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Abstract. We prove that there is a countable regular Fréchet-
Urysohn space with uncountable π-weight.

1. Introduction

Juhasz: Is there a countable Fréchet-Urysohn space which has un-
countable π-weight?

In 1978, Malyhin asked if every countable Fréchet-Urysohn group
was metrizable, an important problem which remained unsolved until
Hrusak and Ramos Garcia [3] established the independence in 2012.
Since π-weight is the same as weight for a topological group, this led
Juhasz to pose his problem. Malyhin certainly knew that if p > ω1,
then any countable dense subgroup of 2ω1 would be Fréchet. Gerlitz
and Nagy [2] introduced γ-sets and proved that the existence of an
uncountable γ-set implied the existence of a countable non-metrizable
Fréchet-Urysohn group. Nyikos [4] proved that if p = b, then there
was such a group, and Orenshtein and Tsaban [5] showed that this
hypothesis also implied the existence of an uncountable γ-set.

With respect to Juhasz’s question, Barman and the author [1] prove
that if Cohen reals are added then countable Fréchet-Urysohn spaces
may all have π-weight less than the continuum. On the other hand, in
the model constructed by Hrusak and Ramos Garcia [3], there are no
examples with uncountable π-weight less than the continuum.

The following question was asked by Justin Moore during the au-
thor’s talk at the 2012 Summer Topology Conference in Makato.

Question 1. Is there a countable Fréchet-Urysohn space with π-weight
equal to b?

This question remains open. The result in this paper shows there is
a countable Fréchet-Urysohn space with π-weight at least b.
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More generally one may ask about the spectrum of cardinals κ for
which there is a countable Fréchet-Urysohn space with π-weight κ. It
is consistent with ω1 = b < c that the π-weight can not be larger
than b [1]. And we again mention that it is consistent with b = c > ω1

that there is no countable Fréchet-Urysohn space with π-weight strictly
between ω and b [3].

2. Preservation

This paper began as a proof that b = c implied there was a Fréchet-
Urysohn topology on ω which had uncountable π-weight. We then
explored ideas to make the space indestructible with respect to proper
forcings that did not add dominating reals and realized that we should
be using ω<ω as the base space and to take advantage of the tree
structure. This led to the notion of a down-sequential or ↓-sequential
topology on ω<ω.

As usual, ω<ω is the set of all finite functions into ω whose domain is
a finite ordinal. For each t ∈ ω<ω, let t↓ = {s ∈ ω<ω : s ⊆ t}. Similarly
for a set I ⊂ ω<ω, let I↓ =

⋃
{t↓ : t ∈ I}. It will also be convenient to

let, for a set A, A↑ =
⋃
{[t] : t ∈ A}, where [t] = t↑ = {s ∈ ω<ω : t ⊆ s}.

Definition 2.1. A topology τ on ω<ω is ↓-sequential if, for each t ∈
ω<ω,

(1) [t] is in τ and the sequence {t_j : j ∈ ω} τ -converges to t,
(2) if a set I ⊂ ω<ω converges to t, then so does I↓.

Let {tk : k ∈ ω} be a listing of ω<ω satisfying the coherence condition
that if tk ⊂ tm, then k < m. For a function g ∈ ωω and tk ∈ ωω, let
g(tk) = g(k). Similarly, for any I ⊂ ω<ω and integer m, we abuse
notation and assume that I ∩m is equal to I ∩ {tk : k < m}.

Let {gα : α ∈ b} be an unbounded mod finite family of strictly
increasing functions from ωω. Ensure that idω < gα <

∗ gβ for α < β,
where idω denotes the identify function.

We have a π-weight preserving device.

Lemma 2.2. Assume X = (ω<ω, τ) is ↓-sequential and that for each
α ∈ b there is a non-empty U ∈ τ such that for each t ∈ U , there is a
k > gα(t) with t_k /∈ U . Then X has π-weight at least b.

Proof. For each α ∈ b, let Uα be selected for gα as per the statement
in the Lemma. Suppose that Γ ⊂ b has cardinality b. We will prove
that

⋂
{Uα : α ∈ Γ} has empty interior. Since b is a regular cardinal,

this will show that the π-weight of τ can not be less than b. Assume
that W ∈ τ is non-empty and contained in Uα for all α ∈ Γ. Let us
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note that since τ is ↓-sequential, W is an infinite set. Choose any k
so that the collection {gα(k) : α ∈ Γ} is unbounded, and therefore
{gα(n) : α ∈ Γ} is unbounded for all n ≥ k. By simply increasing k, we
may assume that tk ∈ W . It follows then that the set {j : t_k j /∈ W}
is infinite. This contradicts that τ is ↓-sequential. �

We present a preservation result which, ultimately, was too weak
for our purposes. The needed strengthening is buried in the proof of
Lemma 3.4. To formulate our preservation result, we generalize the
well-known α1 notion formulated by Arhangelskii. Recall that a space
X is α1 if for each x ∈ X and family {In : n ∈ ω} of sequences
converging to x, there is a converging sequence I which mod finite
contains each In.

