A NON-PARTITIONABLE MAD FAMILY

ALAN DOW

ABSTRACT. It is consistent that there is a mad family which can not be partitioned into two nowhere mad families.

1. INTRODUCTION

In [Sim80], Simon showed that there is a pair of Frechet-Urysohn spaces whose product is not Frechet-Urysohn. The spaces he constructed were so-called Ψ -like spaces from almost disjoint families of subsets of ω . In particular he showed that there is a maximal almost disjoint (mad) family which could be suitably partitioned.

Definition 1. An almost disjoint family $\mathcal{A} \subset [\omega]^{\omega}$ is nowhere mad if for each $X \subset \omega$, either X is almost contained in a finite union from \mathcal{A} , or there is an infinite $Y \subset X$ such that $Y \cap a$ is finite for each $a \in \mathcal{A}$. If, on the other hand, $\mathcal{A} \upharpoonright X = \{a \cap X : a \in \mathcal{A}\}$ is infinite and for each infinite $Y \subset X$ there is an $a \in \mathcal{A}$ such that $a \cap Y$ is infinite, we would say that $\mathcal{A} \upharpoonright X$ is a mad family on X.

Simon's key construction was to produce a mad family \mathcal{A} which could be partitioned into two nowhere mad families. Let us say that such a family is partitionable. Simon actually proved a much stronger result.

Proposition 2. [Sim80] For each mad family \mathcal{A} on ω , there is an infinite $X \subset \omega$, such that $\mathcal{A} \upharpoonright X$ is a partitionable mad family on X.

The following idea is very well known.

Proposition 3. If a mad family \mathcal{A} satisfies that for each $X \subset \omega$, $\mathcal{A} \upharpoonright X$ is either finite or has cardinality \mathfrak{c} , then \mathcal{A} is partitionable.

In this paper we show it is consistent to have a strongly non-partitionable mad family as follows.

Theorem 4. It is consistent that there is a mad family \mathcal{A} of cardinality $\mathfrak{c} > \omega_1$ such that for each $\mathcal{B} \subset \mathcal{A}$ of cardinality \mathfrak{c} , there is an X such that $\mathcal{B} \upharpoonright X$ has cardinality ω_1 and is a mad family on X. Therefore, if $X \subset \omega$ and $\mathcal{A} \upharpoonright X$ is partitionable then $\mathcal{A} \upharpoonright X$ has cardinality ω_1 .

2. Main Lemma

We let S_2^1 denote the set of ordinals in ω_2 of cofinality ω_1 . We define below a finite support iteration $\{P_{\alpha}, \dot{Q}_{\alpha} : \alpha \in \omega_2\}$ of σ -centered (hence ccc) posets. For each $\alpha \in S_2^1$, \dot{A}_{α} will be chosen (by a \diamond -sequence on S_2^1) to be P_{α} -name of a cofinal subset of $\alpha \setminus S_2^1$, and for $\alpha \notin S_2^1$, \dot{A}_{α} will be the empty set (which is its own name). Each poset \dot{Q}_{α} will canonically define a name \dot{a}_{α} of a subset of ω .

 $^{2000\} Mathematics\ Subject\ Classification.\ 54A35.$

Key words and phrases. βN , mad families, Frechet.

ALAN DOW

Definition 5. For each $\alpha < \omega_2$, define \dot{Q}_{α} a P_{α} -name of a poset as follows. We are given some P_{α} -name \dot{A}_{α} of a subset of $\alpha \setminus S_2^1$ and the family $\{\dot{a}_{\beta} : \beta < \alpha\}$ consisting of P_{α} -names of subsets of ω . The P_{α} -name \dot{Q}_{α} satisfies that

