
A NON-PARTITIONABLE MAD FAMILY

ALAN DOW

Abstract. It is consistent that there is a mad family which can not be par-

titioned into two nowhere mad families.

1. Introduction

In [Sim80], Simon showed that there is a pair of Frechet-Urysohn spaces whose
product is not Frechet-Urysohn. The spaces he constructed were so-called Ψ-like
spaces from almost disjoint families of subsets of ω. In particular he showed that
there is a maximal almost disjoint (mad) family which could be suitably partitioned.

Definition 1. An almost disjoint family A ⊂ [ω]ω is nowhere mad if for each
X ⊂ ω, either X is almost contained in a finite union from A, or there is an
infinite Y ⊂ X such that Y ∩ a is finite for each a ∈ A. If, on the other hand,
A � X = {a ∩X : a ∈ A} is infinite and for each infinite Y ⊂ X there is an a ∈ A
such that a ∩ Y is infinite, we would say that A � X is a mad family on X.

Simon’s key construction was to produce a mad family A which could be parti-
tioned into two nowhere mad families. Let us say that such a family is partitionable.
Simon actually proved a much stronger result.

Proposition 2. [Sim80] For each mad family A on ω, there is an infinite X ⊂ ω,
such that A � X is a partitionable mad family on X.

The following idea is very well known.

Proposition 3. If a mad family A satisfies that for each X ⊂ ω, A � X is either
finite or has cardinality c, then A is partitionable.

In this paper we show it is consistent to have a strongly non-partitionable mad
family as follows.

Theorem 4. It is consistent that there is a mad family A of cardinality c > ω1 such
that for each B ⊂ A of cardinality c, there is an X such that B � X has cardinality
ω1 and is a mad family on X. Therefore, if X ⊂ ω and A � X is partitionable then
A � X has cardinality ω1.

2. Main Lemma

We let S1
2 denote the set of ordinals in ω2 of cofinality ω1. We define below a

finite support iteration {Pα, Q̇α : α ∈ ω2} of σ-centered (hence ccc) posets. For
each α ∈ S1

2 , Ȧα will be chosen (by a ♦-sequence on S1
2) to be Pα-name of a cofinal

subset of α \S1
2 , and for α /∈ S1

2 , Ȧα will be the empty set (which is its own name).
Each poset Q̇α will canonically define a name ȧα of a subset of ω.

2000 Mathematics Subject Classification. 54A35.

Key words and phrases. βN , mad families, Frechet.

1



2 ALAN DOW

Definition 5. For each α < ω2, define Q̇α a Pα-name of a poset as follows. We
are given some Pα-name Ȧα of a subset of α \ S1

2 and the family {ȧβ : β < α}
consisting of Pα-names of subsets of ω. The Pα-name Q̇α satisfies that


Pα Q̇α is an order on the set 2<ω × [α \ Ȧα]<ω and p = (Sp, Fp) for p ∈ Q̇α

where p < q if Sp ⊃ Sq, Fp ⊃ Fq, and for all β ∈ Fq, Sp(k) = 0 for each k ∈
ȧβ ∩ dom(Sp) \ dom(Sq). If α ∈ S1

2 , then we will ensure that 
Pα Ȧα is cofinal in
α. Otherwise 
Pα

Ȧα is empty. The definition of ȧα is the set of k ∈ ω such that
some q ∈ Q̇α in the generic filter satisfies Sq(k) = 1.

When selecting elements p of Pω2 , we may assume that for each γ ∈ dom(p),
there is an S ∈ 2<ω and F ∈ [γ]<ω such that p � γ 
 p(γ) = (S, F ) (this is often
referred to as determined conditions).

Lemma 6. For each λ ∈ S1
2 , 1 
Pω2

“the family {ȧα ∩ ȧλ : α ∈ Ȧλ} is a mad
family on ȧλ.”

Proof. Let λ ∈ S1
2 , Ẏ be a Pω2-name of an infinite subset of ω and assume that

p0 
 Ẏ ⊂ ȧλ. Towards a contradiction, assume that p0 
 Ẏ ∩ ȧβ is finite for all
β ∈ Ȧλ. Since 
 ȧλ ∩ ȧβ is finite for all β ∈ λ \ Ȧλ, we have that p0 forces that
Ẏ ∩ ȧβ is finite for all β < λ. Fix any countable elementary submodel M of H(θ)
such that p0, Ẏ , λ and Ȧλ are in M . Let µ < λ be chosen so that M ∩ λ ⊂ µ and
fix any α ∈ (µ, λ) such that there is a p1 < p0 � λ, such that p1 
 α ∈ Ȧλ (recall
that Ȧλ is a Pλ-name).

