a variety of results under MA,, [3] and Axiom R [4], and
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was the first to realize the importance of not including a perfect pre-image of
wy (equivalently, the one-point compactification being countably tight [3]).
However, he assumed collectionwise Hausdorffness in order to obtain para-
compactness. A breakthrough came with S. Watson’s proof that:

Proposition 1.1 [46]. V = L implies locally compact normal spaces are col-
lectionwise Hausdorff, and hence locally compact normal metacompact spaces
are paracompact.

Watson’s proof crucially involved the idea of character reduction: if one
wants to separate a closed discrete subspace of size k, k regular, in a locally
compact normal space, it suffices to separate x compact sets, each with an
outer base of size < k.

Definition. An outer base for a set K C X is a collection B of open sets
ncluding K such that each open set including K includes a member of B.

The use of V' = L was to get that normal spaces of character < N; are
collectionwise Hausdorff [16], and variations on that theme.

It was known that locally compact normal non-collectionwise Hausdorff
spaces could be constructed from MA,,, indeed from the existence of a ()-set
[35], so it was a big surprise when G. Gruenhage and P. Koszmider proved
that:

Proposition 1.2 [19]. MA,, implies locally compact, normal, metacompact
spaces are Wy -collectionwise Hausdorff and (hence) paracompact.

The next result involving iteration axioms and a positive “normal implies
collectionwise Hausdorff” type of result was:

Proposition 1.3 [27]. Let S be a coherent Souslin tree (obtainable from <
or a Cohen real). Force MA,,(S), i.e. MA,, for countable chain condition
posets preserving S. Then force with S. In the resulting model, there are no
first countable L-spaces, no compact first countable S-spaces, and separable
normal first countable spaces are collectionwise Hausdorff.

The first two statements are consequences of MA,,, [34]; the last of V = L,
indeed of 2% < 2% Larson and Todorcevic used this combination to solve
Katétov’s problem. This idea of combining consequences of a iteration axiom
with “normal implies collectionwise Hausdorff” consequences of V' = L was
exploited in [25] in order to prove the consistency, modulo a supercompact
cardinal, of every locally compact perfectly normal space is paracompact. The
large cardinal was later removed, so that:



Theorem 1.4 [11]. If ZFC is consistent, then so is ZFC plus every locally
compact perfectly normal space is paracompact.

In the models of [25] and [11], every first countable normal space is col-
lectionwise Hausdorff. This is achieved in two stages. The novel one is:

Lemma 1.5 [25]. Force with a Souslin tree. Then normal first countable
spaces are Ny-collectionwise Hausdorff.

This is obtained by showing that if a normal first countable space is not
N;-collectionwise Hausdorff, a generic branch of the Souslin tree induces a
generic partition of the unseparated closed discrete subspace which cannot
be “normalized”, i.e. there do not exist disjoint open sets about the two
halves of the partition. The argument is a blend of the two usual methods of
proving “normal implies N;-collectionwise Hausdorft” results, namely those
of adjoining Cohen subsets of w; by countably closed forcing [35], [36] and
using < for stationary systems on wy, a strengthening of < that holds in L
[16]. It is noteworthy that:

Proposition 1.6 [35], [16]. Either force to add Ry Cohen subsets of wy, or
assume <y for stationary subsets of wy. Then normal spaces of character < X,
are Ny -collectionwise Hausdorff.

Once one has normal first countable spaces are N;-collectionwise Haus-
dorff| it is easy to obtain full collectionwise Hausdorffness by starting with L
as the ground model and following [16]. However, if a supercompact cardinal
is involved, instead of L we need to follow the method of [25], based on [36].
Namely, first make the supercompact indestructible under countably closed
forcing [28] and then perform an Easton extension, adding x* Cohen subsets
of each regular x, before forcing with the Souslin tree.

In order to extend the theorems about locally compact normal spaces
being paracompact beyond the realm of first countability, one first needs to
get that locally compact normal spaces are collectionwise Hausdorff. In [38],
the second author claimed to have done so, in the model of [25]. The key was
to force to expand a closed discrete subspace in a locally compact normal
space to a discrete collection of compact sets with countable outer bases and
then apply the methods of [25]. Unfortunately the expansion argument was
flawed. A corrected argument is presented below, but at the cost of using a
stronger iteration axiom (but not a larger large cardinal).

With the conclusion of [38] restored, [37], [26], and [39] are re-instated.
We shall then proceed to improve the results of the two latter ones.



2 PFA(S)[S] and the role of w;

Definition. PFA(S) is the Proper Forcing Aziom (PFA) restricted to those
posets that preserve the (Souslinity of the) coherent Souslin tree S. For the
definition of coherence, see e.g. [43, Chapter 5]. For a proof that {» implies
the existence of a coherent Souslin tree, see [23].

PFA(S)[S] implies ¢ is shorthand for whenever one forces with a coher-
ent Souslin tree S over a model of PFA(S), ¢ holds. ¢ holds in a model
of form PFA(S)[S] is shorthand for there is a coherent Souslin tree S and
a model of PFA(S) such that when one forces with S over that model, ¢ holds.

For discussion of PFA(S)[S], see [9], [45], [25], [26], [37], [39], [15], [41].
The following results appear in [26] and [39], respectively.

Theorem 2.1. There is a model of form PFA(S)[S] in which a locally com-
pact, hereditarily normal space is hereditarily paracompact if and only if it
does not include a perfect pre-image of wy.

Theorem 2.2. There is a model of form PFA(S)[S] in which a locally com-
pact normal space is paracompact and countably tight iof and only if its sepa-
rable closed subspaces are Lindelof and it does not include a perfect pre-image
of wy.

Definition. PPI is the assertion that every first countable perfect pre-image
of wy includes a copy of wi.

Lemma 2.3 [10]. PFA(S)[S] implies PPI.

PPI was originally proved from PFA in [5]. Using PPI, we are able to
weaken “perfect pre-image” to “copy” in the improved version of the first
theorem, but provably cannot in the second theorem.

Theorem 2.4. There is a model of form PFA(S)[S] in which a locally com-
pact, hereditarily normal space is hereditarily paracompact if and only if it
does not include a copy of wy.

Example 1. There is a locally compact space X (indeed a perfect pre-image
of wy ) which is normal, does not include a copy of wy, in which all separable
closed subspaces are compact, but X is not paracompact.



It is clear that to establish Theorem 2.4, it suffices to use 2.1 and apply
PPI after proving:

Theorem 2.5. PFA(S)[S] implies a hereditarily normal perfect pre-image of
wy includes a first countable perfect pre-image of w;.

This follows from:

Lemma 2.6. Let X be a perfect pre-image of wi, and suppose separable sub-
spaces of X are Lindelof. Then X includes a first countable perfect pre-image

of wy.
and

Lemma 2.7 [45, 39]. PFA(S)[S] implies compact, separable, hereditarily nor-
mal spaces are hereditarily Lindelof.