 $\Vdash_{P_{\alpha}} \dot{Q}_{\alpha}$ is an order on the set $2^{<\omega} \times [\alpha \setminus \dot{A}_{\alpha}]^{<\omega}$ and $p = (S_p, F_p)$ for $p \in \dot{Q}_{\alpha}$

where p < q if $S_p \supset S_q$, $F_p \supset F_q$, and for all $\beta \in F_q$, $S_p(k) = 0$ for each $k \in \dot{a}_{\beta} \cap \operatorname{dom}(S_p) \setminus \operatorname{dom}(S_q)$. If $\alpha \in S_2^1$, then we will ensure that $\Vdash_{P_{\alpha}} \dot{A}_{\alpha}$ is cofinal in α . Otherwise $\Vdash_{P_{\alpha}} \dot{A}_{\alpha}$ is empty. The definition of \dot{a}_{α} is the set of $k \in \omega$ such that some $q \in \dot{Q}_{\alpha}$ in the generic filter satisfies $S_q(k) = 1$.

When selecting elements p of P_{ω_2} , we may assume that for each $\gamma \in \text{dom}(p)$, there is an $S \in 2^{<\omega}$ and $F \in [\gamma]^{<\omega}$ such that $p \upharpoonright \gamma \Vdash p(\gamma) = (S, F)$ (this is often referred to as *determined* conditions).

Lemma 6. For each $\lambda \in S_2^1$, $1 \Vdash_{P_{\omega_2}}$ "the family $\{\dot{a}_{\alpha} \cap \dot{a}_{\lambda} : \alpha \in \dot{A}_{\lambda}\}$ is a mad family on \dot{a}_{λ} ."

Proof. Let $\lambda \in S_2^1$, \dot{Y} be a P_{ω_2} -name of an infinite subset of ω and assume that $p_0 \Vdash \dot{Y} \subset \dot{a}_{\lambda}$. Towards a contradiction, assume that $p_0 \Vdash \dot{Y} \cap \dot{a}_{\beta}$ is finite for all $\beta \in \dot{A}_{\lambda}$. Since $\Vdash \dot{a}_{\lambda} \cap \dot{a}_{\beta}$ is finite for all $\beta \in \lambda \setminus \dot{A}_{\lambda}$, we have that p_0 forces that $\dot{Y} \cap \dot{a}_{\beta}$ is finite for all $\beta < \lambda$. Fix any countable elementary submodel M of $H(\theta)$ such that p_0, \dot{Y}, λ and \dot{A}_{λ} are in M. Let $\mu < \lambda$ be chosen so that $M \cap \lambda \subset \mu$ and fix any $\alpha \in (\mu, \lambda)$ such that there is a $p_1 < p_0 \upharpoonright \lambda$, such that $p_1 \Vdash \alpha \in \dot{A}_{\lambda}$ (recall that \dot{A}_{λ} is a P_{λ} -name).

Let p_2 be the meet of p_1 and p_0 , hence $p_2 \upharpoonright \lambda = p_1$ and $p_2 \upharpoonright \gamma \Vdash p_2(\gamma) = p_0(\gamma)$ for $\gamma > \lambda$. Now let $p_3 < p_2$ be chosen so that there is some m_0 with $p_3 \Vdash \dot{Y} \cap \dot{a}_\alpha \subset m_0$. We may assume there is an m_0 so that for each $\gamma \in \operatorname{dom}(p_3), p_3 \upharpoonright \gamma \Vdash S_{p_3(\gamma)} \in 2^{m_0}$. Let G_α be any P_α -generic filter with $p_3 \upharpoonright \alpha \in G_\alpha$. We may assume, by extending p_3 , that for each $\gamma \in \operatorname{dom}(p_3), F_{p_3(\gamma)} \subset \operatorname{dom}(p_3)$. In addition, we may assume that for $\gamma \in \operatorname{dom}(p_3) \setminus \lambda + 1, p_3 \upharpoonright \gamma \Vdash \lambda \in F_{p_3(\gamma)}$.

