
TWO TO ONE IMAGES AND PFA

ALAN DOW

Abstract. We prove that all maps on N∗ that are exactly two to one are
trivial if PFA is assumed.

1. Introduction

A map f : X → K is precisely two to one if for each k ∈ K, there are exactly
two points of X that map to k. For the remainder of the paper we are assuming
that f is a precisely two to one mapping from N∗ onto some (compact) space K.
The question of whether there are non-trivial two to one maps on N∗ is motivated
by the papers of van Douwen [vD93] and R. Levy [Lev04]. In particular, Levy asks
if every two to one image of N∗ is homeomorphic to N∗. In fact there are several
questions in [Lev04] that are consistently answered by the results in this paper. The
behavior of two to one maps on N∗ when CH is assumed is investigated in [DT04].
It is well known that van Douwen has shown in [vD93] that there is a compact
separable space which is a ≤2 to one image of N∗ and this pathology motivates
the current study. R. Levy showed that if f is precisely two to one on N∗ then K
will have weight equal to c and countable discrete subsets of K will have closure
homeomorphic to βN .

In the two to one mapping context, it is natural to say that a mapping g from X to
K is trivial if there are disjoint clopen subsets A,B of X such that g[A] = g[B] = K.

Proposition 1. If f is locally one to one (every point has a neighborhood on which
f is one to one), then N can be partitioned into a∪ b such that f [a∗] = f [b∗] = K.
Since f is two to one, f is then a homeomorphism on each of a∗ and b∗.

Proof. If each point of N∗ has a neighborhood on which f is one to one, then there
is a finite cover by such neighborhoods. Let A be a finite partition of N such that
f is one to one on each a∗ ∈ A. Enumerate A = {ai : i ≤ n}. We will use induction
on n. Consider the compact set B0 = f−1(f [a∗0]) \ a∗0 and note that f [B0] = f [a∗0].
Since f is two to one, f [B0 ∩ a∗1] is disjoint from f [

⋃
1<j a∗j ]. Therefore there is a

c1 ⊂ a1 such that B0 ∩ a∗1 ⊂ c∗1 and f [c∗1] also disjoint from f [
⋃

1<j a∗j ]. Since f is
precisely two to one, and is one to one on c∗1, it follows that f [c∗1] ⊂ f [a∗0]. That
is, we have shown that B0 ∩ a∗1 = c∗1. The same argument applies for each i > 0
replacing 1, hence B0 is equal to b∗0 for some infinite b0 ⊂ N \ a0. It follows that
the restriction of f to the union of {(a1 \ b0)∗, (a2 \ b0)∗, . . . , (an \ b0)∗} is precisely
two to one and is one to one on each piece. �
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The statements of PFA, OCA, MA and MA(ω1) can be found in [Tod89] and
some familiarity will be assumed. Basic information about N∗ can be found in
[Wal74]. Of course it is well known (see [Vel93]) that OCA and MA implies that
the mapping, f−1 ◦ f from a∗ to b∗ in the above proposition will actually be a
trivial mapping. For a function f , we will use f(·) when the function is applied to
a member of its domain and f [·] when we applying to a set of elements from the
domain.

Definition 2. Let J be the collection of those sets a ∈ [ω]ω such that, on a∗, f is
precisely two to one and locally one to one. Let J ′ denote the ideal generated by
J .

Proposition 3. If a0, a1 are disjoint infinite subsets of N and f is one to one on
each of a∗0 and a∗1, then f [a∗0] ∩ f [a∗1] is clopen in K and is equal to f [c∗] for some
c ⊂ a0 ∪ a1 in J .

Proof. Set A = N \(a0∪a1) and note that f [A∗] is disjoint from f [a∗0]∩f [a∗1] by the
two to one property of f . Thefore K \ f [A∗] is open and is easily seen to be equal
to the closed set f [a∗0] ∩ f [a∗1]. Therefore there is an c ⊂ N such that c∗ = f−1(U)
where U is the clopen set f [a∗0] ∩ f [a∗1]. It is now routine to verify that c is as
required since f [c∗] = f [(a0 ∩ c)∗] = f [(a1 ∩ c)∗] and f is two to one. �

Proposition 4 (OCA + MA). For each a ∈ J , there will be a permutation ha on
some cofinite subset of a such that ha is never the identity, h2

a is the identity, and
for each b ⊂ a, f [b∗] = f [ha[b]∗] and is clopen.

Proof. By Proposition 1, a can be partitioned as a0∪a1 such that f [a∗0] = f [a∗1]. It
follows easily that f−1 ◦ f restricts to a homeomorphism from a∗0 to a∗1. By OCA
and MA, this is a trivial homeomorphism and ha is the witness together with its
inverse (with possibly finitely many elements of a removed). For each b ⊂ a, each
of f [(b ∩ a0)∗] = f [(h(b ∩ a0) )∗] and f [(b ∩ a1)∗] = f [(h(b ∩ a1) )∗] are clopen by
Proposition 3. �

Naturally the task is to prove that J does not generate a proper ideal. The first
step is to prove that J is not empty. We will proceed by first showing that if f is
not locally one to one, then there is a point x such that for every countable family
{An : n ∈ ω} ⊂ x, there is an A ∈ J such that A is almost contained in each An.

There are two main results. The first is Lemma 17 which is critical to establishing
that such an x exists. The second, Theorem 25, is to show that this leads to a
contradiction.

We will certainly need the following results from [Far00]

Definition 5. [Far00, 3.3.2] An ideal I ⊂ ℘(N) is ccc over fin, if there is no
uncountable family of almost disjoint subsets of N such that none are in I.

The following are consequences of OCA and MA (and therefore of PFA).

Proposition 6 (OCA + MA). [Far00, 3.8.2] If Φ : ℘(N)/fin → ℘(N)/fin is a
homomorphism, then there is an A ⊂ N and an h : A → N , such that {a ⊂ N :
Φ(a) = h−1(a)} is ccc over fin.

It will be useful to state the topological dual (a similar but slightly weaker
formulation was given in [Far00, 3.5.5]). The kernel of Φ will form an ideal of
subsets of N and so the closures of the complements will intersect to a closed set
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K ⊂ N∗. Therefore Φ−1 will induce an isomorphism from a subalgebra of ℘(N)/fin
to the clopen subsets of K. A closed set F ⊂ N∗ will be said to be ccc over fin
if there is no uncountable family of pairwise disjoint clopen subsets of N∗ each
meeting F . A closed set which is ccc over fin will be nowhere dense in N∗.

Proposition 7 (OCA + MA). If H is a continuous mapping from N∗ onto a
subset K of N∗, then there is an A ⊂ N and a function h : A → N so that H[A∗]
is clopen, H � A∗ = βh � A∗, and H[(N \A)∗] is ccc over fin.

Corollary 8 (OCA + MA). If a nowhere dense set T of N∗ is homeomorphic
to N∗, then there does not exist an uncountable family of pairwise disjoint clopen
subsets of N∗ each of which meets T .

2. Basic properties of f and K

We will have to show that K is nowhere ccc (a space is said to be nowhere ccc
if no non-empty open subset is ccc). Fix any closed subset Z of N∗ such that f
restricted to Z is irreducible (meaning no proper closed subset of Z will map onto).

Lemma 9 (MA). The set f [N∗ \ Z] is dense in K.

