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Abstract. The Banach space `∞/c0 is isomorphic to the linear space of con-

tinuous functions on N∗ with the supremum norm, C(N∗). Similarly, the
canonical representation of the `∞ sum of `∞/c0 is the Banach space of con-

tinuous functions on the closure of any non-compact cozero subset of N∗. It

is important to determine if there is a continuous linear lifting of this Banach
space to a complemented subset of C(N∗). We show that PFA implies there is

no such lifting.

1. Introduction

Our paper is motivated by the question ([3, 6]) of whether or not C(N∗) is pri-
mary. A Banach space X is primary if whenever X is written as the sum A ⊕ B
of complemented subspaces, then one of A,B is isomorphic to X. Negrepontis [8,
Corollary 3.2] showed that CH implies that the closure Y of a non-compact cozero
subset of N∗ is a retract of N∗, and, therefore, there is a norm bounded linear lifting
of the Banach space C(Y ) to a complemented subset of C(N∗). Later, Drewnowski
and Roberts [3] established that the existence of such a lifting implied that C(N∗)
is primary. It is already known to be consistent that there is no such lifting; an
even stronger result was shown to hold in the Cohen model in [1]. However there is
still a good reason to investigate this question under the hypothesis of the proper
forcing axiom. We still have no clear path to deciding if C(N∗) is primary in the
Cohen model but Koszmider [9, p577] has identified a very compelling conjecture
(as we choose to call it) that C(N∗) is not primary in certain forcing extensions of
PFA. Establishing properties of C(N∗) in these extensions is very similar to work-
ing within PFA itself (see [14, 12, 2]). We present our work as progress towards
confirming that conjecture. The paper [4] announced similar results and gave ref-
erence to a paper in preparation for details. But even now, a number of years
later, the details of a proof have not appeared and there appear to be problems
with the sketch described in [4, p306-307]; we say more on this in Remark 2.1 after
establishing more notation. Our own proof takes quite a different approach. It is
modelled on the methods developed in [5, 11].

2. PFA implies no lifting

Let {An : n ∈ ω} be a partition of N into infinite sets. Let Y be the open
subset

⋃
nA
∗
n of N∗. Consider the subspace E = {f ∈ C(N∗) : f [Y ] = {0}}. It is

well-known (see [9, p574]) that there is a continuous lifting for C(Y ) if and only if
the subspace E is complemented in the Banach space (C(N∗), ‖ · ‖∞). We take as
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our definition of E being complemented that there is a projection P from C(N∗) to
E (a bounded linear operator) satisfying that P 2(f) = P (f) ∈ E for all f ∈ C(N∗).
Of course the norm of P is defined as the supremum of {‖P (f)‖∞ : ‖f‖∞ = 1}.

This then provides a complement to E and an operator T defined by T (f) =
f−P (f) for f ∈ C(N∗) onto that complement. Again, it follows that T is bounded,
linear, and satisfies that T 2(f) = T (f). We may view T as a lifting of the functions
from C(Y ) into C(N∗) since it follows that T (f) � Y = f � Y for all f ∈ C(N∗).
More precisely, for any h ∈ C(Y ), define H(h) to be T (f) where f is any f ∈ C(N∗)
such that h ⊂ f . Then H is a continuous linear embedding (in fact, lifting) of C(Y )
into C(N∗).
Theorem 1 (PFA). If {An : n ∈ ω} is a partition of N into infinite sets, then the
subspace E = {f ∈ C(N∗) : f [

⋃
nA
∗
n] = {0}} is not complemented. Equivalently,

there is no operator T as described above.

We assume PFA for the remainder and that T is an operator as described in the
paragraph immediately preceding the statement of the theorem. Following standard
Stone-Cech compactification notation, the set of bounded (continuous) functions on
N is denoted as C∗(N). We fix any lifting of T to all of C∗(N) in the sense that for
all bounded f ∈ C(N), T (f) ∈ C∗(N) is chosen so that [T (f)]∗ is equal to T (f∗).

So, we note that, for all f ∈ C∗(N), (f −T (f)) � An → 0 for all n. Additionally,
for f ∈ C∗(N), we note that ‖f∗‖∞ = 0 (i.e. f∗ ≡ 0) is equivalent to f converging
to 0 on N. We will say that two real-valued functions on N asymptotically agree
if their difference converges to 0. Also, when we refer to the norm of a member of
C∗(N) we mean the asymptotic norm or the norm of f∗.