Here is the proof of Lemma 2.6.

Proof. Let f : X — wy, perfect and onto. Then X is locally compact,
countably compact, but not compact. There is a closed Y C X such that
f"= fIY is perfect, irreducible, and maps Y onto wy. SoY = U, [~ ({5 :
S < a}). Each D, = f~'({8 : B < a}) is clopen and hence countably
compact. It suffices to show D, is hereditarily Lindelof, for then points are
Gs and D, is first countable. But then Y is first countable, since D, is
open. To show D,, is hereditarily Lindelof, we need only show it is separable.
fa = ['|Dq is irreducible, for if there were a proper closed subset A of D,, such
that f'(A) = f'(Da), then f would map AU(Y — D,) onto wy, contradicting
f’s irreducibility. But

Lemma 2.8 [32, Section 6.5]. If f is a closed irreducible map of X onto Y
and E is dense in'Y, then f~Y(E) is dense in X.

Thus D, is separable. O

Let us construct the example that constrains the hoped-for improvement
of Theorem 2.2. Consider a stationary, co-stationary subset E of w; and its
Stone-Cech extension SE. The identity map ¢ embeds E into the compact
space wy + 1. ¢ extends to ¢ mapping SF onto w; + 1; we claim that 7 maps
only one element — call it 2z — of SE to the point w;. The reason is that
every real-valued continuous function on E is eventually constant. If there
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were another such point, say 2/, let f be a continuous real-valued function
sending z to 0 and 2’ to 1. Let U,V be open sets about the point w; such that
M U) € f71([0,4]) and i7H (V) € f71((5,1]). Then i7Y(U)Ni Y (V) =0,
but U NV N E is cocountable in E, contradiction.

Our space X will be SE — {z}. |X maps X onto w;; we claim this
map is perfect. By 3.7.16(iii) of Engelking [13], it suffices to show that
(X — X] = Pwy —w;. But fw; =w; + 1 and X = BE, so this just says
i(z) = wy, which we have.

If H, K are disjoint closed subsets of X, then their closures in SF have
at most z in common. Thus their images i[H| and i[K| cannot overlap in a
subspace with a point of E in its closure. Since FE is stationary, their overlap
is countable. Then at least one of them is bounded, and hence compact. it
is then easy to pull back disjoint open sets to establish normality.

For any perfect pre-image of wy, it is easy to see that separable closed
subspaces are compact, since they are included in a pre-image of an initial
closed segment of wy.

It remains to show that X does not include a copy W of w;. A standard
SN argument shows that no point in X — F is the limit of a convergent
sequence, so the set C' of all limits of convergent sequences from W is a
subset of E. But C is homeomorphic to w;, so cannot be included in a
co-stationary F.

There is, however, a satisfactory improvement of Theorem 2.2:

Theorem 2.9. There is a model of form PFA(S)[S] in which a locally com-
pact, normal, countably tight space is paracompact if and only if its separable
closed subspaces are Lindelof, and it does not include a copy of wy.

This follows from:

Theorem 2.10 [11]. PFA(S)[S] implies a countably tight, perfect pre-image
of wy ncludes a copy of wy.

The proof of Theorem 2.9 is essentially the same as the proof in [39] of
our Theorem 2.2.

Countably tight, hereditarily normal perfect pre-images of w; are rather
special:

Definition. Suppose m: X — wy. We say Y C X is unbounded if 7(Y) is
unbounded.



Theorem 2.11. PFA(S)[S]| implies that a countably tight, hereditarily nor-
mal, perfect pre-image of wy is the union of a paracompact space with a finite
number of disjoint unbounded copies of wy.

Proof. By 2.10, the perfect pre-image X includes a copy, Wi, of wy. If W)
were bounded, then for some o, W; C 771([0, a]). But 77([0, o) is compact,
and W, — being a countably compact subspace of a countably tight space — is
closed in X and hence in 77([0, o). But then W, is compact, contradiction.
Since perfect pre-images of locally compact spaces are locally compact, X is
locally compact. Since Wj is closed, X — Wj is open and so is also locally
compact. If it is paracompact, we are done; if not, apply 2.10 to get a copy
W5 of wy included in X —W;. Continue. The process must end at some finite
stage, since:

Lemma 2.12 [31, 3.6]. Let X be a T5 space, m : X — wy continuous,
7 ({a}) countably compact for all « € S, a stationary subset of wy. Then
X cannot include an infinite disjoint family of closed, countably compact
subspaces each with unbounded range.

Note that the paracompact subspace is the topological sum of < N; o-
compact subspaces. m

An early version of [10] used the axioms Y~ (defined in Section 5), PPI,
and the N;-collectionwise Hausdorfiness of first countable normal spaces, as
well as 2.11 to obtain “countably compact, hereditarily normal manifolds of
dimension > 1 are metrizable” without the Pgy axiom used in [10] to get the
stronger assertion in which “countably compact” is omitted.

Both of the conditions for paracompactness in 2.9 are necessary:

Example 2. w; is locally compact, normal, first countable, its separable sub-
spaces are countable, but it 1s not paracompact.

Example 3. Van Douwen’s “honest example” [7] is locally compact, normal,
first countable, separable, does not include a perfect pre-image of wy (because
it has a Gs-diagonal), but is not paracompact.

3 Strengthenings of PFA(S)[S9]

In addition to “front-loading” a PFA(S)[S] model in order to get full
collectionwise Hausdorffness, it has also been useful to employ strengthenings
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of PFA(S) so as to obtain more reflection. E.g. in [26] and [39], Axiom R
is employed.

Definition. C' C [X]|<" is tight if whenever {C, : a < d} is an increasing
sequence from C and w < cf(0) < k, | J{Cs :a < p} € C.

Axiom R If § C [X]<“! is stationary and C' C [X]<*? is tight and un-
bounded, then there is a Y € C such that P(Y) NS is stationary
in [Y]<er,

Axiom R (due to Fleissner [17]) was obtained by using what is called
PFAT*(S) in [26], before forcing with S [26]. PFATT(S) holds if PFA(S)
is forced in the usual Laver-diamond way. Here we shall use a conceptually
simple principle, MM(SS), which is forced in a more complicated way, but does
not require a larger cardinal. The axiom Martin’s Mazimum was introduced
in [18].

Definition. Let P be a partial order such that forcing with P preserves sta-
tionary subsets of wy. Let D be a collection of Ny dense subsets of P. Mar-
tin’s Maximum (MM) asserts that for each such D, there is a D-generic
filter included in P.

Theorem 3.1 [18]. Assume there is a supercompact cardinal. Then there is
a revised countable support iteration establishing MM.

MM(S) is defined analogously to PFA(S); Miyamoto [30] proved that
there is a “nice” iteration establishing MM(S) but preserving S. One can
then define MM(S)[S] analogously to PFA(S)[S].