Proof. Let W be a non-empty open subset of K and assume, for a contradiction
that W ∩ f [N∗ \ Z] is empty. Therefore, f−1(W ) is contained in Z. Let U be a
non-empty clopen subset of Z such that U ⊂ f−1(W ). Since f � Z is irreducible,
Ja = a ∩ f−1(f [Z − a]) is nowhere dense in Z for each a clopen in Z. Also,
K \ f [Z \ U ] is a non-empty open subset of K, hence there is a b0 ∈ [N ]ω such
that f [b∗0] ⊂ K \ f [Z \ U ]. Since we are assuming f−1(f [U ]) ⊂ Z, we have that
f−1(f [b∗0]) ⊆ U . Let {bα : α ∈ c} enumerate [b0]ω. For each α ∈ c, Jα = Jb∗α is a
nowhere dense subset of b∗0. By Martin’s Axiom, it is routine to inductively choose
a sequence {dα : α < c} ⊂ [b0]ω, descending mod finite, so that d∗α ∩ Jα = ∅ for
each α < c. Therefore there is a point x ∈ b∗0 such that x /∈

⋃
{Jα : α ∈ c}. Since

f is precisely two to one, there is a point x′ 6= x such that f(x′) = f(x). Since
x′ 6= x, there is an α ∈ c such that x ∈ b∗α and x′ /∈ b∗α. Since x /∈ Jα, it follows that
x′ /∈ Z \ b∗α contradicting that f−1(f [b∗0]) ⊂ Z. �

Lemma 10 (MA). For each a ∈ [ω]ω, there is a b ∈ [a]ω such that f � b∗ is one to
one.

Proof. Since f is two to one, it will suffice to find a b ∈ [a]ω so that K = f [(N \b)∗].
If a∗ is not contained in Z, let b ⊂ a be such that b∗ ∩ Z = ∅. Since (N \ b)∗ ⊃ Z
and f [Z] = K, it follows that K = f [(N \ b)∗].

Otherwise we have that a∗ ⊂ Z. In this case, (N \ a)∗ ⊃ N∗ \ Z. By Lemma
9, f [(N \ a)∗] will contain a dense subset of K, and, being compact, will contain
K. �

Lemma 11 (MA). If f � b∗ is one to one, b ∈ [N ]ω, then the interior of f [b∗] is
equal to the union of clopen sets of the form f [c∗] for c ∈ J and c∗ ⊂ f−1(f [b∗]).

Proof. Let b be as in the hypothesis of the Lemma and let y be in the interior of
f [b∗]. Since f is one to one on b∗, there is an x ∈ (N \ b)∗ such that f(x) = y. By
continuity, there is an a1, disjoint from b such that f [a∗1] is contained in f [b∗]. If
we let a0 = b, then the Lemma now follows by Proposition 3. �

For b ⊂ N , let f+b denote the mapping f � b∗ and f−b = f � (N \ b)∗.
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Lemma 12. If f is one to one on b∗, then gb = f−1
−b ◦ f+b is an embedding of b∗

into (N \ b)∗. If gb[b∗] has some interior, say c∗, then c ∪ b contains a member of
J .

Proof. It clearly follows from the two to one assumption on f , that gb is an em-
bedding. If c ⊂ N \ b is such that c∗ is contained in gb[b∗], then f is one to one on
each of c∗ and b∗. Proposition 3 implies that c ∪ b contains some member of J (in
fact c will be in J ′). �

Proposition 13 (OCA + MA). If f is one to one on b∗, then b can be partitioned
into two, b0 and b1, such that f [b∗0] is clopen and f [b∗1] is nowhere dense.

Proof. Again let gb denote the embedding of b∗ into (N \ b)∗ given by f−1
−b ◦ f+b.

By Proposition 7, there is c ⊂ N \ b such that c∗ ⊂ gb[b∗] and gb[b∗] \ c∗ is nowhere
dense. There are b0 ⊂ b such that gb[b∗0] = c∗ and b1 = b \ b∗0 will satisfy gb[b∗1] is
nowhere dense. It follows that f [b∗0] = f [c∗] and f [b∗0] = K \ f [(N \ (b0 ∪ c)∗] is
clopen. In addition, f [b∗1] is nowhere dense in K because gb[b∗1] is equal to f−1

−b (f [b∗1])
and is nowhere dense in (N \ b)∗. �

Although we will not need this result until the next section, this still seems the
most natural place to present it.

Proposition 14. If a ∈ J then there is a c ∈ [a]ω such that c∗ ⊂ Z and f [c∗] is
disjoint from f [Z \ c∗].

Proof. By Definition 2 and Proposition 1, a can be partitioned as a0 ∪ a1 with
f [a∗0] = f [a∗1]. Since f maps Z irreducibly onto K, f [a∗] is covered by f [a∗0 ∩ Z]
and f [a∗1 ∩ Z], so assume a∗0 ∩ Z is not empty. Let W = K \ f [Z \ a∗0] ⊆ f [a∗0 ∩ Z]
and recall that W is non-empty open since f � Z is irreducible. Choose any infinite
c ⊂ a0 such that f [c∗] ⊂ W . Since f [a∗1] contains f [c∗] and f [a∗1 ∩ Z] is disjoint
from f [c∗], it follows that f [c∗] ⊆ f [a∗1 \ Z] ⊆ f [a∗0 ∩ Z]. Since f is one to one on
a∗0, we have that f [c∗] is disjoint from f [(a0 \ c)∗] and so c∗ ⊂ a∗0 ∩ Z. Finally,
since f [Z \ c∗] ⊆ f [Z \ a∗0] ∪ f [(a0 \ c)∗], we also have that f [c∗] is disjoint from
f [Z \ c∗]. �

Lemma 15 (MA). The space K is nowhere ccc.

Proof. Observe that if U,W are disjoint non-empty open subsets of Z, then K \
f [Z \ U ] and K \ f [Z \ W ] are disjoint non-empty open subsets of K. Therefore,
it suffices to show that Z is nowhere ccc. Let A ⊂ N and A∗ ∩ Z 6= ∅ and assume
that A∗ ∩ Z is ccc. Since f [Z \A∗] and f [A∗ ∩ Z] meet in a nowhere dense subset
of K, there is a clopen subset b0 of A∗ ∩ Z such that f [b0] ∩ f [Z \ A∗] is empty.
Since Z \A∗ is compact, there is a clopen set B∗ of N∗ such that Z \A∗ ⊂ B∗ and
f [b0] ∩ f [B∗] is empty.

Let B = {bα : α ∈ c} enumerate the collection of clopen subsets of b0. We may
view b0 as the Stone space of the Boolean algebra {bα : α ∈ c}. Fix an unbounded
set C ⊂ c so that for each λ ∈ C, {bα : α ∈ λ} is a subalgebra of B. Further let
{Aα : α ∈ c} enumerate all the infinite subsets of N with the property that their
closures are disjoint from Z.

For each clopen subset a of b0, let Ja = a ∩ f−1[f [Z \ a]]. Since f is irreducible
on Z, each Ja is nowhere dense in Z. Also let Yα = Z ∩ A∗ ∩ f−1[f [A∗

α]] for each
α ∈ c. Since f is one to one on A∗

α, each of f [A∗
α] and Z ∩ f−1(f [A∗

α]) are nowhere
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ccc. Since we are assuming that Z ∩ A∗ is ccc, it follows that Yα is also nowhere
dense in Z.

We inductively define a family, {aβ : β < c} of clopen subsets of A∗ ∩ Z. Let
a0 = b0. Our inductive hypotheses are that for each α < c,

(1) {aβ : β < α} has the finite intersection property;
(2) aβ is contained in one of {bβ , b0 \ bβ};
(3) for each β + 1 < α, aβ+1 is contained in aβ \ (Jaβ

∪ Yβ).