Let p2 be the meet of p1 and p0, hence p2 � λ = p1 and p2 � γ 
 p2(γ) = p0(γ) for
γ > λ. Now let p3 < p2 be chosen so that there is some m0 with p3 
 Ẏ ∩ ȧα ⊂ m0.
We may assume there is an m0 so that for each γ ∈ dom(p3), p3 � γ 
 Sp3(γ) ∈ 2m0 .
Let Gα be any Pα-generic filter with p3 � α ∈ Gα. We may assume, by extending
p3, that for each γ ∈ dom(p3), Fp3(γ) ⊂ dom(p3). In addition, we may assume that
for γ ∈ dom(p3) \ λ + 1, p3 � γ 
 λ ∈ Fp3(γ).

In V [Gα], the terms ȧβ for β ∈ Fp3(α) have all been evaluated and Ẏ is forced to
be almost disjoint from the union. Fix any n > m0, not in this finite union, such
that there is a q ∈ Pω2 ∩ M such that q � α ∈ Gα, q is compatible with p3, and
q 
 n ∈ Ẏ . We may further assume that there is an n < m1 ∈ ω such that for
each γ ∈ dom(q) \ α, q � γ 
 Sγ = Sq(γ) ∈ 2m1 . Just as we did with p3, we may
also assume that for each γ ∈ dom(q), Fq(γ) ⊂ dom(q). Recall that since q ∈ M ,
we have that dom(q)∩ (µ, λ) is empty. Since q is compatible with p3, we have that
for each γ ∈ dom(q) ∩ dom(p3), and m0 ≤ k < m1 such that Sγ(k) = 1, and each
β ∈ Fp3(γ), there is an extension r of p3 � γ and q � γ so that r 
 k /∈ ȧβ .

We define p4 < p3, q so that p4 
 n ∈ ȧα. Let p4 � α be any member of Gα below
both p3 � α and q � α and so that Sp4(γ) ∈ 2<ω \ 2<m1 for all γ ∈ dom(p4) ∩ α.
Define Fp4(α) to be Fp3(α) and Sp4(α) = Sp3(α)

_0 . . . 010 . . . 0 ∈ 2m1 where the
1 occurs at position n (hence n ∈ ȧα). For γ ∈ dom(p3) \ (dom(q) ∪ α + 1),
let Sp4(γ) be equal to Sp3(γ)

_0 · · · 0 ∈ 2m1 and Fp4(γ) is equal to Fp3(γ). For
γ ∈ dom(q), set Sp4(γ) = Sq(γ) ∈ 2m1 and Fp4(γ) = Fp3(γ) ∪ Fq(γ). Note that
q � λ 
 n ∈ ȧλ since p0 
 Ẏ ⊂ ȧλ and so λ ∈ dom(q). Furthermore, Sγ(n) = 0 for
γ ∈ dom(p3) ∩ dom(q) \ (λ + 1) since λ ∈ Fp3(γ) and p3, q are compatible. Since
p3 
 α ∈ Ȧλ, it follows that α /∈ Fp3(λ).
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It certainly follows that p4 
 n ∈ ȧα. We check that p4 < p3. The previous
paragraph shows that p4 � γ 
 Sp4(γ)(k) = 0 for all k ∈ ȧα \ dom(Sp3(γ)) for all
γ ∈ dom(p3) for which α ∈ Fp3(γ). Now we consider other ordinals in the various
Fp3(γ). It is also true, by construction, that for each γ ∈ dom(q) ∩ dom(p3) and
each β ∈ Fp3(γ) \ (dom(q) ∪ {α}), p4 � γ 
 ȧβ ∩ [m0,m1) is empty. In addition,
if β ∈ Fp3(γ) ∩ dom(q), then q � γ 
 Sγ(k) = 0 for each k ∈ [m0,m1) ∩ ȧβ since
β ∈ dom(q) and p3, q are compatible. Putting this all together, we have that
for each γ ∈ dom(q) \ α = dom(q) \ λ and each β ∈ Fp3(γ) (which is empty if
γ /∈ dom(p3)),

p4 � γ 
 Sp4(γ)(k) = Sγ(k) = 0 for each k ∈ ȧβ \ dom(Sp3(γ)).