In order to obtain a model of PFA(S)[S] in which Theorem 2.4 holds, we
need to improve the model of [26] so as to not only have Axiom R but also:

LCN(R;) Every locally compact normal space is Nj-collectionwise
Hausdorft.
We shall prove that MM(S) implies 2™ = N, and:

NSSAT NS, (the non-stationary ideal on wy) is Ry-saturated.



SCC Strong Chang Conjecture. Let A > 2% be a regular cardinal.
Let H(X) be the collection of hereditarily < A sets. Let M* be
an expansion of (Hy, €). Let N < M* (i.e. N is an elementary
submodel of M*) be countable. Then there is an N’ such that
N < N’ < M*, N’ﬂwl = Nﬂwl, and |Nﬂ(.U2| = Nl.

With these, we can modify the proof in [25] that forcing with a Souslin
tree makes first countable normal spaces Ni-collectionwise Hausdorff to ob-
tain locally compact normal spaces are Ni-collectionwise Hausdorff, and then,
if we wish, front-load the model as in [25] to obtain full collectionwise Haus-
dorffness, using the character reduction method of [46]. More precisely, the
crucial new step is:

Theorem 3.2. Suppose there is a model in which there is a Souslin tree S
and in which NSSAT, SCC, and 2™ = N, hold. Then S forces that locally

compact normal spaces are Ry-collectionwise Hausdorff.

It will be convenient to consider the following intermediate proposition,
which implies the three things that we want:

SRP Strong Reflection Principle [44]. Suppose A > Ny and 3 C P, () and
that for each stationary T' C wy,

{c€3d:onuw €T}

is stationary in P,,(A). Then for all X C X of cardinality N;, there
exists Y C )\ such that:

(a) X CY and Y| = Ny;

(b) 3NP,, (Y) contains a set which is closed unbounded in P, (Y).

With regard to SCC, Shelah [33, X11.2.2, XII.2.5] proves that:

Lemma 3.3. If there is a semi-proper forcing P changing the cofinality of
Ny to Ny, then SCC holds.

There are various versions of Namba forcing, e.g. two in [33] and one in
[24].  All of these change the cofinality of Ny to Ny. Larson states in [24,
p.142] that his version of Namba forcing preserves stationary subsets of w;.

9



In [18], it is shown that a principle, SR, implies any forcing that preserves
stationary subsets of wy is semi-proper. SR is a consequence of MM [18].
SRP is stronger than SR and so:

Lemma 3.4. SRP implies SCC.

Lemma 3.5 [30]. MM(SS) implies SRP.

Lemma 3.6 [44, quoted in 45, p.40]. SRP implies NSSAT and 2% < N,.
For the proof of 2.4 we should also remark that:

Lemma 3.7. SRP implies Axiom R.

Proof. We use an equivalent formulation of SRP due to Feng and Jech [14].

SRP For every cardinal x and every S C [k]“, for every regular 6 > &, there
is a continuous elementary chain {N, : a € w;} (with Ny containing
some given element of H(6), e.g. S) such that for all o, N, Nk € S
if and only if there is a countable M < H(f) such that N, C M,
MNw; =N,Nwy,and M Nk €S.

Let § and C be as in Axiom R. Choose 6 sufficiently large so that
S,C € H(A) and so that 0™ = 0. Let {S,C} € Ny and let {N, : a € w;}
be as in SRP. By induction on o € wy, choose Y, € C'N N,y1 so that
U(CNN,) CY,. Then {Y, : « € w1} is an increasing chain in C. Therefore
Y = Upew, (Na Nk) is in C.

St ={M < H@) : MNk € S} is a stationary subset of [H(6)]“.
This is proved in the same way as 1) of Claim 1.12 on page 196 of [33].
Since {N, : a € wy} is an element of H(#), there is an M € S such that
{Ny : @ € w1} € M. Let MNw; =4d. Obviously M Nk € S, and, by
continuity, Ns € M and M Nw; = Ns Nw;. It then follows from SRP that
Ns €8S.

This actually proves that {a € wy : N, Nk € S} is a stationary subset of
w1, because we could have put any cub of w; as an element of M. Now assume
that 3 C [Y]% is a cub of [Y]¥. Choose a strictly increasing ¢ : w; — wy such
that for each «, there is a Z, € 3 such that N, Nk C Z, C Ny(q). If limit
J satisfies that g(a) < 0 for all @ < §, then we have that Ns Nk € 3. This
finishes the proof that S N [Y]“ is stationary. O
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Theorem 3.8. Suppose we have a model with a Souslin tree S in which
Axiom R holds. Then, after forcing with S, Axiom R still holds.

Proof. This is an improvement over [26], which required a stronger axiom,
Axiom R**, holding in the model. We will use t.u.b. as an abbreviation for
tight unbounded. We must consider two S-names: C and X where C is forced
to be a t.u.b. subset of [k]*! and X is forced to be a stationary subset of
[k]“. Let us assume that some sy € S forces there is no Y in C such that
X N[Y] is stationary. (It would make the discussion below easier if we just
assumed that sy was the root of S — which one can certainly immediately do
if S is a coherent Souslin tree.)

We first show that C' contains a t.u.b. C' from the ground model. Simply
put Y € C if every s € S forces that Y € C. It is clear that C is closed under
increasing wi-chains. Thus we just have to show that it is unbounded. Let
us enumerate S as {s, : @ € wy}. Fix any Y; € [k]*'. By recursion choose
an increasing chain {Y, : @ € w;} so that for each o, |[J{Ys: 8 < a} C Y,
and there is an extension sg of s, forcing that Y,.; € C. This we may
do, since s, forces that C is unbounded. Now let Y be the union of the
chain {Y, : @ € wy}. Note that for each s € S and each 5 € wy, there is
an § < « such that s, is an extension of s. It follows that s forces that
C N{Y, : @ € w} is uncountable, hence s IF Y € C.

Now we let X be the set of z € [k]* such that there is some s € S
extending sy with s Iz € X. It is clear that X is a stationary subset of [k]*
because s forces that X meets every cub. Now apply Axiom R to choose
Y € C so that X N[Y]” is a stationary subset of Y.

Now we obtain a contradiction (and thus a proof) by showing that there
is an extension s € S of sy that forces that X N [Y]“ is stationary. Let
{Yo : @ € w1} be an enumeration of Y. Let £ be the set of § € wy such that
s = {ys : @ € §} € X. Notice that {{y, : @ € 6} :0 € w;} is a cub in [Y]*.
Thus it follows that £ is stationary. In fact, if £ is any stationary subset of
&, then &' is also a stationary subset of [Y]“.