In $V[G_{\alpha}]$, the terms \dot{a}_{β} for $\beta \in F_{p_3(\alpha)}$ have all been evaluated and \dot{Y} is forced to be almost disjoint from the union. Fix any $n > m_0$, not in this finite union, such that there is a $q \in P_{\omega_2} \cap M$ such that $q \upharpoonright \alpha \in G_{\alpha}$, q is compatible with p_3 , and $q \Vdash n \in \dot{Y}$. We may further assume that there is an $n < m_1 \in \omega$ such that for each $\gamma \in \operatorname{dom}(q) \setminus \alpha$, $q \upharpoonright \gamma \Vdash S_{\gamma} = S_{q(\gamma)} \in 2^{m_1}$. Just as we did with p_3 , we may also assume that for each $\gamma \in \operatorname{dom}(q)$, $F_{q(\gamma)} \subset \operatorname{dom}(q)$. Recall that since $q \in M$, we have that $\operatorname{dom}(q) \cap (\mu, \lambda)$ is empty. Since q is compatible with p_3 , we have that for each $\gamma \in \operatorname{dom}(q) \cap \operatorname{dom}(p_3)$, and $m_0 \leq k < m_1$ such that $S_{\gamma}(k) = 1$, and each $\beta \in F_{p_3(\gamma)}$, there is an extension r of $p_3 \upharpoonright \gamma$ and $q \upharpoonright \gamma$ so that $r \Vdash k \notin \dot{a}_{\beta}$.

We define $p_4 < p_3$, q so that $p_4 \Vdash n \in \dot{a}_{\alpha}$. Let $p_4 \upharpoonright \alpha$ be any member of G_{α} below both $p_3 \upharpoonright \alpha$ and $q \upharpoonright \alpha$ and so that $S_{p_4(\gamma)} \in 2^{<\omega} \setminus 2^{<m_1}$ for all $\gamma \in \operatorname{dom}(p_4) \cap \alpha$. Define $F_{p_4(\alpha)}$ to be $F_{p_3(\alpha)}$ and $S_{p_4(\alpha)} = S_{p_3(\alpha)} \cap 0 \dots 010 \dots 0 \in 2^{m_1}$ where the 1 occurs at position n (hence $n \in \dot{a}_{\alpha}$). For $\gamma \in \operatorname{dom}(p_3) \setminus (\operatorname{dom}(q) \cup \alpha + 1)$, let $S_{p_4(\gamma)}$ be equal to $S_{p_3(\gamma)} \cap 0 \dots 0 \in 2^{m_1}$ and $F_{p_4(\gamma)}$ is equal to $F_{p_3(\gamma)}$. For $\gamma \in \operatorname{dom}(q)$, set $S_{p_4(\gamma)} = S_{q(\gamma)} \in 2^{m_1}$ and $F_{p_4(\gamma)} = F_{p_3(\gamma)} \cup F_{q(\gamma)}$. Note that $q \upharpoonright \lambda \Vdash n \in \dot{a}_{\lambda}$ since $p_0 \Vdash \dot{Y} \subset \dot{a}_{\lambda}$ and so $\lambda \in \operatorname{dom}(q)$. Furthermore, $S_{\gamma}(n) = 0$ for $\gamma \in \operatorname{dom}(p_3) \cap \operatorname{dom}(q) \setminus (\lambda + 1)$ since $\lambda \in F_{p_3(\gamma)}$ and p_3, q are compatible. Since $p_3 \Vdash \alpha \in \dot{A}_{\lambda}$, it follows that $\alpha \notin F_{p_3(\lambda)}$. It certainly follows that $p_4 \Vdash n \in \dot{a}_{\alpha}$. We check that $p_4 < p_3$. The previous paragraph shows that $p_4 \upharpoonright \gamma \Vdash S_{p_4(\gamma)}(k) = 0$ for all $k \in \dot{a}_{\alpha} \setminus \operatorname{dom}(S_{p_3(\gamma)})$ for all $\gamma \in \operatorname{dom}(p_3)$ for which $\alpha \in F_{p_3(\gamma)}$. Now we consider other ordinals in the various $F_{p_3(\gamma)}$. It is also true, by construction, that for each $\gamma \in \operatorname{dom}(q) \cap \operatorname{dom}(p_3)$ and each $\beta \in F_{p_3(\gamma)} \setminus (\operatorname{dom}(q) \cup \{\alpha\}), p_4 \upharpoonright \gamma \Vdash \dot{a}_{\beta} \cap [m_0, m_1)$ is empty. In addition, if $\beta \in F_{p_3(\gamma)} \cap \operatorname{dom}(q)$, then $q \upharpoonright \gamma \Vdash S_{\gamma}(k) = 0$ for each $k \in [m_0, m_1) \cap \dot{a}_{\beta}$ since $\beta \in \operatorname{dom}(q)$ and p_3, q are compatible. Putting this all together, we have that for each $\gamma \in \operatorname{dom}(q) \setminus \alpha = \operatorname{dom}(q) \setminus \lambda$ and each $\beta \in F_{p_3(\gamma)}$ (which is empty if $\gamma \notin \operatorname{dom}(p_3)$),