Suppose we have chosen the family {aβ : β < α}. Let Zα ⊂ b0 denote the closed
set

⋂
{aβ : β < α}. For each integer n, the selection of an is trivial, and since we

are assuming that a0 is ccc, we can assume that α ≥ ω and that Zα is nowhere
dense in Z. If α is a limit, then simply let aα equal bα if bα meets Zα, otherwise
set aα = b0 \ bα. Otherwise, α is a successor and there is a β̄ such that α = β̄ + 1.
We must avoid Jaβ̄

∪ Yβ̄ . It suffices to show that Zα is not contained in Jaβ̄
∪ Yβ̄

because then we can select aα ⊂ aβ̄ to meet Zα, miss Jaβ̄
∪ Yβ̄ and to be contained

in one of {bα, b0 \ bα}.
For each γ < α, Jaγ ∪ Yγ ∪ Zα is a nowhere dense subset of A∗ ∩ Z. Since

b0 ⊂ A∗ ∩Z is ccc, we may fix a countable family Uγ of clopen subsets of b0 so that⋃
Uγ is a dense open subset of b0 \ (Jaγ ∪ Yγ ∪ Zα). Since MA implies that c is a

regular cardinal, there is a λα ∈ C larger than α so that {aγ} ∪ Uγ ⊂ {bζ : ζ < λα}
for each γ < α. Let Bα be the Boolean subalgebra {bζ : ζ < λα}. It follows
that there is a map gα from b0 onto S(Bα), the Stone space of Bα, such that
g−1

α (bζ) = bζ for each ζ < λα. Let Fα = gα[Zα]. It follows that Fα is also equal
to the intersection of the family {aγ : γ < α}, but in the different Stone space of
course. Our assumptions have guaranteed that Fα is nowhere dense in S(Bα).

Since B is ccc, so is Bα. In addition, Bα is of cardinality less than c, thus it follows
from MA that Bα is σ-centered and S(Bα) is separable. Recall that α = β̄ + 1 and
let Uα denote the dense open subset of S(Bα) which is generated by the family Uβ̄ .
By construction, g−1

α (Uα) is disjoint from Zα. Let D be a countable dense subset
of Uα. The neighborhood filter of Fα traces a filter on D which has a filter base of
cardinality less than c. Since we are assuming Martin’s Axiom, there is a countable
set {xn : n ∈ ω} ⊂ D which is mod finite contained in every member of that filter
base. In other words, the sequence {xn : n ∈ ω} converges to Fα. For each n, let
zn ∈ Z ∩ b0 be chosen so that gα(zn) = xn. Note that since xn ∈ Uα, we have
ensured that zn /∈ Jaβ̄

∪ Yβ̄ ∪ Zα and all but finitely many are in aβ̄ . Therefore all
the limit points of {zn : n ∈ ω} are in Zα. By passing to a subsequence, we can
assume that f(zn) 6= f(zm) for n < m.

For each n, let z′n ∈ N∗ be distinct from zn such that f(z′n) = f(zn). Let
T = f [Zα] which is a nowhere dense subset of K. By construction, the image
of {zn : n ∈ ω} is contained in {f(zn) : n ∈ ω} ∪ T . Since K has no isolated
points, and {f(zn) : n ∈ ω} is a relatively closed subset of Z \ T , it is discrete and
nowhere dense. Since f maps {zn : n ∈ ω} ∪ {z′n : n ∈ ω} onto the discrete set
{f(zn) : n ∈ ω} by a two to one map, {zn : n ∈ ω} ∪ {z′n : n ∈ ω} is a discrete
subset of N∗. It follows that {zn : n ∈ ω} and {z′n : n ∈ ω} have disjoint closures
and f [{zn : n ∈ ω}] = f [{z′n : n ∈ ω}].

Let x ∈ Z be a limit point of {zn : n ∈ ω}, hence x ∈ Zα. There is a limit
point x′ of {z′n : n ∈ ω} such that f(x) = f(x′). Clearly x ∈ aβ̄ and we claim that
x /∈ Jaβ̄

∪ Yβ̄ . To show this it is sufficient (and necessary) to show that x′ is not in
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(Z \ aβ̄) ∪A∗
β̄
. For each n, zn /∈ Yβ̄ , hence z′n /∈ A∗

β̄
. Since A∗

β̄
is clopen and x′ is a

limit of {z′n : n ∈ ω} it follows that x′ /∈ A∗
β̄
. The collection {z′n : n ∈ ω} ∩ Z has

all but finitely of its elements contained in aβ̄ , which is clopen in Z, hence none of
the limit points are in Z \ aβ̄ . We will be finished if we show that the closure of
{z′n : n ∈ I} = {z′n : n ∈ ω} \ Z is disjoint from Z. Since {zn : n ∈ ω} is a nowhere
dense subset of b0 and f [b0] is disjoint from f [B∗], f [{z′n : n ∈ ω}] is a nowhere
dense subset of K \ f [B∗]. It follows now that Z ∩ {z′n : n ∈ ω} is a nowhere dense
subset of Z \ B∗. Since Z \ B∗ is ccc, there is a collection {cn : n ∈ ω} of clopen
subsets of N∗ such that each is disjoint from {z′n : n ∈ ω} and the union contains a
dense subset of Z \B∗. For each n ∈ I, let dn be a clopen subset of N∗ \B∗ such
that z′n ∈ dn and dn ∩ (Z ∪

⋃
{ck : k ≤ n}) is empty. For each n ∈ ω, shrink cn

by removing
⋃
{dk : k < n}; note that this does not change cn ∩ Z. Then we have

that
⋃

n∈I dn and B∗ ∪
⋃

n cn are disjoint, and as is well-known, they have disjoint
closures in N∗. Since the latter closure contains Z we have finished the proof. �

3. tree-like families

An embedding of N∗ into N∗ is said to be trivial, if the embedding lifts to an
embedding of βN into βN . It is an open problem to determine if there can be a
non-trivial embedding of N∗ into N∗ under OCA and MA (see [HvM90, Problem
219] and [Far00, Question 3.14.2]). If there are none, then it is easy to show that
that the set b1 in Proposition 13 would be empty by using Levy’s proof from [Lev04,
2.4] which shows that the preimages of closures of countable discrete sets are again
closures of countable discrete sets. The main result of this section is used as an
alternative approach.

The set of finite sequences {0, 1}<ω has a standard tree ordering by set inclusion.
A family A of subsets of N is said to be tree-like if there is an embedding T of N into
{0, 1}<ω such that for each A ∈ A, T [A] is contained in a single branch of {0, 1}<ω,
and distinct members of A are sent to distinct branches (see [Far00, 3.12.2]).

Proposition 16 (MA(ω1)). [Vel93, 2.3] Let A be an uncountable almost disjoint
family of infinite subsets of N . Then there is an uncountable B ⊂ A and for each
a ∈ B a partitition a = a0 ∪ a1 such that the family Bi = {ai : a ∈ B} is tree-like
for each i ∈ {0, 1}.

Lemma 17 (OCA + MA). Suppose that {aα : α ∈ ω1} is a tree-like family of
subsets of N with the property for all α there is a bα ∈ [aα]ω such that f(b∗α) is
disjoint from f [(N \ aα)∗]. Then there is an α such that, with b = bα, gb[b∗] has
interior.

Proof. We may assume that f is one-to-one on b∗α by Lemma 10. For each c ⊂ aα

define F (c) ⊂ bα as follows. Since f [(aα \ bα)∗] contains f(b∗α) and f is precisely
two to one, there will be a subset F (c) of bα such that

f [F (c)∗] = f(b∗α) ∩ f [(c \ bα)∗] .

The definition of F on ℘(aα) can also be expressed as F (c)∗ is the clopen subset
of b∗ = b∗α which is equal to g−1

b [c∗ ∩ gb(b∗)].
It is easily seen that F is a homomorphism from ℘(aα)/fin onto ℘(bα)/fin. By

Corollary 8, if we find some α and some uncountable family of pairwise disjoint
clopen sets each of which meets gbα

[b∗α], then this copy of N∗ will not be nowhere
dense. Equivalently, by Farah [Far00] (Proposition 6), if for some α the kernel of
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F � ℘(aα) is not ccc over fin, then there is a c ⊂ aα \ bα such that F is a trivial
isomorphism from ℘(c) to ℘(bα). We proceed as in [Vel93].