For each & € & choose s5 € S above sg so that s; IF 25 € X (as per the
definition of X). Now we have a name £ = {(z5,55) : d € wi}. We prove
that there is some s € S above sq that forces that £ is stationary. Thus such
an s forces that X N[Y]“ is stationary as required.

Let sg be on level oy of S. There is a v > ag so that each member of S,
decides if £ is stationary. Also, for each § € S, that forces £ is not stationary,
there is a cub C; of wy that 5 forces is disjoint from &. Choose any ¢ in the
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intersection of those countably many cubs that is also in £. Clearly if 5 € S,
is compatible with ss, then C; did not exist since s N ss would force that
§ € C; N E. This completes the proof, since that element § is above s, and
forces that X N[Y]“ is stationary. O

Corollary 3.9. MM(S5)[S] implies Axiom R.
We next need:
Lemma 3.10 (P. Larson). Suppose
(1) NSSAT, and

(2) for sufficiently large 0 and stationary E C wy, for any X € H(0), there
is a Chang model M with M Nwy € E, X € M and |M Nws| = N;.

Then if {As @ a < we} are stationary subsets of wi, M Nw; = 0 is in
uncountably many A, € M.

Proof. Tt is well known that NS, is Ny-complete, since the diagonal union of
N; non-stationary subsets of wy is non-stationary. It follows that P(w;)/NS,,
is a complete Boolean algebra, because (1) says it satisfies the Ny-chain con-
dition. Since it is complete, for each a < w, there is a stationary B, which
is the sup of {Ag: § € (o,wq)}. Let E be the inf of the family of B,’s. By
saturation, F is really the inf of an N;-sized family, and so is itself stationary.
Given any a € wy, we can find an () > a such that the diagonal union of
{As : B € (a,n())} includes E, mod NS,,. It follows that there is a cub
C' C wy such that for each o € C, there is a subset of {As : 8 € (a,a™)} of
cardinality N; with diagonal union including E, mod NS, , where o denotes
the next element of C' after a.

Now let M be an elementary submodel of a suitable H(0), with (A, :
a<wy), B,and C € M and 6 = M Nwy € E, |M Nwy| =Ry, We claim § is
an element of uncountably many A,,«a € M.

Since the cub C' divides ws into N, disjoint intervals, CNM divides wy N M
into N; disjoint intervals. Choose any one of these intervals J. There is a
family F; = {F, : v <w;} in M consisting of A,’s indexed in the interval J,
with diagonal union including E, mod NS,,. Then there is a cub D; in M
disjoint from £\ VF;. D;N M is unbounded in M, so § = M Nw; € Dy, so
d ¢ E\VF;. Then § € VF; s0d € F, for some v € M Nw; and therefore §
is in some A, with £ € J. m
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We shall finish the proof that MM(S)[S] implies LCIN(X;) in Section 4,
but first let us note another advantage of stating MM(S)[S] as a hypothesis
is that we can often avoid front-loading to get collectionwise Hausdorffness,
since Axiom R provides enough reflection. For example,

Theorem 3.11. MM(S)[S]| implies a locally compact, hereditarily normal
space s hereditarily paracompact if and only if it does not include a copy of
wi.

Proof. As usual, we may assume the space does not include a perfect pre-
image of w;. The proof for that case in [39] uses P-ideal Dichotomy, Y.,
N;-collectionwise Hausdorffness, and Axiom R. We can get all of these
from MM(S)[S]. (Todorcevic [45] proved that PFA(S)[S] implies P-ideal
Dichotomy; a proof was published in [9].) O

Similar considerations enable us to prove:

Theorem 3.12. MM(SS)[S] implies a locally compact, normal, countably tight
space 1s paracompact if and only if its separable closed subspaces are Lindeldf,
and it does not include a copy of wy.

We thank Paul Larson for Lemma 3.10 and several discussions concerning
the material in this section. Next, we need to do some topology.

4 Getting locally compact normal spaces col-
lectionwise Hausdorff

Lemma 4.1. Let X be a locally compact normal space and suppose Y 1is a
closed discrete subspace of X of size Wy. Then there is a locally compact
normal space X' with a closed discrete subspace Y' of size Ny, such that if
Y’ is separated in X', then Y is separated in X, but each point in Y’ has
character < Nj.

Proof. By Watson’s character reduction technique [46], there is a discrete
collection of compact subsets of X, K = {K, : y € Y}, such that y € K,
and each K, has character < N;. Let X’ be the quotient of X obtained
by collapsing each K, to a point y'. This collapse is a perfect map, so
preserves normality and local compactness, and it is clear that {y' : ¢y € Y}
is separated if and only if {K, : y € Y} is separated, and that Y is separated
if {K,:yeY}is. [
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Lemma 4.2. Suppose X is a locally compact normal space of Lindelof degree
Ny with an uncountable closed discrete subspace. Then there is a continuous
image of X of weight Wy enjoying the same properties.

Proof. Let U be an open cover of X of size N; with each member of U a
cozero set with compact closure. Without loss of generality, assume that
for each x € X there is a U € U such that x € U and U meets at most
one element of a given closed discrete set D of size N;. Also without loss of
generality, assume U is closed under finite intersections. For each U € U,
let fy : X — [0,1] with U = f;*((0,1]). Define an equivalence relation
on X by letting zo~x; if fu(xg) = fu(zy) for all U € U. Let X/~ be
the quotient set, with = : X — X/~ the projection. Topologize X/ ~
by taking as base all sets of form 7(U), U € U. Then X/~ is T3, and

of weight < R;. To see the former, consider X as embedded in [0, 1]¢" (%)

by e(z) = (f(z))jecx)- Let p : [0,1]°X) — [0,1)]{f:U4} be given by
(#¢) pece(x) = (@, )ueu, i.e. p projects onto only those coordinates in C*(X)
which are fi’s. Then X/~ = poe(X).

The projection map 7 is closed, for let F© C X be closed and suppose
y € w[F|. Claim y € n[F]. y € w[U] for some U € U; note 7~} (n[U]) = U
for if w(z) € n[U], x ~ ¢ for some zy € U. Then fy(z) = fv(xo) for every
VeU. But U= f;'((0,1]). Thus fy(z) = fu(xo) € (0,1], which implies

r€U. SoU =71 (n[U]) is compact. Suppose y & 7[F]. Then y ¢ r[FNU],
which is compact. Then 7[U]\ 7[F' N U] is a neighborhood of y disjoint from
7[F].

Since 7 is closed and X is normal, X/~ is normal. It is clear that w[D)]

is closed discrete. By continuity, 7[U] C 7[U]; 7[U] is a closed set including

7[U], so including 7[U], so w|[U]| = w[U], so X/~ is covered by open sets with
compact closures, so it is locally compact. O]

Lemma 4.3. In any model obtained by forcing with a Souslin tree S, any
locally compact normal space with a dense Lindelof subspace has countable
extent.