The set {An : n ∈ ω}⊥ is the ideal of subsets of N which are almost disjoint from
each An. Let I denote the larger (dense) ideal of sets that are almost disjoint from
An for all but finitely many n. As usual, I+ is the collection of sets which are not in
this ideal. Note that a set a ⊂ N is in I+ if and only if the set Ja = {j : |a∩Aj | = ω}
is infinite. Unless mentioned otherwise, we will assume that a ∩ An is empty for
n /∈ Ja. Let J ⊂ I+ denote the collection of those a ∈ I+ with the property that
JN\a = ω. For any a ∈ I+, let 1a denote the characteristic function. Therefore, for
any ρ ∈ C∗(N), ρ · 1a is a function which is constantly 0 on N \ a.

Remark 2.1. It is well-known that, in models of CH, a continuous linear lifting H
of C(

⋃
nA
∗
n) into C(N∗) need not have the property that H(f) ·H(g) = 0 whenever

f · g = 0. This is similar to the fact that it is nearly immediate that if H is a linear
isomorphism between function spaces C(X) and C(Z), for X,Z compact and X
zero-dimensional, and if H satisfies that H(f) · H(g) = 0 whenever f and g are
characteristic functions of disjoint clopen sets, then X and Z are homeomorphic.
On the other hand, Miljutin[7] proved the surprising fact that C(2ω) is linearly
isomorphic to C([0, 1]) (for example).

One quite incomplete step in the outline of the proof in the paper [4] is connected
to this aspect of linear isomorphisms. Conditions (2.5) and (2.6) on Page 307 of [4]
seem to be essentially making this assumption about the isomorphism H discussed.
For example, it is very hard to see how to fulfill property (2.6) without having
shown that if χ0 · F = 0, then H(χ0) ·H(F ) = 0.

Comments on the proof: Many readers will know of Shelah’s original method
[10] for making an existing non-trivial automorphism of P(N)/ fin non-extendable



PFA AND COMPLEMENTED SUBSPACES OF `∞/c0 3

in a generic extension. An almost disjoint family {aα : α ∈ ω1} of infinite subsets of
N is constructed together with a family {bα : α ∈ ω1} of partitioners (i.e. bα ⊂ aα)
in such a way that there is a ccc poset P〈aα,bα:α∈ω1〉 which forces the existence
of a uniformizing partition X satisfying that X ∩ aα =∗ bα for each α ∈ ω1 while
preserving that there is no similar uniformizing Y for the family {ϕ(aα), ϕ(bα) : α ∈
ω1} (because it will contain a Hausdorff-Luzin type of gap). Clearly any possible
value for ϕ(X) must be such a uniformizing Y . The set-theoretic principle ♦ is
used to help ensure that the poset is ccc. Our method in this paper is based on
this approach. We intend to similarly choose a sequence of sets {aα : α ∈ ω1} ⊂ J
and replace choosing bα (or rather 1bα) by choosing some fα ∈ C∗(N) with support
contained in aα (i.e. fα · 1N\aα = 0) and again making these choices in such a way
that we can force the existence of a uniformizing function fω1

in the sense that
fω1 · 1aα asymptotically agrees with fα for all α ∈ ω1. However, the main new
obstacle is that while ϕ(bα) has no interaction with ϕ(aβ) for β 6= α, as remarked
above, this is very much not the case with T (fα) · T (1aβ ). This makes it seemingly
impossible to control for the possible existence of a function g which might take
the value for T (fω1

). That is, there is no expectation that T (fω1
) · T (1aβ ) should

have any sort of clear relationship to T (fβ) · T (1aβ ). To handle this we first prove
(Lemma 2) the existence of “T -orthogonal pairs” a, c, subsets of N, satisfying that
T (ρ · 1c) · 1a converges to 0 for all ρ ∈ C∗(N). After proving the existence of such
T -orthogonal pairs, we describe the construction of the poset P〈fα,dα:α∈ω1〉 (where
for other technical reasons 〈dα : α ∈ ω1〉 is a mod finite increasing sequence and the
above mentioned aα is contained in dα+1 \ dα). While constructing this family, we
also build in the construction of a suitable Hausdorff-Luzin type gap canonically
coded by the family 〈T (fα+1) : α ∈ ω1〉 which will serve as the device for ensuring
that no value for T (fω1) will exist. The paper finishes with the necessary lemmas
to show that the construction can be carried out.

Let C1 be the set of functions from N into {−1, 0, 1}, and let C+
1 denote the set

of functions from N into {0, 1}. For any function ρ ∈ C1, let ρ+, ρ− be the unique
members of C+

1 such that ρ = ρ+ − ρ− and |ρ| = ρ+ + ρ−.