Let X denote the set of all pairs 〈c, d〉 such that for some α, d ⊂ c ⊂ aα \ bα,
and each of F (d) and F (c \ d) are not 0.

We define a set K0 ⊂ [X ]2 according to {〈c, d〉, 〈c̄, d̄〉} ∈ K0 providing

(1) c ⊂ aα and c̄ ⊂ aᾱ implies α 6= ᾱ
(2) c ∩ F (c̄) and c̄ ∩ F (c) are empty;
(3) c ∩ d̄ = c̄ ∩ d;
(4) F (c) ∩ F (d̄) is not equal to F (c̄) ∩ F (d).

The appropriate separable metric topology on X (given by considering it as
embedded in ℘(ω)4 by the mapping sending 〈c, d〉 to 〈c, d, F (c), F (d)〉) will result
in K0 being an open subset of [X ]2 (see [Vel93]).

Assume that Y is an uncountable subset of X and that [Y]2 ⊂ K0. Let I ⊂ ω1

be the set of α such that there is 〈c, d〉 ∈ Y such that c ⊂ aα. Also let 〈cα, dα〉 ∈ Y
be chosen for each α ∈ I so that cα ⊂ aα. Since [Y]2 ⊂ K0 and Y is uncountable,
it follows that I is uncountable.

Let C =
⋃
{cα : α ∈ I} and D =

⋃
{dα : α ∈ I}. Let 〈c, d〉 and 〈c̄, d̄〉 be an

arbitrary distinct pair from Y. Note that c ∩ (F (c) ∪ F (c̄)) is empty. It follows
that C is disjoint from

⋃
{F (c) : (∃d)〈c, d〉 ∈ Y}. Also, D ∩ c will equal d for each

〈c, d〉 ∈ Y. Hence (C \D) ∩ c = c \ d for each 〈c, d〉 ∈ Y.
Now consider the two families {F (dα) : α ∈ I} and {F (cα \dα) : α ∈ I}. Assume

that E ⊂ ω and that E ∩ F (cα) =∗ F (dα) for each α ∈ I. Let n ∈ ω and I ′ ∈ [I]ω1

such that (E ∩ F (cα))∆F (dα) is contained in n for all α ∈ I ′. Let α 6= β both be
in I ′. We may assume that F (cα) ∩ n = F (cβ) ∩ n, F (dα) ∩ n = F (dβ) ∩ n. Also,
we may assume that F (dα) \ F (cα) is contained in n for all α ∈ I ′.

Since {(cα, dα), (cβ , dβ)} ∈ K0, there is some j ∈ F (cα) ∩ F (dβ) such that j /∈
F (cβ) ∩ F (dα). Clearly j must be larger than n. Since j ∈ F (dβ), it follows that
j ∈ F (cβ). Therefore j is in E. On the other hand, since j is in E ∩F (cα), it must
follow that j ∈ F (dα), contradicting that j /∈ F (cβ) ∩ F (dα).

It follows then that there is no such E. This means that
⋃
{F (dα)∗ : α ∈ I} and⋃

{F (cα \ dα)∗ : α ∈ I} do not have disjoint closures in N∗. Fix any x ∈ N∗ which
is in each of the closures. Notice that x /∈ C∗ since C is disjoint from F (cα) for all
α ∈ I.

Since f [d∗α] is equal to f [F (dα)∗] and f [(cα \ dα)∗] = f [(F (cα \ dα))∗], it follows
that f(x) is in the image of the closure of

⋃
α∈I d∗α and of

⋃
α∈I(cα\dα)∗. Therefore

f(x) is in the image of D∗ and of (C \ D)∗. However this contradicts that f(x)
only has two points mapping to it as we have found points in D∗, (C \ D)∗, and
(N \ C)∗.

Therefore by OCA, X can be expressed as a countable union
⋃

n Yn such that
[Yn]2 ∩ K0 is empty for each n. For each n, there is a countable Yn ⊂ Yn such
that for each integer m and each 〈c, d〉 ∈ Yn, there is some 〈c̄, d̄〉 ∈ Yn such that
c ∩m = c̄ ∩m, d ∩m = d̄ ∩m, F (c) ∩m = F (c̄) ∩m, and F (d) ∩m = F (d̄) ∩m.

Fix any α ∈ ω1 such that c̄ ∩ aα is finite for each 〈c̄, d̄〉 ∈
⋃

n Yn. Construct an
increasing sequence {kn : n ∈ ω} of integers so that for each n and each i ≤ n
and each sequence c′, d′, a′, b′ of subsets of kn, if there is a 〈c, d〉 ∈ Yi such that
c ∩ kn = c′, d ∩ kn = d′, F (c) ∩ kn = a′, and F (d) ∩ kn = b′, then there is a
pair 〈c, d〉 ∈ Yi that also has this property, and in addition, aα ∩ aᾱ ⊂ kn+1 where
c ⊂ aᾱ.
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Define Ei to be
⋃
{aα ∩ [k3n+i, k3n+i+1) : n ∈ ω} for i ∈ 3. There is an i ∈ 3

such that F (Ei) is not finite. There is a j ∈ 3 such that Ej ∩ F (Ei) is not finite.
Fix any c ⊂ Ei such that F (c) is infinite and is contained in Ej modulo finite. Let
d0, d1, d2 be a partition of c so that F (d0), F (d1), and F (d2) are each infinite. For
simplicity we will assume that {i, j} = {1, 2}. Note that for all x ⊂ d1, the pair
〈c, d0 ∪ x〉 is a member of X (since c \ (d0 ∪ x) contains d2) and we may assume
that (c ∪ F (c)) ∩ [k3m, k3m+1) is empty for all n.

It can now easily be shown that F � ℘(d1) is “σ-Borel” (see [Far00, p103])
which, in the case that F is an isomorphism, was shown to imply F � ℘(d1) has
a Borel representation ([Vel93, 2.2]) and would complete the proof by Proposition
7. However it is pointed out in [Far00, p103] that this is not sufficient in the case
that F is only a homomorphism as it is here. The proof of [Far00, 3.12.1] certainly
handles a very similar situation but is not directly applicable to ours. Therefore to
finish the proof we will directly produce an uncountable family of clopen subsets of
N∗ each of which will meet gbα

[b∗α].
We construct an increasing sequence {mi : i ∈ ω} ⊂ {k3` : ` ∈ ω} together with

subsets ti ⊂ d1∩ [mi,mi+1) and possibly infinite sets {Ji : i ∈ ω} by induction. We
can let m0 = 0 and J−1 = ∅. For each J ⊂ N , let D(J) = d0∪ (d1∩

⋃
{[k3j , k3j+3) :

j ∈ J}).
Given that mi and Ji−1 have been chosen we will construct the set ti also by a

finite induction and will then choose mi+1. Fix an enumeration {(e`, n`, n
′
`) : ` < L}

of ℘(mi)×i×i. We will construct {t(i, `) : ` < L} such that t(i+1, `)∩max(t(i, `))+
1 = t(i, `) and will let ti =

⋃
{t(i, `) : ` < L}. Our inductive hypotheses on Ji are

that F (D(N \ Ji)) \ F (d0) is infinite and that if j ∈ Ji \ Ji−1, then k3j > mi.
As we define t(i, `), we will also define J(i, `) and will set Ji =

⋃
{J(i, `) : ` < L}.

For convenience let t(i,−1) = ∅ and J(i,−1) = Ji−1.
Suppose we have chosen t(i, ` − 1) and J(i, ` − 1) such that F (D(N \ J(i, ` −

1))) \ F (d0) is infinite. Let n = n` and n′ = n′`.
First we simply try to get into Yn. That is, choose, if possible, J ′(i, `) ⊃ J(i, `−1)

such that J ′(i, `)∩max(t(i, `−1)) ⊂ J(i, `−1), 〈c,D(J ′(i, `))〉 ∈ Yn′ , and F (D(N \
J ′(i, `))) \F (d0) is infinite. If there is no such J ′(i, `), then let J ′(i, `) = J(i, `− 1).