Proof. Suppose Xj is a locally compact normal space with an uncountable
closed discrete subspace, which we may conveniently label as w;, and a dense
Lindelof subspace L. Via normality, we can find a closed subspace X7 with w;
in its interior which is covered by N;-many open sets with compact closures.
Without loss of generality, we may assume X; = int X;. L is dense in int X7,
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so L N (int X) is dense in X;. Then LNint X; N X, is a dense Lindelof
subspace of X;.

Thus, without loss of generality, we may as well assume our original space
Xop has a cover by Nj-many open sets, each with compact closure. Without
loss of generality, we may assume each is a cozero set and indeed is o-compact.
By Lemma 4.2, there is a continuous image of Xy — call it X — which is
also locally compact, normal, has an uncountable closed discrete subspace,
and has weight N;. Since both density and Lindel6fness are preserved by
continuous functions, X also has a dense Lindelof subspace. Thus it suffices
to find a contradiction for the special case in which the weight of our space
is Ny.

For 0 € wy and a cub C' C wy, let 67(C') denote the minimum element
of C' greater than §. Without loss of generality, we may assume our cubs
only consist of limit ordinals. For a cub C, we use Fix(C) to denote the set
{6 € C : order-type(C' N §) = d}. Let Ss be the dth level of the Souslin tree.

As usual, we work in the ground model and fix names B = {B, : & € w; }
for a base of X consisting of open sets with compact closures. It is convenient
to assume that {B, : n € w} is forced to have dense union. Again, we let w;
label a closed discrete subspace and let {U(a, &) : € € wi} be a subset of B
forced to be a local base at . Without loss of generality, assume each B,
is disjoint from the closed discrete set w;. Fix a cub Cj such that for each
§ € Cy and each s € Sy, s decides all equations of the form B, N B/g = (), for
a, f < §. Also assume that for each s € S5 (§ € Cp) and each &, 5 € 0, there
is an o € 0 such that s forces that U(€, §) = Ba.

It is convenient to assume that S is w-branching (specifying any infinite
maximal antichain above each element would serve the same purpose). We
can use C; = Fix(Cy) to define a partition f of wy so that for each £ € w;
and each s € Sg+(c,), s7j forces that f(é“) = j. Now we choose two (names

of) functions h; and hy witnessing normality as follows:
(1) For each j € w and each i € 2, let W; =U{U(&, hs(€) - €€ f1()}
(2) the {I/le : j € w} form a discrete family,
(3) the closure of W7 is included in W}.

Choose any countable elementary submodel M with all the above as mem-
bers of M, such that (5 = M Nwy is an element of C]. We know that there is
a name of an integer Js satisfying that it is forced that U(d,0) N W; is empty

15



for all j > J;. Choose any s € S of height at least 6*(Cy) that decides a

value J for Js. Let 5 = s i 01 (C1). Notice that § decides the truth value

of the equation “U/(s, 0) N By = (", for all @ € M. For each n,j € w, s

and hence s | § forces that the closure of I/V2 N B, is included in W1 By

elementarity and compactness, this implies there is a finite F]n C (5 such

that s | ¢ forces that I/V2 NB,CU{B, ne€F,}C I/V1 But now 5 forces
U6,0) N (U{B, :n € ],n}) is empty for all n and all j > J.

On the other hand, fix any 7 > J and consider what 57 j is forcing. This
forces that f(J) = j and that § € W?, and so § is in the closure of the
union of the sequence {U(6,0) N (U{B, : n € Fjn}) : n € w}. This is a
contradiction. O

Corollary 4.4. In any model obtained by forcing with a Souslin tree, if X is
locally compact normal, D is a closed discrete subspace of X of size Ry and
{Uqs : v € wy} are open sets with compact closures, then for any countable

T Cwy, H{Us:a €T} N D is countable.

Proof. |J{Us : a € T} is dense in |J{U, : a € T}, which is locally compact
normal. O

Getting back to the proof of 3.2, let us assume we are in a model of
MM(S) and that we have an S-name X for a locally compact normal space,
with a closed discrete subspace labeled as wy, with each of its points having
character ¥;. Let us note that it follows from character reduction and Lemma
1.5 that if there is a discrete expansion of w; into compact Gy’s, then w; will
have a separation. In fact, even more, it is shown in [38, Theorem 12|, that
if wy is forced to have an expansion by compact Gy’s that is o-discrete, then
wy will be separated. Since our proof is by contradiction, we will henceforth
assume that it is forced (by the root of S) that there is no expansion of w;
into a o-discrete family of compact Gy’s.

For each £, a € wy, let U(€,a) be the name of the ath neighbourhood
from a local base for & with U (&,0) forced to have compact closure. Corollary
4.4, and the fact that S is ccc, ensure that for each § € w, every element
of S forces that wy NJ{U(£,0) : € < 6} is bounded by ~ for some v € w;.
Therefore there is a cub Cj such that without loss of generality, we can
assume that each of the following is forced by each element of S:

1. for each 6 € Cy, wiN J{U(£,0) : € < 6} is included in 6+(Cy),
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2. forall B # & inwy, B¢ U(E,0),
3. for all £, € wy U(E, o) C U(£,0) and has compact closure,

4. for each limit § € wy, the sequence {U(S, a) :a < 0} is a regular filter,
i.e. each finite intersection of these includes the closure of another.

For an S-name h of a function from w; to wy, let U(&, h) stand for
U(f,h(é’)) For limit ¢, let 2(5,5) denote the S-name of the compact Gy
equal to ({U(&, ) : a < 6}. For a cub C and ordinal &, we also use Z(¢,C)
as an abbreviation for Z(&,£4(C)).

Fix an enumeration {C, : v € wy} for a base for the cubs on w; (each
containing only limit ordinals), chosen so that Cj is as above and for 0 <
A € wy, Cy C Fix(Cp) and Cy \ Fix(C,) is countable for all 0 < v < A. We
can do this by taking diagonal intersections, since SRP implies 2™ = N,.

For each § € Cy, let B(6) = 6+(Cy). Since Z(£,C.) C U(E,C,) for all
¢ ew forall § € Cy, B(5) <d7(C,), and so it is forced that:

{2, 0) - ¢ <6y nwn € BGS).

We can also assume that for all cubs C' C (Y, there is an S-name A, that
is forced to be a stationary subset of Fix(C') satisfying:

(Vs € S)(V) s IF (5 €A = [FacsB80) ac| J{2(C):¢<d} > .

The reason we can make this assumption is that we are assuming there
is no o-discrete expansion of w; by compact Gs’s. If, in the extension, the

set A={0:U{Z(£,C): €& <8} Z &} were not stationary, then there would
be a A € wy such that AN C) is empty. Since the cub C) divides w; into
countable pieces, we see that we can expand the points in wq into a o-discrete
collection of compact Gjy’s.