Definition 2.3. Say that a space X is α+
1 if whenever a sequence

〈xn : n ∈ ω〉 converges to a point x, and, for each n, In is a countable
sequence converging to xn, there is a sequence 〈Jn〉n so that In \ Jn is
finite for each n, and, for any infinite set I ⊂

⋃
n Jn, I converges to x

so long as I ∩ Jn is finite for all n.

Theorem 2.4. Suppose that there is a ↓-sequential topology on ω<ω

which is α1, α
+
1 , and has the property described in Lemma 2.2. If P

is a proper poset which does not add a dominating real, then in the
forcing extension by P, τ can be extended to a ↓-sequential Fréchet-
Urysohn topology of uncountable π-weight.

Since the proof shares, and even generated, many of the ideas of the
main theorem, we defer the proof until after Theorem 3.5.

3. the main construction

Let ~g denote the family {gα : α ∈ b} as detailed for Lemma 2.2. We
begin by simply choosing a family of sets {Uα,Wα : α ∈ b}, and we
will use this family to construct a topology τ~g on ω<ω.

Lemma 3.1. There is a family {Uα,Wα : α ∈ b} of subsets of ω<ω so
that, for each α ∈ b,

(a) ∅ ∈ Uα = U↓α, Wα = ω<ω \ Uα, Wα = W ↑
α,

(b) for each t ∈ Uα, there is a j > gα(t) such that t_j ∈ Wα,
(c) for each t ∈ Uα, the set

⋃
j∈ω[t_j]∩ gα(t_j) is almost contained in

Uα (note that t_j ∈ [t_j] ∩ gα(t_j)).

Proof. Fix any α < b. We define, by recursion, Uα,n,Wα,n so that, for
each n,

(1) tn ∈ Uα,n ∪Wα,n,
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(2) Uα,n and Wα,n are disjoint,
(3) for m < n, Uα,m ⊆ Uα,n and Wα,m ⊆ Wα,n,
(4) Uα,n = U↓α,n and Wα,n = W ↑

α,n,
(5) for each k ≥ n either [tk] ⊂ Wα,n or [tk] ∩Wα,n is empty and

[tk] ∩ Uα,n is finite,
(6) if tn ∈ Uα,n, then

⋃
{[t_n j] ∩ gα(tn) : j ∈ ω} is almost contained

in Uα,n+1,
(7) there is a j > gα(tn) such that [t_n j] ⊂ Wα,n+1.

The properties listed above essentially describe how to construct the
family. Once we have constructed the family, we simply set Uα =⋃
n Uα,n and Wα =

⋃
nWα,n. We define Uα,0 to be the singleton set

{t0} and Wα,0 is empty.
Given that Uα,n,Wα,n satisfy the inductive conditions we define Uα,n+1

and Wα,n+1 as follows.
If tn ∈ Wα,n, then define

Uα,n+1 = Uα,n and Wα,n+1 =

{
Wα,n if tn+1 ∈ Uα,n
Wα,n ∪ [tn+1] if tn+1 /∈ Uα,n

.

Note that if tn+1 /∈ Uα,n, then [tn+1] ∩ Uα,n is empty.
If tn ∈ Uα,n, then choose any ` > gα(tn) such that t_n ` /∈ Uα,n and

define
Uα,n+1 = Uα,n ∪

⋃{
[t_n j] ∩ gα(t_n j) : ` 6= j ∈ ω

}
and

Wα,n+1 =

{
Wα,n ∪ [t_n `] if tn+1 ∈ Uα,n+1

Wα,n ∪ [t_n `] ∪ [tn+1] if tn+1 /∈ Uα,n+1

.

It is evident that Uα,n+1∩Wα,n+1 is empty. Similarly, it is immediate

that Wα,n+1 = W ↑
α,n+1 and tn+1 ∈ Uα,n+1 ∪Wα,n+1. Now choose any

tm ∈ Uα,n+1 \ Uα,n, i.e. tm ∈ [tjn] ∩ gα(t_n j) for some j 6= `. Then
t↓m ∩ [tn] ⊂ Uα,n+1 since we have assumed that if tk ⊂ tm, then k < m.