Next we try to get into Yn with infinite growth. That is, choose, if possible, an
x ⊂ d1 \max(t(i, `− 1)) such that

F (e` ∪ t(i, `− 1) ∪D(J ′(i, `)) ∪ x) \ F (D(J ′(i, `− 1)))

is infinite and 〈c, d0 ∪ e` ∪ t(i, `− 1) ∪D(J(i, `− 1)) ∪ x〉 ∈ Yn.
If such an x exists, call this case one, and choose some large enough j′ ∈ x such

that there is a k3`′ < j′ such that `′ /∈ J ′(i, `) and

F (e` ∪ t(i, `− 1) ∪D(J ′(i, `)) ∪ x) \ F (D(J ′(i, `)))

contains some element of F (c)∩ [mi, k3`′). We define J(i, `) = J ′(i, `), and t(i, `) =
t(i, `− 1) ∪ (x ∩ j + 1). Note that `′ will not be in Ji.

On the other hand, if no such an x exists, then choose J(`, i) ⊃ J ′(`, i) such that
each of

F (e` ∪ t(i, `− 1) ∪D(J(i, `))) \ F (D(J ′(i, `)))

and

F (D(N \ J(i, `)))
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are infinite. Again choose an `′ /∈ J ′(i, `) so that k3`′ > max(t(i, `− 1)), and ensure
that J(i, `) ∩ `′ + 1 equals J ′(i, `) ∩ `′. Also ensure that d1 ∩ [k3`′ , k3`′+3) is not
empty and let t(i, `) = t(i, `− 1) ∪ (d1 ∩ [k3`′ , k3`′+3)).

Let mi+1 = k3n be chosen so that 3n /∈ Ji =
⋃
{J(i, `) : ` < L} and ti =⋃

{t(i, `) : ` < L} ⊂ [mi,mi+1).
Let Jω =

⋃
i Ji and note that by construction D(Jω)∩mi+1 = D(Ji)∩mi+1. For

each infinite I ⊂ ω, set eI =
⋃
{ti : i ∈ I} ⊂ d1. We have found our uncountable

family since we will show that each clopen set e∗I meets gbα [b∗α]. To show this, it
suffices to show that F (eI) is infinite. Since F (eI) contains F (D(Jω)∪eI)\F (D(Jω))
mod finite, it suffices to show this latter set is infinite.

Since 〈c,D(Jω)∪ eI〉 ∈ X , there is an n such that 〈c,D(Jω)∪ eI〉 ∈ Yn. There is
also an n′ such that 〈c,D(Jω)〉 ∈ Yn′ . Let i ∈ I be any integer greater than both
n and n′. We will show that F (D(Jω) ∪ eI) \ F (D(Jω)) is not contained in i.

Set d = D(Jω)∪ eI and fix ` such that at stage i in the construction of the mi’s,
e` = d ∩ mi and n` = n, and n′` = n′. We consider the properties of t(i, `). Let
Y = D(J ′(i, `)). Since 〈c,D(Jω)〉 is in Yn′ , it follows that we were able to ensure
that 〈c,D(J ′(i, `))〉 = 〈c, Y 〉 is in Yn′ .

Recall that there was an `′ such that mi < k3`′ < mi+1 and that the maximum
of t(i, `) was greater than k3`′ . If J(i, `) \ J ′(i, `) was infinite, then we know F (e` ∪
t(i, `− 1)∪D(J(i, `))) \ F (Y ) is infinite. Therefore F (d) \ F (Y ) is infinite because
d ⊃ e` ∪ t(i, ` − 1) ∪ D(J(i, `)). If we set x̄ = d \ max(t(i, ` − 1)), then x̄ would
be a witness to the fact that we should have been in case one when defining t(i, `).
Therefore, in fact, J(i, `) does equal J ′(i, `) and at stage ` we were able to find
some x as in case one. In addition, t(i, `) was defined as t(i, `− 1) ∪ (x ∩ j + 1) for
some j ∈ x \ k3`′ .

Since e` = d ∩mi and i ∈ I, we have that

d ∩ k3`′ = (e` ∪ t(i, `− 1) ∪D(J ′(i, `)) ∪ x) ∩ k3`′ .

That is, if we let dx = e` ∪ t(i, ` − 1) ∪ D(J ′(i, `)) ∪ x, then 〈c, dx〉 ∈ Yn and
dx ∩ k3`′ = d ∩ k3`′ .

Now also 〈c, d〉 ∈ Yn, so there is a pair 〈c̄, d̄〉 ∈ Yn such that c̄ ∩ k3`′ = c ∩ k3`′ ,
d̄ ∩ k3`′ = d ∩ k3`′ , F (c̄) ∩ k3`′ = F (c) ∩ k3`′ , and F (d̄) ∩ k3`′ = F (d) ∩ k3`′ . In
addition, if we let ᾱ ∈ ω1 such that c̄ ⊂ aᾱ, we have that aᾱ∩aα ⊂ k3`′+1. Further,
recall that (c∪F (c))∩ [k3`′ , k3`′+1) is empty. Observe also that Y ∩ k3`′ is equal to
D(Jω) ∩ k3`′ .

Each of the following are straightforward consequences:

(1) c ⊂ aα and c̄ ⊂ aᾱ and α 6= ᾱ
(2) c ∩ F (c̄) and c̄ ∩ F (c) are empty: because c ∩ F (c̄) ⊂ c ∩ (F (c̄) ∩ aα) ⊂

c∩(F (c̄)∩k3`′+1) ⊂ c∩F (c) and similarly, c̄∩F (c) ⊂ c̄∩F (c)∩k3`′ ⊂ c∩F (c)
(3) c ∩ d̄ = c̄ ∩ d: because each of c ∩ d̄ and c̄ ∩ d are equal to d ∩ k3`′ .

Therefore, the only reason that {〈c, d〉, 〈c̄, d̄〉} is not in K0 is that F (c) ∩ F (d̄)
must be equal to F (c̄) ∩ F (d). The same is true with dx in place of d, hence
F (c) ∩ F (d̄) must be equal to F (c̄) ∩ F (dx). By the choice of x, there is some
integer m′ ∈ F (c)∩ [mi, k3`′)∩F (dx) \F (Y ), and therefore m′ ∈ F (c̄)∩F (d̄). This
then means that m′ ∈ F (d).

By the same reasoning, there is a pair 〈c′, d′〉 ∈ Yn′ such that c′ ∩ k3`′ = c∩ k3`′ ,
d′∩k3`′ = D(Jω)∩k3`′ , F (c′)∩k3`′ = F (c)∩k3`′ , and F (d′)∩k3`′ = F (D(Jω))∩k3`′ .
In addition, if we let α′ ∈ ω1 such that c′ ⊂ aα′ , we have that aα′ ∩ aα ⊂ k3`′+1.
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Further, recall that (c ∪ F (c)) ∩ [k3`′ , k3`′+1) is empty. Repeating the argument
above with 〈c,D(Jω)〉 and 〈c′, d′〉 in place of 〈c, d〉 and 〈c̄, d̄〉 respectively, we have
that F (D(Jω)) ∩ k3`′ is equal to F (d′) ∩ k3`′ . Furthermore, F (Y ) ∩ k3`′ will also
equal F (d′)∩ k3`′ because Y ∩ k3`′ = D(Jω)∩ k3`′ . Since m′ ∈ F (c)∩F (c′) \F (Y ),
it follows that m′ /∈ F (D(Jω)).

This shows that m′ ∈ F (d) \ F (D(Jω)) and completes the proof. �

Corollary 18 (OCA + MA). For each A ⊂ N such that A∗ ∩ Z 6= ∅, there is a
c ∈ J ′ such that c ⊂ A and c∗ ⊂ Z.