For each A\ € ws, let A, denote the name of the stationary set just de-
scribed. For any B C w;, we will write

ae (Z(6,0): <6

to mean that « is a limit point of that sequence of sets.
Fix any function e : S — w with the property that for all 6 € wi, e [ S5 is
one-to-one. For an ordinal v € wy, we use f, for the S-name of the function
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from w; into w given by the property that each s € Se+(c,) forces that

f(€) = e(s). Thus f, partitions w; into a discrete collection of countably
many closed subsets. Then let {IW(v,n) : n € w} be a discrete collection of
open sets separating the f;l(n)’s. Fix n € w. By normality, there is an open

V,, such that S forces f;l(n) CV,CV,C W(y,n). For each ¢ € f,y_l(n),
there is an a¢ € w; such that S forces U({,a¢) € V,. Let (u(7y) € wa be
such that for § € f- '(n),§ < p € C¢,(y) implies ag < p. Then S forces
{Z(&,Cy) 1 € € f71(n)} € Vi We then can find a C¢(,) included in each

Ct, () such that for every n € w, S forces {Z(¢,C¢y) : € € fv_l(n)} C V.
Thus

{2 Cue) - € € 1)} S W (7,m).

Then we can get a ((y) that works for all n.

By recursion on vy € wq, we can choose ((y) > 7 as above, so that the
sequence {((7y) : v € wa} is strictly increasing. For each ~, we have the S-
name A, as above. It is immediate that A, = {0 : (3s € S)s IF § € A}
is a stationary set. In other words, 6 € A, implies there is some s € S and
n € [6, B(8)] such that s -1 € (Z(£,Cry) : € € 5).

By SCC and 3.10 we may assume there is an elementary submodel M of
some (H(8),{(7,{(7),Ay) : v € wa}), with M Nwy =68 < wq, [MNwy| =Ry,
and an uncountable {7, : @ € w1} € M Nws, so that § € A, for all o € wy.

For each a € w; choose s, € S, n, € [0,5(9)] such that s, IF 7, €
(Z(€,Ccty) : € € ). We may assume s, is on a level at least as high as
dt(C,,). We may also assume that if @ < § € wy, then v, < 3. We may
also assume that the height of s, is less than the height of sg, for a < 3,
so that {s, : @ € wy} is an uncountable subset of S. Therefore there is an
n € [0,(0)] such that L = {a : n, = n} is uncountable. Also, as is well-
known for Souslin trees, there is an 5 € S, such that {s, : @ € L} includes
a dense subset of {s € S : 5 < s}. By passing to an uncountable subset,
we may assume that § < s, for all & € L and that 5 is on a level above 9.
Similarly we may assume that for all £, p < 4, 5 has decided the statement

Un,0)NZ(Ep)#0 foral & p<é.

Now choose any a € L (e. g. the least one), and then choose an infinite se-
quence {3 : 1 € w} C L\ (aw+ 1) so that sg [ 67(C,,) are all distinct. For
each [, let e(sg [ 07(C,,) ) = ny.
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Main Claim: 5 IF (V] € w) (W(%,nl) NT(n,0) £ o) .

Once this claim is proven we are done, because we then have that s forces
that U (n,0) cannot have compact closure, because it meets infinitely many
members of the discrete family {W(v,,n) : n € w}.

To prove the claim, first note that there is a tail of C¢(y5,) N ¢ included
in C¢(y,)- To see this, recall Ce(,,) \ Fix(C¢(vs,)) is countable, so some tail of
Fix(C¢(7s,)) is included in C¢(,,). By elementarity, since v, and 7z are in M,
a tail of Fix(C¢(vg,))NM is included in C¢ ()N M, so a tail of Fix(C¢(v5,))Nd
is included in C¢(,,).

Since there is a tail of Ce(y,) N0 included in C(,), Z(E, Cetys) €

Z(€,C¢(y.y) for each € < § (at least on a tail — which is all that matters for
limits above d). Then sg, forces that 7 is a limit of the sequence

(Z(€,Cctyy) s € €6 and £, (€) = ny).

Of course this means that sg forces that U(n,0) meets Z(&, Ce(s,) for
cofinally many § < 4 such that sg [ 7, IF f% (§) = m. But 3 has already
decided the value of f, [ d, and 5 already forces U(n,0) N Z(&, C¢(y.)) # 0
whenever s,, does. In particular then, 5 forces there is a £ with f% &) =m
(and so Z (&, Ceya)) € W(va, ) and U(n,0) N Z(§, Ce(va)) # 0. O

For the record, let us state what we have accomplished:

Theorem 4.5. MM(S)[S] implies LCN(X;).
Corollary 4.6. There is a model of MM(S)[S] in which LCN holds, i.e.

every locally compact normal space is collectionwise Hausdorff.

5 Large Cardinals and the MOP

In [11] we showed that large cardinals are not required to obtain the
consistency of every locally compact perfectly normal space is paracompact.
It is interesting to see which other PFA(S)[S] results can be obtained without
large cardinals. The standard method used was pioneered by Todorcevic in
[42] and given several applications in [8], all in the context of PFA results.
In the context of PFA(S)[S], it is referred to in [45] and actually carried
out in [10] for a version of P-ideal Dichotomy and for PPI. It is routine to
get additionally that such models are of form MA,, (S)[S] by interleaving
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additional forcing. In [11] we pointed out that such methods can give models
in which in addition the following holds:

3" (sequential) In a compact sequential space, each locally countable sub-
space of size N, is o-discrete.

A modification of such a proof produces a model in which the following
proposition (see [15]) holds:

> (sequential) Let X be a compact sequential space. Let Y C X, |Y| =
N;. Suppose {Wetacws {Vatacw, are open subsets of X
such that:

(1) Wy CW, C Vi,
(2) [Va Y] <R,
3) Y CUHW,:a€w}.
Then Y is o-closed discrete in [ J{W, : a € w;}.

Without the parenthetical “sequential”, Y~ and Y refer to the cor-
responding propositions obtained by replacing “sequential” by countably
tight”, which follow from their sequential versions if one has

Moore-Mréwka Every compact countably tight space is sequential.

It follows easily from Moore-Mréwka that locally compact countably
tight spaces are sequential. A proof of Moore-Mréwka from PFA(S)[S] is
sketched in [45] and the author remarks that, by the usual methods, large
cardinals are not necessary. Thus, one can obtain a model of MA,, (S)[S] in
which, for example, both PPI and Y hold, without the need for large car-
dinals. Working in such a model, we can establish the following proposition,
the conclusion of which was proved from PFA(S)[S] in [45] and asserted to
be obtainable without large cardinals.