This implies that Uα,n+1 = U↓α,n+1. Suppose that k ≥ n + 1 and first
suppose that [tk] ∩Wα,n+1 is not empty. If [tk] ∩Wα,n is not empty,
then [tk] ⊂ Wα,n+1 follows from the induction hypotheses. Otherwise
we consider the two cases where [tk] meets either [t_n `] or [tn+1]. By the
coherence of the indexing, we have that tk is not a strict predecessor
of either t_n ` or tn+1. Thus, if [tk] meets either of these sets, it is
contained in them. So, now we may assume that [tk] is disjoint from
Wα,n+1 and we have to show that [tk] ∩ Uα,n+1 is finite. By induction,
[tk] ∩ Uα,n is finite, and, again, since tk is not a predecessor of tn, we
have that [tk] meets at most one set of the form [t_n j]. Thus it follows
that [tk] ∩ Uα,n+1 is finite. �
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Let τ0 be the rational topology on ω<ω that has the family {[t], ω<ω \
[t] : t ∈ ω<ω} as a subbase. We let τ~g be the topology that is generated
by the collection τ0∪{Uα : α ∈ b}. This topology will have the property
from Lemma 2.2. It is useful to observe that, for each α ∈ b, Wα ∈ τ~g
because Wα = W ↑

α. Let us check that this topology is ↓-sequential,
although we note that it may not be Fréchet-Urysohn.

Lemma 3.2. The topology τ~g is ↓-sequential.

Proof. Since the family τ0 ∪ {Uα : α ∈ b} forms a subbase, property c
of Lemma 3.1 ensures that {t_j : j ∈ ω} converges to t for all t ∈ ω<ω.
Now suppose that some I ⊂ ω<ω τ~g -converges to t. To show that I↓

also converges, it suffice to show that I↓ \ Uα is finite for all α ∈ b
such that t ∈ Uα. Since Uα = U↓α for all α < b, it is evident that
(I ∩ Uα)↓ ⊂ Uα for any α. If t ∈ Uα, then (I \ Uα)↓ is finite and so it
follows that I↓ is almost contained in Uα. This completes the proof. �

We need a definition and a key Lemma before proving the main
theorem.

Definition 3.3. For each t ∈ ω<ω, let It denote the family of infinite
subsets I of ω<ω which τ~g -converge to t. For A ⊂ ω<ω, define A(1) to
be the set A ∪ {t : (∃I ∈ It) I ⊂ A}.

Lemma 3.4. In τ~g, for each A ⊂ ω<ω, the set
(
A(1)

)(1)
is equal to A(1).

Proof. Suppose that {xn : n ∈ ω} ⊂ A(1) and is in It. If {xn : n ∈
ω} ∩A is infinite, then t ∈ A(1), so we may assume that each xn is not
in A. For each n, there is an In ⊂ A such that In ∈ Ixn . We may
assume that {xn : n ∈ ω} is contained in [t]\{t}. For each n, choose jn
so that t_jn ⊆ xn. We may assume, by passing to a subsequence, that
jn < jm for n < m. Let B = {β ∈ b : t ∈ Uβ}, and for each β ∈ B,
fix a function fβ ∈ ωω so that In \ fβ(n) ⊂ Uβ for all but finitely many
n ∈ ω. Since β < b, we may choose the fβ’s by recursion and arrange
that for all γ ∈ B ∩ β, fγ <

∗ fβ.
Choose any α0 ∈ b large enough so that L0 = {n : In∩gα0(t

_jn) 6= ∅}
is infinite. Now choose α1 large enough so that

L1 = {n ∈ L0 : In ∩ gα1(t
_jn) \ (fα0(n) + gα0(t

_jn)) 6= ∅}
is also infinite. By recursion, similarly choose α`+1 so that

L`+1 = {n ∈ L` : In ∩ gα`+1
(t_jn) \ (fα`

(n) + gα`
(t_jn)) 6= ∅}

is infinite.
Now set µ = sup` α` and choose any infinite L ⊂ L0 that is mod

finite contained in each L`. For each n ∈ L, let an be the element of
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In ∩ gµ(t_jn) with maximum index, and let I = {an : n ∈ L}. We
show that I ∈ It, and conclude that t ∈ A(1).

Suppose that β ∈ B ∩ µ. Choose ` so that β < α`. We have that
there is some mβ such that Uβ ⊃ In \ gα`

(t_jn) for each n ∈ L \mβ.
Similarly, there is an m` so that gα`

(t_jn) < gµ(t_jn) for all n > m`.
Thus, it follows that I ⊂∗ Uβ.

Now suppose that µ ≤ β and that β ∈ B. Choose m so that
gµ(t_j) ≤ gβ(t_j) for all j > m. In this case, our construction of
Uβ, see Lemma 3.1.c, has ensured that, for all but finitely many n with
jn > m, Uβ contains In ∩ gµ(t_jn). Thus, Uβ almost contains I. �

Theorem 3.5. There is a Fréchet-Urysohn ↓-sequential topology τ on
ω<ω with π-weight at least b.