Lemma 2. Given a, c ∈ I+, there are a1, c1 ∈ I+ such that a1 ⊂ a, Ja1 = Ja,
c1 ⊂ c, and for all ρ ∈ C∗(N), (T (ρ · 1a1)) · 1c1 converges to 0.

Proof. We may assume that a ∩ c is empty. Since we are assuming that T is a
lifting, let us note that for all ρ ∈ C1, there is a B ∈ {An : n ∈ ω}⊥ such that
T (ρ · 1a) · 1ω\(a∪B) converges to 0. In particular then we have that T (ρ · 1a) · 1c\B
converges to 0. This also implies that T (ρ · 1a) · 1c is asymptotically equal to
T (ρ · 1a) · 1c\⋃j<n Aj for each n ∈ ω.

Let L denote the set of pairs (a1, c1) satisfying that a1 ⊂ a, c1 ⊂ c, Ja1 = Ja, and
c1 ∈ I+. For each (a1, c1) ∈ L, let the real number La1,c1 denote the least upper
bound of the aymptotic norms of each member of the family {T (ρ·1a1)·1c1 : ρ ∈ C1}.
Also let L↓a1,c1 = inf{La2,c2 : (a2, c2) ∈ L and a2 ⊂ a1, c2 ⊂ c1}.

Claim 1. There is a pair (a1, c1) ∈ L such that La1,c1 = L↓a1,c1 .

Proof of Claim. Let (a0, c0) = (a, c) and recursively choose a pairwise descending
sequence {(an, cn) : n ∈ ω} ⊂ L so that Lan+1,cn+1

< L↓an,cn + 1
2n . Notice that for

each n, we have that L↓an,cn ≤ L↓an+1,cn+1
≤ Lan+1,cn+1

≤ Lan,cn . Choose any set

aω ⊂
⋃
j∈Ja Aj so that Jaω = Ja and for each j ∈ Ja, aω ∩Aj ⊂ aj and for each n,
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aω ∩ Aj ⊂∗ an. Notice that aω \ an is finite for all n. Choose a strictly increasing
sequence {in : n ∈ ω} so that for each n, cn∩Ain is infinite. Set cω =

⋃
n∈ω cn∩Ain .

We have that (aω, cω) ∈ L, and that cω \ cn ⊂
⋃
i<in

Ai for all n.
Let ρ be any member of C1 and let n ∈ ω. We have that ρ·1aω is mod finite equal

to (ρ·1aω )·1an . Therefore T (ρ·1aω ) is asymptotically equal to T ( (ρ·1aω )·1an ). Since
the asymptotic norm of T (ρ ·1an) ·1cω is less than or equal to that of T (ρ ·1an) ·1cn ,
we have that the asymptotic norm of T (ρ · 1aω ) · 1cω is bounded above by each
Lan,cn . By similar reasoning, it follows that L↓aω,cω is bounded below by L↓an,cn for
each n. This completes the proof of the Claim. �

Now that we have proven Claim 1, we may simply assume that L = La,c is equal
to La1,c1 for all (a1, c1) ∈ L.

Claim 2. Suppose that (a1, c1) and (a2, c2) are in L and that a1 ∩ a2 is finite.
Suppose also that ρ1, ρ2 are in C1 and that for some b ⊂ c1 and some ε > 0, the
sequence {|T (ρ1 · 1a1)(k)| : k ∈ b} has no values below L− ε. Then the asymptotic
norm of the function T (ρ2 · 1a2) · 1b is at most ε.

Proof of Claim. Since (a1 ∪ a2, c1) is in L and a1 and a2 are disjoint, we have that
each of T (ρ1 ·1a1 +ρ2 ·1a2)·1c1 and T (ρ1 ·1a1−ρ2 ·1a2)·1c1 have norm at most L. We
also have that each of (T (ρ1 ·1a1)+T (ρ2 ·1a2)) ·1b and (T (ρ1 ·1a1)−T (ρ2 ·1a2)) ·1b
have norm at most L. The conclusion is then obvious. �

The sets C1 and C+
1 will be given the usual finite agreement topologies.

Claim 3. For each (a1, c1) ∈ L and each ε > 0, the set of ρ ∈ C1 such that
T (ρ · 1a1) · 1c1 has norm greater than L− ε is non-meager.