Proof. Let A ⊂ N and assume that A∗ ∩ Z 6= ∅. Since f is irreducible on Z,
f [A∗ ∩ Z] has interior in K. Let W be an non-empty open subset of f [A∗ ∩ Z].

Assume we find a set b ⊂ N such that f [b∗] ⊂ W and f−1(f [b∗]) contains a∗

for some a ∈ J . By Proposition 14, there is c ∈ [a]ω such that c∗ ⊂ Z and
f [c∗] ∩ f [Z \ c∗] is empty. Since f [c∗] ⊂ f [A∗ ∩ Z], it follows that c∗ ⊂ A∗, or by
removing finitely many integers, c ⊂ A as required. The remainder of the proof is
to show there is such a set b.

Assume there is some b ⊂ N such that b∗ ∩ Z is empty, and f [b∗] ⊂ W has
interior. Since b∗ ∩ Z is empty and f [Z] = K, it follows that f � b∗ is one to one.
By Lemma 11, this set b has the property that f−1(f [b∗]) contains a∗ for some
a ∈ J .

Now, by Lemma 15, we may fix an uncountable family {Uα : α ∈ ω1} of pairwise
disjoint open subsets of W . By Lemma 9, we may choose, for each α, some infinite
cα such that c∗α∩Z is empty and f [c∗α] is a subset of Uα. By the previous paragraph,
we may assume that f [c∗α] is nowhere dense in K for each α ∈ ω1. For each α, fix
an aα ⊂ N \ cα such that f [a∗α] is a subset of Uα and meets f [c∗α]. By Proposition
16 and with re-indexing, we may assume that {aα : α ∈ ω1} is tree-like.

For each α let wα ∈ f [a∗α]∩f [c∗α]. Since f is two to one, wα /∈ f [(N \(aα∪cα))∗].
Let Wα ⊂ Uα be an open set neighborhood of wα which is disjoint from f [(N \
(aα ∪ cα))∗]. Since f [c∗α] is nowhere dense, Wα \ f [c∗α] is non-empty so there is an
infinite bα ⊂ aα∪ cα such that f [b∗α] ⊂ Wα \f [c∗α]. Clearly bα is also almost disjoint
from cα, so we may choose it to be contained in aα. By Lemma 10, ensure that
f � b∗α is one to one. We have that for each α, f [b∗α] ∩ f [(N \ aα)∗] is empty. Now
apply Lemma 17 and let b = bα be chosen so that gb[b∗] has interior. By Lemma
12, b∗ ∪ gb[b∗] contains a∗ for some a ∈ J . Since f [b∗] = f [gb[b∗]], it follows that
a∗ ⊂ f−1(f [b∗]) as required. �

Lemma 19 (OCA + MA). If f is not locally one to one, then there is a point x
such that for every countable family {An : n ∈ ω} ⊂ x, there is an a ∈ J such that
a is almost contained in each An.

Proof. Since f is not locally one to one, there is a pair {x, x′} in N∗ such that
f(x) = f(x′) and neither is in a∗ for any a ∈ J . Since f [Z] = K, we may assume
that x ∈ Z. This is our choice for the point x.

Assume that {An : n ∈ ω} ⊂ x and, by possibly shrinking, we may assume that
A0 /∈ x′ and An+1 ⊂ An for each n. Let B be any member of x which is contained
in A0. We check that f [B∗] \ f [(N \A0)∗] is non-empty. If f [B∗] was contained in
f [(N \A0)∗], then f � B∗ would be one to one. By Proposition 13, we may assume
that either f [B∗] is clopen or is nowhere dense. By Lemma 11, f [B∗] cannot be
clopen, since f(x) is not in f [a∗] for any a ∈ J . However, since x ∈ Z, f [B∗ ∩ Z]
has interior and so cannot be nowhere dense.
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Next we show that f [Z ∩ B∗] \ f [(N \ A0)∗] is also non-empty. We have that
f(x) /∈ f [(A0 \ B)∗] since x ∈ B∗ and x′ /∈ A∗

0. Fix any B1 ∈ x with B1 ⊂ B such
that f [B∗

1 ] ∩ f [(A0 \ B)∗] is empty. By the previous paragraph, there is a y ∈ B∗
1

such that f(y) /∈ f [(N \ A0)∗], and there is a z ∈ Z such that f(z) = f(y) and
which is not in f [(N \ A0)∗] ∪ f [(A0 \ B)∗]. We check that z ∈ B∗ ∩ Z. Clearly
z /∈ (N \A0)∗ ∪ (A0 \B)∗, hence z must be in B∗.

We recursively construct a sequence of infinite sets Bn ∈ x and bn ⊂ Bn so that

(1) Bn+1 ⊂ An+1 ∩Bn \ bn,
(2) f [B∗

n+1] ∩ (f [b∗n] ∪ f [(A0 \Bn)∗]) is empty,
(3) bn ∈ J ′,
(4) and f [b∗n] ∩ f [(N \A0)∗] is empty.

Let B0 ⊂ A0 be any member of x. Since f [Z∩B∗
0 ]\f [(N\A0)∗] is not empty, there

is some C0 ∈ [B0]ω such that C∗
0 ∩ (Z ∩B∗

0) is not empty and f [C∗
0 ]∩ f [(N \A0)∗]

is empty. By Corollary 18, there is an infinite b0 ⊂ C0 such that b0 ∈ J ′. Clearly
b0 /∈ x, and since x′ /∈ b∗0, f(x) is not in f [b∗0]. We can choose B1 ∈ x so that
B1 ⊂ B0∩A1 \ b0 and so that f [B∗

1 ] is disjoint from each of f [b∗0] and f [(A0 \B0)∗].
The induction proceeds for each n in the same way.

By possibly shrinking each bn we can assume that f � b∗n is one to one, and we
can choose cn so that bn ∪ cn ∈ J . Since f [b∗n] ∩ f [b∗m] is empty for all n < m, and
f [b∗n] = f [c∗n] for all n, we can assume that (bn ∪ cn) is disjoint from (bm ∪ cm) for
n < m. Recall that, by Lemma 4, f [b∗] is clopen for any b which is contained in bn

for any n.
For each n, let {b(n, α) : α ∈ ω1} be an almost disjoint family of infinite subsets

of bn. Inductively define an almost disjoint family {aα : ω ≤ α < ω1} of subsets of⋃
n bn so that aα∩(bn∪cn) is almost equal b(n, α) for each n. Apply Proposition 16,

to find a partition aα as a0
α∪a1

α so that there is an uncountable I ⊂ ω1\ω such that
each of the families {a0

α : α ∈ I} and {a1
α : α ∈ I} are tree-like. For each α ∈ I, at

least one of a0
α or a1

α will meet infinitely many of the bn’s. Therefore, by re-indexing,
we can assume we have an uncountable tree-like family {aα : ω ≤ α < ω1} such
that each aα meets infinitely many of the bn’s in an infinite set.

Claim 1. there is some b ⊂
⋃

n bn such that f � b∗ is one to one, f [b∗]∩f [(N \A0)∗]
is empty, b ∩ bn is finite for each n, and f [b∗] has interior.