$$p_4 \upharpoonright \gamma \Vdash S_{p_4(\gamma)}(k) = S_{\gamma}(k) = 0$$
 for each $k \in \dot{a}_\beta \setminus \operatorname{dom}(S_{p_3(\gamma)})$.

For all $\gamma \in \operatorname{dom}(p_3) \setminus \operatorname{dom}(q) = \operatorname{dom}(p_4) \setminus \operatorname{dom}(q)$ and $k \in \operatorname{dom}(S_{p_4(\gamma)}) \setminus \operatorname{dom}(S_{p_3(\gamma)})$, the only case where $S_{p_4(\gamma)}(k) = 1$ is when $\gamma = \alpha$ and k = n. In this case, we chose $n \notin \bigcup \{a_\beta : \beta \in F_{p_3(\alpha)}\}$. This completes the proof that $p_4 < p_3$. Similarly, it follows very easily that $p_4 < q$ since for all $\gamma \in \operatorname{dom}(q)$, $S_{p_4(\gamma)} = S_{q(\gamma)}$.

Now that we have $p_4 < p_3, q$, we observe that $p_4 \Vdash n \in \dot{a}_{\alpha} \cap \dot{Y} \setminus m_0$, which is the contradiction we seek.

3. Proof of Main Theorem

In this section we apply Lemma ?? to prove Theorem ??.

Definition 7. A sequence $\{A_{\alpha} : \alpha \in S_2^1\}$ is a \diamond -sequence on S_2^1 if for each $\alpha \in S_2^1$, $A_{\alpha} \subset \alpha$, and for each $T \subset \omega_2$, the set $\{\lambda \in S_2^1 : T \cap \lambda = A_{\lambda}\}$ is stationary. The statement $\diamond_{S_2^1}$ is the assertion that a \diamond -sequence on S_2^1 exists.

It is well-known that $\Diamond_{S_2^1}$ is consistent and implies that $2^{\omega_1} = \omega_2$. The base set for our poset P_{ω_2} defined in Definition ?? is the family \mathcal{P} of functions with domain a finite subset of ω_2 and range contained in $2^{<\omega} \times [\omega_2]^{<\omega}$. Therefore, we may think of subsets of $\mathcal{P} \times \omega_2$ as potential P_{ω_2} -names of subsets of ω_2 . Recall that for each $\beta \in \omega_2$, $\check{\beta}$ is the canonical P_{ω_2} -name for β and each subset of $P_{\omega_2} \times \{\check{\beta} : \beta \in \omega_2\}$ is a P_{ω_2} -name of a subset of ω_2 . We can abuse notation slightly and treat subsets of $P_{\omega_2} \times \omega_2$ as though they were such a name.

Let f be any 1-1 function from ω_2 onto $\mathcal{P} \times \omega_2$. For each $\alpha \in S_2^1$, fix any ω_1 -sequence, C_{α} , of successor ordinals cofinal in α . For each $\alpha \in S_2^1$, we recursively define \dot{A}_{α} (and therefore P_{α}):

$$\dot{A}_{\alpha} = \begin{cases} f(A_{\alpha}) & \text{if } f(A_{\alpha}) \text{ is a } P_{\alpha}\text{-name and } 1 \Vdash f(A_{\alpha}) \text{ is cofinal in } \alpha \setminus S_2^1 \\ \check{C}_{\alpha} & \text{otherwise.} \end{cases}$$

Lemma 8. The family $\{\dot{a}_{\beta} : \beta \in \omega_2 \setminus S_2^1\}$ is forced to be a mad family on ω .

