A NON-PARTITIONABLE MAD FAMILY

ALAN DOW

ABSTRACT. It is consistent that there is a mad family which can not be par-
titioned into two nowhere mad families.

1. INTRODUCTION

In [Sim80], Simon showed that there is a pair of Frechet-Urysohn spaces whose
product is not Frechet-Urysohn. The spaces he constructed were so-called W-like
spaces from almost disjoint families of subsets of w. In particular he showed that
there is a maximal almost disjoint (mad) family which could be suitably partitioned.

Definition 1. An almost disjoint family A C [w]¥ is nowhere mad if for each
X C w, either X is almost contained in a finite union from A, or there is an
infinite Y C X such that Y Na is finite for each a € A. If, on the other hand,
Al X ={an X :a€ A} is infinite and for each infinite Y C X there is an a € A
such that a NY is infinite, we would say that A [ X is a mad family on X.

Simon’s key construction was to produce a mad family A which could be parti-
tioned into two nowhere mad families. Let us say that such a family is partitionable.
Simon actually proved a much stronger result.

Proposition 2. [Sim80] For each mad family A on w, there is an infinite X C w,
such that A1 X is a partitionable mad family on X.

The following idea is very well known.

Proposition 3. If a mad family A satisfies that for each X C w, A | X is either
finite or has cardinality ¢, then A is partitionable.

In this paper we show it is consistent to have a strongly non-partitionable mad
family as follows.

Theorem 4. It is consistent that there is a mad family A of cardinality ¢ > wy such
that for each B C A of cardinality ¢, there is an X such that B | X has cardinality
wy and is a mad family on X. Therefore, if X C w and A | X is partitionable then
A | X has cardinality w .

2. MAIN LEMMA

We let S3 denote the set of ordinals in wy of cofinality wi. We define below a
finite support iteration {P,,Qq : @ € wy} of o-centered (hence ccc) posets. For
each v € S3, A,, will be chosen (by a {-sequence on S3) to be P,-name of a cofinal
subset of a\ S, and for o ¢ S, A, will be the empty set (which is its own name).
Each poset @, will canonically define a name a,, of a subset of w.
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Definition 5. For each a < ws, define Qa a P,-name of a poset as follows. We
are given some P,-name A, of a subset of o\ S} and the family {as : 3 < a}
consisting of P,-names of subsets of w. The P,-name @, satisfies that

IFp., Qu is an order on the set 2<% x [a\ A,]<* and p = (S,, F,) for p € Q,

where p < ¢ if S, D Sy, F, D Fy,, and for all 8 € F,, S,(k) = 0 for each k €
ag N dom(S,) \ dom(S,). If a € Sy, then we will ensure that IFp, A, is cofinal in
a. Otherwise IFp, A, is empty. The definition of a, is the set of k € w such that
some g € Q,, in the generic filter satisfies S, (k) = 1.

When selecting elements p of P,,, we may assume that for each v € dom(p),
there is an S € 2<% and F € [y]<“ such that p [ v IF p(y) = (S, F) (this is often
referred to as determined conditions).

Lemma 6. For each A € S3, 1 1Fp,  “the family {ao Nax : o € Ay} is a mad
family on ay.”

Proof. Let A € S}, Y be a P,,-name of an infinite subset of w and assume that
po IF Y C a,. Towards a contradiction, assume that pg - Y N ag is finite for all
0 € A,. Since IF ay N ag is finite for all 8 € A\ AA, we have that pg forces that
YN ag is finite for all § < A. Fix any countable elementary submodel M of H(6)
such that py, Y, \ and A, are in M. Let 1 < X be chosen so that M N A C p and
fix any o € (p, A) such that there is a p; < po [ A, such that py IF a € Ay (recall
that Ay is a Py-name).

Let po be the meet of p; and pg, hence ps | A = p; and py | v IF pa(vy) = po(7) for
v > A. Now let p3 < p2 be chosen so that there is some mg with ps I+ Y Naa C mo.
We may assume there is an mq so that for each v € dom(ps), p3 [ v IF Sp, () € 2.
Let G, be any P,-generic filter with ps [ a € G,. We may assume, by extending
p3, that for each v € dom(ps), F), () C dom(p3). In addition, we may assume that
for v € dom(p3) \ A+ 1, p3 [ v IF A € F, ().

In V[G,], the terms ag for 3 € Fp,, () have all been evaluated and Y is forced to
be almost disjoint from the union. Fix any n > myg, not in this finite union, such
that there is a ¢ € P,, N M such that ¢ [ o € G, g is compatible with p3, and
gk n €Y. We may further assume that there is an n < m; € w such that for
each v € dom(q) \ «, ¢ [ v IF S, = Sy, € 2™ Just as we did with p3, we may
also assume that for each v € dom(q), Fy(,) C dom(q). Recall that since g € M,
we have that dom(q) N (i, A) is empty. Since ¢ is compatible with p3, we have that
for each v € dom(g) N dom(ps), and my < k < my such that S, (k) = 1, and each
B € Fpyy(+), there is an extension 7 of p3 [ v and ¢ [ v so that r |- k ¢ ag.