For all γ ∈ dom(p3)\dom(q) = dom(p4)\dom(q) and k ∈ dom(Sp4(γ))\dom(Sp3(γ)),
the only case where Sp4(γ)(k) = 1 is when γ = α and k = n. In this case, we chose
n /∈

⋃
{aβ : β ∈ Fp3(α)}. This completes the proof that p4 < p3. Similarly, it follows

very easily that p4 < q since for all γ ∈ dom(q), Sp4(γ) = Sq(γ).
Now that we have p4 < p3, q, we observe that p4 
 n ∈ ȧα ∩ Ẏ \m0, which is the

contradiction we seek. �

3. Proof of Main Theorem

In this section we apply Lemma ?? to prove Theorem ??.

Definition 7. A sequence {Aα : α ∈ S1
2} is a ♦-sequence on S1

2 if for each α ∈ S1
2 ,

Aα ⊂ α, and for each T ⊂ ω2, the set {λ ∈ S1
2 : T ∩ λ = Aλ} is stationary. The

statement ♦S1
2

is the assertion that a ♦-sequence on S1
2 exists.

It is well-known that ♦S1
2

is consistent and implies that 2ω1 = ω2. The base set
for our poset Pω2 defined in Definition ?? is the family P of functions with domain
a finite subset of ω2 and range contained in 2<ω × [ω2]<ω. Therefore, we may think
of subsets of P × ω2 as potential Pω2-names of subsets of ω2. Recall that for each
β ∈ ω2, β̌ is the canonical Pω2-name for β and each subset of Pω2 × {β̌ : β ∈ ω2} is
a Pω2-name of a subset of ω2. We can abuse notation slightly and treat subsets of
Pω2 × ω2 as though they were such a name.

Let f be any 1-1 function from ω2 onto P × ω2. For each α ∈ S1
2 , fix any ω1-

sequence, Cα, of successor ordinals cofinal in α. For each α ∈ S1
2 , we recursively

define Ȧα (and therefore Pα):

Ȧα =

{
f(Aα) if f(Aα) is a Pα-name and 1 
 f(Aα) is cofinal in α \ S1

2

Čα otherwise.

Lemma 8. The family {ȧβ : β ∈ ω2 \ S1
2} is forced to be a mad family on ω.

Proof. A routine density argument (which we leave to the reader) shows that for
each Pω2-name, Ẏ , of an infinite subset of ω, and each p ∈ Pω2 , there is an α < ω2

and a q < p such that q 
 Ẏ ∩ ȧα is infinite. If α /∈ S1
2 , we are done, while if α ∈ S1

2 ,
we can apply Lemma ??. �

Proof of Theorem ??. Assume ♦S1
2

and let Ȧα and the iteration sequence {Pα, Q̇α :
α ∈ ω2} be defined as above. Let G be a Pω2-generic filter and for each α ∈ ω2, let
aα = valG(ȧα). Our desired family is A = {aβ : β ∈ ω2 \ S1

2}. By Lemma ??, A is
a mad family on ω. Assume that B ⊂ A has size ω2 = c. Let I = {β ∈ ω2 : aβ ∈ B}
and let İ ⊂ Pω2 × ω2 be a (pseudo) Pω2-name for I in the ground model. We now
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work in the ground model. We may (and do) assume that for each β ∈ ω2, the set
of p ∈ Pω2 such that (p, β) ∈ İ is countable (since Pω2 is ccc, there is such a name
for I). In addition, we may assume that 1 forces that İ is unbounded in ω2 and
disjoint from S1

2 .
Let T = f−1(İ). It follows easily that there is a closed and unbounded C ⊂ ω2

such that for each γ ∈ C and β < γ and each p ∈ Pω2 such that (p, β) ∈ İ,
dom(p) ⊂ γ and f(β) ∈ Pγ × γ. Moreover, since Pβ has cardinality less than
ω2 for each β < ω2, we may assume that for each γ ∈ C and each β < γ and
p ∈ Pβ , there is ζ ∈ γ ∩ T such that f(ζ) = (q, ξ) for some ξ > β and q < p (hence
1 
Pγ f(T ∩ γ) ∩ (β, γ) = İ ∩ (β, γ) 6= ∅).

By ♦S1
2
, there is a λ ∈ C ∩S1

2 such that T ∩λ = Aλ. Since λ ∈ C, it follows that
f(Aλ) = f(T ∩ λ) is a Pλ-name of a subset of λ \ S1

2 which is forced to be cofinal
in λ. It follows that Ȧλ is f(Aλ) and that 1 
Pλ

İ ∩ λ = Ȧλ. By Lemma ??, we
conclude that, in V [G], {aβ ∩ aλ : β ∈ I ∩ λ} is a mad family on aλ. Therefore we
have shown that with X = aλ, B � X has cardinality ω1 and is a mad family on
X. �

References
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