Proof. A routine density argument (which we leave to the reader) shows that for each P_{ω_2} -name, \dot{Y} , of an infinite subset of ω , and each $p \in P_{\omega_2}$, there is an $\alpha < \omega_2$ and a q < p such that $q \Vdash \dot{Y} \cap \dot{a}_{\alpha}$ is infinite. If $\alpha \notin S_2^1$, we are done, while if $\alpha \in S_2^1$, we can apply Lemma ??.

Proof of Theorem ??. Assume $\diamondsuit_{S_2^1}$ and let \dot{A}_{α} and the iteration sequence $\{P_{\alpha}, \dot{Q}_{\alpha} : \alpha \in \omega_2\}$ be defined as above. Let G be a P_{ω_2} -generic filter and for each $\alpha \in \omega_2$, let $a_{\alpha} = \operatorname{val}_G(\dot{a}_{\alpha})$. Our desired family is $\mathcal{A} = \{a_{\beta} : \beta \in \omega_2 \setminus S_2^1\}$. By Lemma ??, \mathcal{A} is a mad family on ω . Assume that $\mathcal{B} \subset \mathcal{A}$ has size $\omega_2 = \mathfrak{c}$. Let $I = \{\beta \in \omega_2 : a_{\beta} \in \mathcal{B}\}$ and let $\dot{I} \subset P_{\omega_2} \times \omega_2$ be a (pseudo) P_{ω_2} -name for I in the ground model. We now

ALAN DOW

work in the ground model. We may (and do) assume that for each $\beta \in \omega_2$, the set of $p \in P_{\omega_2}$ such that $(p, \beta) \in \dot{I}$ is countable (since P_{ω_2} is ccc, there is such a name for I). In addition, we may assume that 1 forces that \dot{I} is unbounded in ω_2 and disjoint from S_2^1 .

Let $T = f^{-1}(\dot{I})$. It follows easily that there is a closed and unbounded $C \subset \omega_2$ such that for each $\gamma \in C$ and $\beta < \gamma$ and each $p \in P_{\omega_2}$ such that $(p,\beta) \in \dot{I}$, $\operatorname{dom}(p) \subset \gamma$ and $f(\beta) \in P_{\gamma} \times \gamma$. Moreover, since P_{β} has cardinality less than ω_2 for each $\beta < \omega_2$, we may assume that for each $\gamma \in C$ and each $\beta < \gamma$ and $p \in P_{\beta}$, there is $\zeta \in \gamma \cap T$ such that $f(\zeta) = (q,\xi)$ for some $\xi > \beta$ and q < p (hence $1 \Vdash_{P_{\gamma}} f(T \cap \gamma) \cap (\beta, \gamma) = \dot{I} \cap (\beta, \gamma) \neq \emptyset$).

By $\Diamond_{S_2^1}$, there is a $\lambda \in C \cap S_2^1$ such that $T \cap \lambda = A_\lambda$. Since $\lambda \in C$, it follows that $f(A_\lambda) = f(T \cap \lambda)$ is a P_λ -name of a subset of $\lambda \setminus S_2^1$ which is forced to be cofinal in λ . It follows that \dot{A}_λ is $f(A_\lambda)$ and that $1 \Vdash_{P_\lambda} \dot{I} \cap \lambda = \dot{A}_\lambda$. By Lemma ??, we conclude that, in V[G], $\{a_\beta \cap a_\lambda : \beta \in I \cap \lambda\}$ is a mad family on a_λ . Therefore we have shown that with $X = a_\lambda$, $\mathcal{B} \upharpoonright X$ has cardinality ω_1 and is a mad family on X.

References

[Sim80] Petr Simon, A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolin. 21 (1980), no. 4, 749–753.

Department of Mathematics, UNC-Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001

E-mail address: adow@uncc.edu

URL: http://www.math.uncc.edu/~adow