Theorem 5.1. If ZFC is consistent, it’s consistent to additionally assume

that locally compact, hereditarily normal, separable spaces are hereditarily
Lindeldf.
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Proof. Let X be such a space. By 4.3 X has countable spread. So does its
one-point compactification X*, which hence is countably tight [1]. If X were
not hereditarily Lindel6f, it would include a right-separated subspace {z, :
a € wi}. Let {V, : @ € wi} be open sets witnessing right-separation. Let
T4 € W, C W, CV,, with W, open and W, compact. Applying 3 to X*,
we see that {z, : @ € w1} is o-closed discrete in W = [ J{W, : @ € wy}. But
W is locally compact, separable, and hereditarily normal, so this contradicts
4.3. O

Also without large cardinals we obtain:

Theorem 5.2. If ZFC' is consistent, it is consistent to additionally assume
that each hereditarily normal perfect pre-image of wy includes a copy of wy.

Proof. Using Y, and PPI, we can carry out the proof of Theorem 2.5 above.
O

We also have:

Theorem 5.3. If ZFC' is consistent, it is consistent to assume that every lo-
cally compact, first countable, hereditarily normal space with Lindelof number
< Ny not including a copy of wy is paracompact.

Proof. We use the model of 5.2. In [39] the second author asserted the
following, but under PFA(S)[S] instead of MM(S)[S], which we now see
should have been used.

Lemma 5.4. MM(S)[S] implies that if X has Lindeldf number < ¥y and is
locally compact, normal, and does not include a perfect pre-image of wy, then
X 18 paracompact.

In addition to the topological properties mentioned, the proof used Y
and that the space was Ni-collectionwise Hausdorff. For the purposes of 5.3,
however, we get Nj-collectionwise Hausdorff just from the Souslin forcing,
since the space is first countable. O

MM(S)[S] is also relevant for questions concerning the Baireness of C(X),
for locally compact X (see [20, 29, 40]).
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Definition. A moving off collection for a space X is a collection IC of
non-empty compact sets such that for each compact L, there is a K € K
disjoint from L. A space satisfies the Moving Off Property (MOP) if
each moving off collection includes an infinite subcollection with a discrete
open erpansion.

Definition. Cy(X), for a space X, is the collection of all continuous real-
valued functions on X, considered as a subspace of the compact-open topology
on the Cartesian power XX.

Theorem 5.5 [20]. A locally compact space X satisfies the MOP if and only
if Cy(X) is Baire, i.e. satisfies the Baire Category Theorem.

Lemma 5.6 [20, 29]. Locally compact, paracompact spaces satisfy the MOP.

Theorem 5.7. MM(S)[S] implies that normal spaces satisfying the MOP are
paracompact if they are:

(1) locally compact, countably tight, and hereditarily normal, or
(2) first countable and hereditarily normal, or

(3) locally compact, countably tight with Lindeldf number < Ry, or
(4) first countable, with Lindeldf number < Wy, or

(5) locally compact, countably tight, and countable sets have Lindeldf clo-
sures.

Proof. These all follow easily from 2.10, 3.12, Moore-Mréwka and [39]
using:

Lemma 5.8 [21]. In a sequential space, countably compact subspaces are
closed.

Lemma 5.9 [20, 29]. Countably compact spaces satisfying the MOP are com-
pact.

Lemma 5.10 [20, 29]. First countable spaces satisfying the MOP are locally
compact.

]
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In the special case of a space with the MOP, we have:

Theorem 5.11. If ZFC is consistent, then it is consistent to additionally as-
sume that first countable normal spaces satisfying the MOP and with Lindelof
number < Wy are paracompact.

Proof. Such a space is locally compact and does not include a perfect pre-
image of wy. m

MA,, gives counterexamples for the conclusions of 5.7 and 5.11. See e.g.
40].

Theorem 5.12. If ZFC is consistent, then it is consistent to assume that first
countable hereditarily normal, locally connected spaces satisfying the MOP are
paracompact.

Proof. The extra ingredient is that the local connectedness will enable us to
decompose the space into a sum of pieces with Lindel6f number < X;. More
precisely,

Definition. A space X is of Type I if X = |J{X. : o € wi}, where each
Xq is open, a < B implies X, C Xg, and each X, is Lindelof.

In [39], it is shown on page 104 that, assuming ) and hereditary N;-
collectionwise Hausdorffness for a locally compact hereditarily normal space
not including a perfect pre-image of w; that the closure of a Lindel6f subspace
is Lindelof. Then we quote:

Lemma 5.13 [12]. If X s locally compact, locally connected, and countably
tight, then X is a topological sum of Type I spaces if and only if every Lindelof
subspace of X has Lindelof closure.

Since a topological sum of paracompact spaces is paracompact, this will
complete the proof of the Theorem. O

Problem 1. Without large cardinals, is there a model in which both Y, and
LCN(X;) hold?

It may be of interest that SRP implies a weaker version of the conclusion
of Theorem 5.7.2.

Theorem 5.14. SRP implies every first countable, monotonically normal
space satisfying the MOP is paracompact.
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Lemma 5.15. Suppose S is a stationary subset of some reqular cardinal
and is embedded in a first countable space X. Then each s € S is an w-cofinal
ordinal.

Proof. Each s € S is either isolated in S or is a limit of some subset of S.
By first countability, in the latter case, each such s is a limit of a sequence
of elements of S. O

Proof of Theorem. Suppose not. Then by [6] the space includes a copy of
a stationary subset of some regular cardinal. By [22, 37.18] SRP implies
that that stationary set includes a copy of a closed unbounded subset of wy.
That copy is closed, countably compact but not compact, contradicting the

MOP. ]

Problem 2 ( [20]). Is there in ZFC a locally compact, normal, non-paracompact
space with the MOP?

Axiom R precludes stationary non-reflecting sets of w-cofinal ordinals in
ws, and hence the locally compact, R;-collectionwise Hausdorff ladder system
space built on such a set; we can therefore ask:

Problem 3. Does MM(S)[S] imply LCN? Indeed, does MM imply locally

compact Ri-collectionwise Hausdorff spaces are collectionwise Hausdorff?

6 Examples

A question left open in [25] is whether, as was shown for adjoining N,
Cohen subsets of w; in [35], forcing with a Souslin tree would make normal
spaces of character N; Ni-collectionwise Hausdorff. We shall show that the
answer is negative by showing:

Theorem 6.1. MA ,, (S)[S] implies that there is a normal non-X; -collectionwise
Hausdorff space of character ;.

Proof. Let S C 2<“1 be a coherent Souslin tree. Fix a family {a; : s € S} C [w]*
so that for s <t € S, a; C* a, and for each v € wy, {as : s € S,} is pairwise
disjoint.