Proof. For each set A ⊂ ω<ω, let WA =
⋃
{[t] : t ∈ A(1)}. Observe

that WA = W ↑
A = (A(1))↑. Also, let UA = ω<ω \WA and observe that

UA = U↓A. The topology τ has the family τ~g ∪ {UA : A ⊂ ω<ω} as a
subbase.

We first check that if I ⊂ ω<ω τ -converges to t, then so does I↓.
Since each WA is open in τ~g, we consider an A with t ∈ UA. Therefore

I \UA is finite, and also (I \UA)↓ also finite. But now, since UA = U↓A,
we obviously have that (I ∩ UA)↓ ⊂ UA. This shows that I↓ \ UA is
finite.

Next we prove that for each t ∈ ω<ω and each I ∈ It, we have
that I will τ -converge to t. It will then follow that τ is ↓-sequential
and, by Lemma 2.2, has π-weight at least b. To show that I will τ -
converge to t it suffices to show that I \ UA is finite for any A such
that t ∈ UA. Assume that t ∈ UA, and therefore that t /∈ A(1). Since
t /∈ A(1) = (A(1))(1) and I↓ converges to t, we have that I↓∩A(1) is finite.
By removing a finite set from I (hence with no loss of generality) we
may assume that I↓ ∩ A(1) is empty. This is equivalent to saying that
I ∩WA is empty, and therefore we have shown that I is (mod finite)
contained in UA.

Finally we make the easy observation that τ is Fréchet-Urysohn.
Assume that, for some t ∈ ω<ω and A ⊂ [t], we have that t /∈ A and
no sequence contained A τ -converges to t. Since each τ~g -converging
sequence remains τ -converging, we have that t /∈ A(1). Therefore t is
not in the closure of A since t ∈ UA and UA ∩ A = ∅. �

We finish the paper with a proof of Theorem 2.4

Proof of Theorem 2.4. In the ground model, let It denote the family
of sequences that τ -converge to the point t ∈ ω<ω. In the forcing
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extension we define, for A ⊂ ω<ω, the set

A(1) = A ∪ {t ∈ ω<ω : (∃I ∈ It) |I ∩ A| = ω} .
For each A ⊂ ω<ω, we let WA =

⋃
{[t] : t ∈ A(1)} and UA = ω<ω \WA.

We let τ̃ be the topology that is generated by τ ∪ {UA : A ⊂ ω<ω}.
We will show that it is Fréchet-Urysohn and ↓-sequential.

The key property is to again show that (A(1))(1) is equal to A(1)

for each A ⊂ ω<ω. To do so, assume that t ∈ (A(1))(1) \ A. Choose
{xn : n ∈ ω} ∈ It so that A(1) ∩ {xn : n ∈ ω} is infnite. Since
we are trying to proof that t ∈ A(1), we may as well assume that
A ∩ {xn : n ∈ ω} is empty.

We will use the fact that infinitely many of the xn are in A(1) to
choose a collection of sequences from the corresponding Ixn . However
we must now be more careful about the fact that we are in a (proper)
forcing extension. We will use the well-known property that every
countable subset of the ground model is contained in a countable set
from the ground model. By this property, we have, in the ground
model, a sequence {I(n,m) : n,m ∈ ω} so that {I(n,m) : m ∈ ω} ⊂
Ixn for each n, and which has the property that for each n such that
xn ∈ A(1), there is an m such that I(n,m) ∩A is infinite. By applying
the α1-property, we can find, for each n, a single In ∈ Ixn so that
I(n,m) ⊂∗ In for all m. We do so in the ground model, and so we
may have that {In : n ∈ ω} is also in the ground model, and that the
elements are pairwise disjoint.

Next, by applying the α+
1 -property (in the ground model) we may

assume that any infnite set I ⊂
⋃
n In, from the ground model, such

that I ∩ In is finite for all n, will be a member of It. Finally, a simple
application of the fact that P does not add a dominating real shows
that A will meets some such I in an infinite set. This completes the
proof that t ∈ A(1).

Now we can conclude, as in the proof of Theorem 3.5, that for each
t ∈ ω<ω and I ∈ It, I will τ̃ -converge to t. It follows from this that
τ̃ is ↓-sequential and, by Lemma 2.2, has uncountable π-weight (al-
though P may collapse cardinals it does preserve the property of being
uncountable).

The proof that it is Fréchet-Urysohn is certainly immediate. If A ⊂
[t] and t /∈ A(1), then t has the neighborhood UA which is disjoint from
A. �
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