To prove the Claim, assume first there is some α, ω ≤ α < ω1, such that
f [(N \ aα)∗] contains f [a∗α]. Therefore f � a∗α is one to one. By Lemma 13, there is
a partition d0 ∪ d1 of aα so that f [d∗1] is nowhere dense and f [d∗0] is clopen. Again
note that d0 is contained in some member J by Lemma 11. By the assumption
on the family {bn : n ∈ ω}, we must have that d1 ∩ bn is finite for all n. Let y

be any point in
⋃

n(d0 ∩ bn)∗ \
⋃

n(d0 ∩ bn)∗. Notice that f [(d0 ∩ bn)∗] ⊂ f [c∗n] for
each n, hence there is a point y′ ∈

⋃
n c∗n \

⋃
n c∗n such that f(y′) = f(y). Since⋃

n b∗n ⊂ (
⋃

n bn)∗ and
⋃

n c∗n ⊂ (
⋃

n cn)∗, y 6= y′. Also, f [b∗n] = f [c∗n] is disjoint
from f [(N \ A0)∗], hence each of

⋃
n b∗n and

⋃
n c∗n are contained in A∗

0. We have
shown then that f(y) is not in f [(N \ A0)∗] since f is two to one. Let Y ∈ y be
chosen so that f [Y ∗] ∩ f [(N \ A0)∗] is empty. Since Y ∩ (d0 ∩ bn) is infinite for
infinitely many n, there is an infinite b ⊂ Y ∩ d0 such that b ∩ bn is finite for all n.
Since b ⊂ d0 and d0 ∈ J ′, we have that f [b∗] is clopen by Lemma 4. This proves
the Claim in this case.
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Now we assume that, for each α ≥ ω, there is some infinite bα ⊂ aα such that
f [b∗α] is disjoint from f [(N \ aα)∗]. Clearly f [b∗α] ∩ f [(N \A0)∗] is therefore empty.
It also follows that bα is almost disjoint from each bn since cn ⊂ N \aα. By Lemma
17, there is some α ≥ ω such that f [b∗α] has interior. This proves the claim.

We can now complete the proof of the Lemma. Let b ⊂
⋃

n bn be as in the Claim.
By Lemma 11, there is some a ∈ J such that a∗ ⊂ f−1(f [b∗]). Clearly f [a∗] ⊂ f [b∗],
hence f [a∗]∩ f [(N \A0)∗] is empty. It follows that a∗ ⊂ A∗

0. Let n > 0, and notice
that f [a∗] ⊂ f [b∗] ⊂ f [

⋃
m>n b∗m] ⊂ f [B∗

n+1]. Since f [B∗
n+1∩f [(A0\Bn)∗] is empty,

we have that f [a∗] is disjoint from f [(N \An)∗]. Therefore it follows that a∗ ⊂ A∗
n.

This completes the proof of the Lemma. �

4. locally one to one

In this section we prove Lemma 23 in a (slightly) more general setting than we
have developed in the paper and prove the main theorem, Theorem 25, as a simple
consequence. The approach is almost a routine application of OCA except it is
made more complicated because we must first add a Cohen real.

Definition 20. A family Y is σ-cofinal in an ultrafilter x if for each countable
family {An : n ∈ ω} ⊂ x, there is an a ∈ Y such that a∗ ⊂ A∗

n for all n.

Definition 21. A family {(cα, dα) : α ∈ ω1} is a Hausdorff-Luzin family of pairs
if for each α < β < ω1, cα ∩ dα is empty and (cα ∩ dβ) ∪ (cβ ∩ dα) is not empty.

Proposition 22. Suppose that {(cα, dα) : α ∈ ω1} is a Hausdorff-Luzin family of
pairs of subsets of N , then

⋃
{c∗α : α ∈ ω1} and

⋃
{d∗α : α ∈ ω1} do not have disjoint

closures in N∗.

Proof. Assume, for a contradiction, that the two sets do have disjoint closures. It
follows then, that there is a Y ⊂ N such that c∗α ⊂ Y ∗ and Y ∗ ∩ d∗α = ∅ for all
α. Furthermore, there is an integer m and an uncountable set I ⊂ ω1 such that
cα \ m ⊂ Y and Y ∩ dα ⊂ m for all α ∈ I. Fix any α < β, both in I, so that
cα ∩ m = cβ ∩ m and dα ∩ m = dβ ∩ m. Since cα ∩ dα is empty, it follows that
(cα∩m)∩ (dβ ∩m) is empty. Also, (cα \m) ⊂ Y and dβ ⊂ (N \Y ), hence cα∩dβ is
empty. By the same reasoning it follows that cβ ∩ dα is empty, contradicting that
the family of pairs was assumed to be Hausdorff-Luzin. �

Lemma 23. Assume that I is a family of infinite subsets of N and that for each
a ∈ I there is a one to one function ha from a cofinite subset of a onto some cofinite
subset of a such that ha(n) 6= n for all n ∈ a. If I is σ-cofinal in x for some x ∈ N∗,
then there is a proper poset P such that if G is P -generic, then in V [G] there is
a partition {C0, C1, C2} of N and an uncountable family {aα : α ∈ ω1} ⊂ I such
that {(cα, dα) : α ∈ ω1} forms a Hausdorff-Luzin family of pairs, where, for each
α ∈ ω1,

cα = C2 ∩ haα(aα ∩ C0) and dα = C2 ∩ haα(aα ∩ C1)

We defer the proof of Lemma 23 until after Theorem 25. The following corollary
is a routine application of PFA proven by selecting the appropriate family of ω1

many P -names and dense sets for a P -filter to meet. We use the convention that v̌
is the P -name for the ground model set v.

Corollary 24 (PFA). Let I be a family of infinite subsets of N and for each a ∈ I
let ha be given which is a one to one function from a cofinite subset of a onto a



TWO TO ONE IMAGES AND PFA 13

cofinite subset of a such that ha(n) 6= n for all n ∈ a. If there is an x ∈ N∗ such that
I is σ-cofinal in x, then there is a partition {C0, C1, C2} of N and an uncountable
family {aα : α ∈ ω1} ⊂ I such that {(cα, dα) : α ∈ ω1} forms a Hausdorff-Luzin
family of pairs, where, for each α ∈ ω1,

cα = C2 ∩ haα
(aα ∩ C0) and dα = C2 ∩ haα

(aα ∩ C1)

Proof. Let P be the proper poset given by Lemma 23. Let Ċ0, Ċ1, Ċ2, and {ȧα :
α ∈ ω1} be the family of P -names so that for some p0 ∈ P , p0 forces

“ {C0, C1, C2} is a partition of N , {aα : α ∈ ω1} is contained in Ǐ and {(cα, dα) :
α ∈ ω1} forms a Hausdorff-Luzin family of pairs, where, for each α ∈ ω1,

cα = C2 ∩ haα
(aα ∩ C0) and dα = C2 ∩ haα

(aα ∩ C1)” .

By replacing P with the poset of all p ∈ P such that p ≤ p0, we may assume that
p0 is the largest element of P . For each α, let ċα and ḋα also denote the P -names for
cα and dα respectively. For each α ∈ ω1, let Dα = {p ∈ P : (∃aα ∈ I) p 
 ȧα = ǎα}
For each n ∈ N , let En = {p ∈ P : (∃i ∈ 3)(p 
 ň ∈ Ċi)}. For each α < β < ω1, let
Dα,β be

{p ∈ P : (∃k ∈ N, i ∈ 2)(p 
 k ∈ Ċ2 ∩ ȧα ∩ aβ , hȧα(k) ∈ Ċi, and hȧβ
(k) ∈ Ċ1−i)}

Note that for each p ∈ Dα,β , there is a k such that p 
 ǩ ∈ (ċα ∩ ḋβ) ∪ (ḋα ∩ ċβ).
It is routine to check that all of the above sets are dense in P , and that if G

is a P -filter which meets each of them, then C0, C1, C2 and {aα : α ∈ ω1} is our
desired family where for each i ∈ 3, Ci = {n : (∃p ∈ G ∩ En) p 
 ň ∈ Ċi} and, for
each α ∈ ω1, aα is the unique element of I such that there is a p ∈ G ∩ Dα with
p 
 ǎα = ȧα. �

Theorem 25 (PFA). The function f is locally one to one.