For each limit § € wy, let Ls € * be a strictly increasing function with
range cofinal in ¢ consisting of successor ordinals. For a C w, let Lla] =
{Ls(n) : n € a}. The generic g for S will enable us to define the required
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topology on the set w;. We declare each successor ordinal to be isolated. For
each limit §, the neighborhood filter for ¢ will be {Ls[as] U{d} : s € g}. The
set Cy of limit ordinals is then a closed discrete set. By pressing down, we see
that Cy cannot be separated. It remains to show that the space is normal.
It suffices to show that if f is an S-name of a function from Cj to 2, then
there is a neighborhood assignment {Us : § € Cy} and a cub (4, such that
for each o < & € €4, S forces that if f(a) # f(8), then U(a) and U(6) are
disjoint.

There is a cub C; C () so that for all 6 € C; and o < d; each s € S;
decides the value of f(a). For each § € Cy, let 6 denote the minimal element
of C above 4, and choose a function f5: w — 2 so that for each s € Ss+ and
cach n € a,, s forces f(0) = fs(n). We will define an integer ns such that
the value of Us is forced by s € Ss+ to equal {0} U Ls[as \ ns]. The sequence
of functions {fs: 6 € Co} will be in the MA,, (S) model.

Let Q@ be the poset of partial functions h from w; into 2 such that
h="U{fsoL;':6€ H}, for some H € [Cy]<*. Q is ordered by exten-
sion. We claim that in ZFC, Q is ccc. If so, there will be a generic for Ny
dense subsets of Q in a model of MA,, (S). Let H = {(hqa, Ha) : a € wy}
be a subset of Q x [Co]<*, where h, = J{fs o L;' : § € H,}. Choose any
countable elementary submodel M with Q and H in M. Let 6 = M Nw;
and HsN M = H and Hs\ M = {6; : i < l}. We may assume that 6y = §
and then choose ag € M so that H C oy and Ls, N0 C o, for 0 < 7 < [.
Notice that hsla is an element of M, for all &« € M. In M, recursively choose
ag < ag < --- s0 that ha,., [0, = hsloy, and dom(h,,,,) € ano. With
B = sup,, a,, < 0, we have that there is an n € w such that hs[8 = hsla,. It
follows that hsla,, C h and so hs and h are compatible members of

Q

An+4+19 An+4+1

MA,, (S) implies there is a generic for Q that adds a function h from
wy to 2 that mod finite extends fs o Lgl, for all 6 € Cy. Now define ns to
be chosen so that h actually extends fso L;'[w \ ns]. Suppose a < §, with
0 € Cy, and let s € Ss+. Then s forces that f(goLg1 = f5 on ag,, and similarly,
sla™ forces that f,oL ! = fa on agjq+. Also, h agrees with f(;oLg1 on as\ng
and with f, 0 L3t on agja+ \ na. Thus if 8 € Ls[as \ ns] N La[asia+ \ 7o), then

h(B) = f(a) = f(0). This completes the proof that the space is normal. [

The strategy attempted in [38] was to expand a closed discrete subspace
of a locally compact normal space to a discrete collection of compact Gy’s.
There are limitations on such an approach, given by the following example.
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Theorem 6.2. MA,, (S)[S] implies there is a locally compact space of char-
acter ¥y which includes a normalized closed discrete set which does not have
a normalized discrete expansion by compact Gs’s.

Proof. We modify the previous example. Let A, denote the Boolean subal-
gebra of P(w) generated by [w]<“ U {as : s € S}. In the forcing extension
by S, let z, denote the member of the Stone space S(A;/FIN) containing
{as : s € g}.

In the forcing extension, our space has the base set (w1 \Cp)U(CpoxS(Ay)).
The points of w; \ Cy are isolated. For each § € Cy and = € S(A,;/FIN),
a neighborhood of (0, z) must include Us(a) = Ls[a] U ({d} x a*) for some
a € x, where a* = {p € S(As) : a € p}. Notice that Us(a) is disjoint from
{7} x S(A/FIN), for all v # 6. It follows immediately that the sequence
D = {(y,z,) : § € Cy} is a closed discrete subset. It also follows from the
proof of the normality of the previous example that D is normalized.

Now we show that D does not have a normalized discrete expansion by
compact Gy’s, indeed by any G4’s. Assume that {25 0 € Cy} is a sequence
of S-names so that Zj is forced to be a G containing (4, z,). There is a cub
Cy such that for each a@ € Cyy and each s € S,+ (again, o™ is the minimal
element of C; above a), s forces that Z, contains {a} x a*. Since S is ccc,
the cub C; can be chosen to be a member of the PFA(S) model.

We use C; to define a partition of Cy: for each a € Cy, we define f (o)
to equal the value g(a™) (i.e. the element of S,+ that g picks). Thus if §
is a limit of C'} and s € Sy, then s forces a value for f[cS. Then a potential
normalizing expansion would consist of a sequence {n, : « € Cy} of S-names
of integers for which Lq[age+ \72a]U({a} X ay,+) is an open neighborhood of

Zo. There is a cub Cy C €} so that for each 6§ € Cy and each s € S, s forces
a value on n, for all & < §. We may choose any sy € g so that s forces that
Lalagiat \Tia] N Ls[ags+ \125] is empty whenever f(a) # f(5). Working in V[g],
we prove there is a stationary E satisfying that Ls[a,s+] N U{Lalagia+ \ 7] :
« € 0} is infinite, for all § € E. If not, then there would be an assignment
(ms : 6 € C) (for some cub C) so that Ls[a,s+ \ ms] would be disjoint from
U{Lalagia+ \ o] : a € 6}, for all § € C. Pressing down, we would arrive at
a contradiction.

Let E denote the S-name of the stationary set whose existence was shown
in the previous paragraph. Choose any s above sy and any § € Cs such that
s forces that § € E. Without loss of generality, the height of s is > 6+, but
note that s[d forces a value on 7, for all @ < 0. This means that s[0" forces
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that & € E, since it will also decide the value of Ls[ag5+]. We also have that
s]8 forces a value on f]6 and so we can choose a value e € {0, 1} so that s[d
forces that Ls[ays+] intersected with {La[asat \ 7] : @ < § and f(a) = e}
is infinite. We now have a contradiction, since s[dtU{(d",1—e)} forces that

the assigned neighborhood of § must meet the assigned neighborhood of
for some o < ¢ with f(a) =e # f(9). O

7 Point-countable type

There is another normal-implies-collectionwise-Hausdorff result holding
in L for which we don’t know whether it holds in our MM(.S)[S] model:

Definition. A space is of point-countable type if each point is a member
of a compact subspace which has a countable outer neighbourhood base.

Spaces of point-countable type simultaneously generalize locally compact
and first countable spaces, and V=L implies normal spaces of point-countable
type are collectionwise Hausdorff [46].

Problem 4. Does MM(S)[S] imply normal spaces of point-countable type
are Ny -collectionwise Hausdorff?

The usual arguments would show that if so, in our front-loaded model

of MM(S)[S], normal spaces of point-countable type would be collectionwise
Hausdorff.

Acknowledgement. We thank Peter Nyikos for catching errors in an
earlier version of this manuscript.
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