We define py < p3,q so that py IFn € a,. Let py [ @ be any member of G, below
both p3 [ a and ¢ [ « and so that S,y € 2<%\ 2<™ for all v € dom(ps) N .
Define Fj,, (o) to be Fp (o) and Sp,a) = Spsa)”0...010...0 € 2™t where the
1 occurs at position n (hence n € a,). For v € dom(psz) \ (dom(qg) U a + 1),
let S,,(y) be equal to Sp,()70---0 € 2™ and F,,(,) is equal to F) (). For
v € dom(q), set Sp,(y) = Sg) € 2™ and F,, () = F,,y) U Fy). Note that
q | MFn € ay since po IF Y C ay and so A € dom(g). Furthermore, Sy (n) =0 for
v € dom(pz) Ndom(q) \ (A + 1) since A € F,,(,) and p3,q are compatible. Since
ps IF a € Ay, it follows that o ¢ Foy0n)-
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It certainly follows that ps I n € a,. We check that py < p3. The previous
paragraph shows that ps [ 7 IF Sy, (4)(k) = 0 for all k € o \ dom(S,,(,)) for all
7y € dom(psz) for which o € F),, (). Now we consider other ordinals in the various
Foy(y)- Tt is also true, by construction, that for each v € dom(q) N dom(psz) and
each 3 € Fj,(y) \ (dom(q) U {a}), psa [ v IF ag N [me,my) is empty. In addition,
if B € Fp,y) Ndom(q), then ¢ [ v I- S, (k) = 0 for each k € [mg,m1) N ag since
B € dom(q) and p3,q are compatible. Putting this all together, we have that
for each v € dom(q) \ a = dom(q) \ A and each 3 € F,,(,) (which is empty if
v ¢ dOHl(p3))’

pa [ 7 IF Sy, 1) (k) = Sy (k) = 0 for each k € ag \ dom(Sp, ().

For all v € dom(p3)\dom(gq) = dom(p4)\dom(q) and k € dom(S,, () \dom(S,,(-)),
the only case where S, (,)(k) =1 is when v = o and k = n. In this case, we chose
n ¢ U{ag : B € Fyy(a)}- This completes the proof that ps < p3. Similarly, it follows
very easily that py < ¢ since for all v € dom(q), Sy, () = Sq(v)-

Now that we have ps < ps3, ¢, we observe that ps IFn € o NY \ mg, which is the
contradiction we seek. g

3. PROOF OF MAIN THEOREM
In this section we apply Lemma ?7 to prove Theorem ?77.

Definition 7. A sequence {A, : a € S} is a {-sequence on S} if for each a € S3,
A C a, and for each T C wo, the set {A € S5 : TN A = A,} is stationary. The
statement <> s} is the assertion that a {-sequence on SJ exists.

It is well-known that ¢g is consistent and implies that 2** = wy. The base set
for our poset P, defined in Definition 77 is the family P of functions with domain
a finite subset of wy and range contained in 2<% X [wy]<*. Therefore, we may think
of subsets of P x wq as potential P,,,-names of subsets of ws. Recall that for each
B € wa, 3 is the canonical P,,-name for § and each subset of P, x {B i B Ewatis
a P,,-name of a subset of wy. We can abuse notation slightly and treat subsets of
FP,, X wg as though they were such a name.

Let f be any 1-1 function from wy onto P X wy. For each a € Si, fix any w;-
sequence, C,, of successor ordinals cofinal in a. For each o € S5, we recursively
define A, (and therefore P,):

A, = {f(Aa) if f(An) is a P,-name and 1| f(A,) is cofinal in «\ S3

C, otherwise.

Lemma 8. The family {as : 3 € wa \ S3} is forced to be a mad family on w.

Proof. A routine density argument (which we leave to the reader) shows that for
each P,,-name, Y, of an infinite subset of w, and each p € P,,, there is an a < wy
and a ¢ < p such that ¢ IF Y Na, is infinite. If ¢ S3, we are done, while if o € S3,
we can apply Lemma ?77. |

Proof of Theorem ?7. Assume (}S% and let A, and the iteration sequence {P., Qu :
« € we} be defined as above. Let G be a P,,,-generic filter and for each « € wy, let
aq = valg(aq). Our desired family is A = {ag : 8 € wa \ S3}. By Lemma ??, A is
a mad family on w. Assume that B C Ahassizews =c¢. Let I = {8 € wy : ag € B}
and let I C P,, X wy be a (pseudo) P,,-name for I in the ground model. We now
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work in the ground model. We may (and do) assume that for each 3 € ws, the set
of p € P, such that (p,3) € I is countable (since P, is ccc, there is such a name
for I). In addition, we may assume that 1 forces that I is unbounded in wy and
disjoint from S3.

Let T = f~Y(I). It follows easily that there is a closed and unbounded C' C wy
such that for each v € C and 8 < ~ and each p € P,, such that (p,3) € I,
dom(p) C v and f(B) € P, x v. Moreover, since Pg has cardinality less than
wo for each 0 < wsy, we may assume that for each v € C and each § < ~ and
p € Pg, there is ¢ € yN T such that f(¢) = (¢, &) for some £ > § and ¢ < p (hence

By OS%, there is a A € C'N S such that TN = A,. Since A € C, it follows that
f(A\) = f(T' N ) is a Py-name of a subset of X\ S3 which is forced to be cofinal
in \. It follows that A, is f(Ay) and that 1 IFp, In\x=A,. By Lemma 7?7, we
conclude that, in V]G], {ag Nay : 8 € IN A} is a mad family on ay. Therefore we

have shown that with X = ay, B [ X has cardinality w; and is a mad family on
X. O
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