Proof. By Lemmas and 4 and 19, the hypotheses of Corollary 24 are satisfied by
letting I be J from Definition 2 and the family of functions from Lemma 4. Let
C0, C1, C2 and {aα : α ∈ ω1}, {(cα, dα) : α ∈ ω1} be as in Corollary 24. By
Proposition 22, there is a point w ∈ N∗ such that

w ∈
⋃

α∈ω1

c∗α ∩
⋃

α∈ω1

d∗α ⊂ C∗
2 .

Let α ∈ ω1, and observe that by Proposition 4,

f [(aα ∩ C0)∗] = f [(haα(aα ∩ C0))
∗] and f [(aα ∩ C1)∗] = f [(haα(aα ∩ C1))

∗] .

Therefore f [C∗
0 ] ⊃ f [

⋃
α∈ω1

c∗α] and f [C∗
1 ] ⊃ f [

⋃
α∈ω1

d∗α]. It follows that f(w) has
a preimage in each of C∗

2 , C∗
0 and C∗

1 . This contradicts that f is two to one. �

Proof of Lemma 23. The remainder of the section is a proof of Lemma 23. Assume
that I is a family of infinite subsets of N and that for each a ∈ I there is a one
to one function ha from a cofinite subset of a onto a cofinite subset of a such that
ha(n) 6= n for all n ∈ a. Also assume that I is σ-cofinal in x for some x ∈ N∗.
By choosing one representative in each equivalence class in I mod finite, we may
assume that if a, a′ are distinct members of I, then a and a′ are not equal mod
finite.

Lemma 26. If I is covered by a countable family {Zn : n ∈ ω}, then Zn is σ-cofinal
in x for some n.
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Proof. For each n, let An be a countable subset of x such that if Zn is not σ-cofinal
in x, then Zn has no member which is contained mod finite in each member of An.
Then A =

⋃
n∈ω An is a countable subset of x and there is some a ∈ I which is

contained mod finite in each member of A. Since there is some n such that a ∈ Zn,
it follows that Zn is σ-cofinal in x. �

Proposition 27. If H is a function from N to N and H(n) 6= n for all n, then
there is a set X ∈ x such that H[X] ∩X is empty.

Proof. The three set lemma [Wal74, 6.25], implies there is a partition X0, X1, X2

of N such that H[Xi] ∩Xi is empty for each i. �

Lemma 28. If Y ⊂ I is σ-cofinal in x and m ∈ ω, then there are a, b ∈ Y and
k > m such that h−1

a (k) 6= h−1
b (k) and both are greater than m.

Proof. Let X be any member of x such that N \ X is infinite. Let Y denote the
set of integers k ∈ X so that k is in the domain and range of hak

for some ak ∈ Y.
Since Y is σ-cofinal in x, Y meets every member of x in an infinite set. Since x is an
ultrafilter, Y ∈ x. For each k ∈ Y , define H(k) = h−1

ak
(k). Note that H(k) 6= k for

all k ∈ Y . Extend H to N\Y arbitrarily to a permutation on N so that H(n) 6= n for
all n. By Proposition 27, there is an X1 ∈ x so that H[X1]∩X1 is empty. Let a ∈ Y
such that a ⊂∗ Y ∩X1 and choose k ∈ Y ∩X1∩a\(ha[m]∪h−1

a [m]∪H[m]∪H−1[m]).
Note that since k ∈ Y ∩ X1, h−1

a (k) 6= H(k) = h−1
ak

(k). It follows that if we let
b = ak then we have our desired pair a, b ∈ Y. �

The standard countable poset for adding a Cohen real has many forcing equiva-
lent forms. The form most useful for us is the set, <ω3, of all functions from some
integer into 3 = {0, 1, 2}. This poset is ordered by extension.

Corollary 29. If G ⊂ <ω3 is a generic filter and if I is covered, in V [G], by a
countable family {Yn : n ∈ ω}, then there are p ∈ G, n ∈ ω, a, b ∈ Yn and k ∈ a∩ b
such that p(k) = 2, p(h−1

a (k)) = 0, and p(h−1
b (k)) = 1.

Proof. Let {Ẏn : n ∈ ω} be <ω3-names and assume that some p is any member of
G which forces that I is covered by

⋃
n∈ω Ẏn. Let p′ < p be arbitrary. For each

q < p′ and integer n, let Yq,n be the set of a ∈ I such that q 
 ǎ ∈ Ẏn. Since
p′ < p, we have that

⋃
q<p′

⋃
n∈ω Yq,n covers I. By Lemma 26, there is a q < p′ and

an n such that Yq,n is σ-cofinal in x. Let m be large enough so that the domain
of q is contained in m. By Lemma 28, there is a pair a, b ∈ Yq,n and k ∈ a ∩ b \m

such that h−1
a (k) 6= h−1

b (k) and both are greater than m. We can extend q to a
condition q′ ∈ <ω3 so that q′(k) = 2, q′(h−1

a (k)) = 1 and q′(h−1
b (k)) = 2. Since p′

was an arbitary element below p, the set of conditions with this property of q′ is
dense below p′, hence there will be such a q′ ∈ G. �

For the remainder of the proof we work in the extension V [G] for a generic filter
G ⊂ <ω3. We have our desired partition {C0, C1, C2} of N given by g =

⋃
G.

That is, g is a function from N onto 3, and we let Ci = g−1(i) for i ∈ 3. We will
now show that our uncountable family {aα : α < ω1} can be found in a subsequent
proper forcing extension.

For each a ∈ I, let ca = C2 ∩ ha(a ∩ C0) and da = C2 ∩ ha(a ∩ C1). Since ha

is one to one and C0 ∩ C1 is empty, we have that ca ∩ da is empty for all a ∈ I.
We leave it as an exercise to verify that, since I ∈ V and distinct members of I
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have infinite symmetric difference, ca and ca′ also have infinite symmetric difference
for a 6= a′ ∈ I. We define a separable metric topology on the set I by declaring
[a;m] = {b ∈ I : ca ∩m = cb ∩m and da ∩m = db ∩m} to be open for each a ∈ I
and m ∈ ω.

Let K0 ⊂ I be the set of pairs (a, b) ∈ I such that (ca∩db)∪(da∩cb) is not empty.
To see that K0 is an open subset of I2 assume that (a, ā) is K0. Let k be any integer
in (ca ∩ dā) ∪ (da ∩ cā) and let m > k. Let (b, b̄) be an element of [a;m] × [ā;m].
Clearly k ∈ (cb ∩ db̄)∪ (db ∩ cb̄) which shows that [a;m]× [ā;m] ⊂ K0. Our desired
Hausdorff-Luzin family of pairs is {(ca, da) : a ∈ Y } for any uncountable subset
Y ⊂ I such that Y 2 \∆Y ⊂ K0, where ∆Y denotes the diagonal in Y 2.

We are nearly ready for a standard application of OCA, however we must recall
that we are no longer in a model in which OCA holds since we have added a Cohen
real. Instead, we use the following result which comes from the well-known proof
that PFA implies OCA.

Proposition 30. [Do91, 6.2] If X is a separable metric space and K0 is an open
subset of X2, then either X is covered by a countable collection {Xn : n ∈ ω} such
that X2

n \ ∆X is disjoint from K0 for all n, or there is a proper poset P which
introduces an uncountable set Y ⊂ X such that Y 2 \∆X ⊂ K0.

By Proposition 30, we will finish the proof of Lemma 23, if we show that I
cannot be covered by a countable union,

⋃
n∈ω Yn, of sets such that Y2

n \ ∆I is
disjoint from K0 for each n. By Corollary 29, there is an n, p ∈ G, and a, b ∈ Yn

and k ∈ a ∩ b so that p(k) = 2, p(h−1
a (k)) = 0, and p(h−1

b (k)) = 1. Let i = h−1
a (k)

and j = h−1
b (k). It follows that i ∈ a ∩ C0 and j ∈ b ∩ C1. Therefore k ∈ ca ∩ db.

Since this means that (a, b) ∈ K0 ∩ Y2
n \∆I this finishes the proof. �
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