Proof of Claim. Choose any ε > 0 and assume that {Un : n ∈ ω} is a descending
family of dense open subsets of C1. There is a strictly increasing sequence {kn :
n ∈ ω} ⊂ ω and functions tn : [kn, kn+1) → {0, 1} with the property that, for all
s ∈ {0, 1}kn , the basic clopen set [s∪tn] is contained in Un. We additionally require
that [kn, kn+1)∩Aj is not empty for each j ∈ Ja ∩ n. Let a2 =

⋃
n[k2n, k2n+1) and

note that a3 = a \ a2 satisfies that Ja3 = Ja.
Let ρ2 ∈ C1 be any function such that t2n ⊂ ρ2 for all n. Observe that for all

ψ ∈ C1, the function ρ2 ·1a2 +ψ ·1a3 is in Un for each n. Choose B ∈ {An : n ∈ ω}⊥
so that T (ρ2 · 1a2) · 1c1\B converges to 0. Choose ψ ∈ C1 so that T (ψ · 1a3) · 1c\B
has norm greater than L − ε. Finish the proof of the claim by observing that
T (ρ2 · 1a2 + ψ · 1a3) · 1c1\B is asymptotically equal to T (ψ · 1a3) · 1c\B and so has
norm greater than L− ε. �

Next we want to separate the contributions of ρ+ and ρ− to the norm of T (ρ ·
1a1) · 1c1 . Consider any ρ ∈ C1 and (a1, c1) ∈ L and let Lρ denote the norm of
T (ρ · 1a1) · 1c1 . Let B+(ρ, a1, c1) denote the collection of infinite sets (if any) b ⊂ c1
such that T (ρ · 1a1) � b converges to Lρ. Similarly let B−(ρ, a1, c1) denote the
collection of infinite sets b ⊂ c1 such that T (ρ · 1a1) � b converges to −Lρ. We will
identify four types of possible behavior. When B+(ρ, a1, c1) is non-empty we will
identify type 1 and type 2. The case when B+(ρ, a1, c1) is empty will be categorized
as type 3 or type 4. It will be completely symmetric in that if ρ is type 3 or type
4, then −ρ will be type 1 or type 2 respectively.

Let us focus on the case when B+(ρ, a1, c1) is non-empty. We define v(ρ, a1, c1)
connected to T (ρ+ ·1a1). Define v(ρ, a1, c1) to be the supremum of the norms of the
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family {T (ρ+ · 1a1) · 1b : b ∈ B+(ρ, a1, c1)}. Similarly define w(ρ, a1, c1) to be the
supremum of the norms of the family {T (ρ− · 1a1) · 1b : b ∈ B+(ρ, a1, c1)}. Notice

that Lρ ≤ v(ρ, a1, c1) +w(ρ, a1, c1), and so max(v(ρ, a1, c1), w(ρ, a1, c1)) ≥ Lρ
2 . We

will categorize ρ as type 1 for (a1, c1), when v(ρ, a1, c1) ≥ Lρ
2 .

Clearly, for each (a1, c1) ∈ L and each ε > 0, there is a non-meager set of ρ with
Lρ > L− ε of one of the four types for (a1, c1). Let Li denote the set of (a1, c1) ∈ L
for which, for each ε > 0, there is a non-meager set of ρ with Lρ > L − ε which is
type i for (a1, c1). By redefining (a, c) to be some member of Li, we may assume
that for each (a1, c1) ∈ L, there is an (a2, c2) ∈ Li with a2 ⊂ a1 and c2 ⊂ c1. For
the remainder of the proof we assume, by symmetry, that this is true of L1.

This leads to the next claim, and the conclusion that L1 = L.

Claim 4. For each (a1, c1) ∈ L1 and each ε > 0, there is a non-meager set of ρ ∈ C1

such that there are infinite disjoint b, d contained in c1 so that

(1) the set T (ρ · 1a1)[b] only has values greater than L− ε,
(2) the T (ρ+ · 1a1)[b] only has values greater than L

2 − ε,
(3) the set T (−ρ · 1a1)[d] only has values greater than L− ε.
(4) the set T (ρ− · 1a1)[d] only has values greater than L

2 − ε.

Proof of Claim. Choose any ε > 0 and assume that {Un : n ∈ ω} is a descending
family of dense open subsets of C1. Choose a strictly increasing sequence {kn : n ∈
ω} ⊂ ω and functions tn : [kn, kn+1) → {−1, 0, 1} so that, for all s ∈ {−1, 0, 1}kn ,
the basic clopen set [s ∪ tn] is contained in Un. We again require that [kn, kn+1) ∩
Aj ∩ a1 is not empty for each j ∈ Ja ∩ n. Let a2 =

⋃
n[k2n, k2n+1) and choose

disjoint a3, a4 ⊂ a1 \ a2 so that Ja3 = Ja4 = Ja.
Let ρ2 ∈ C1 be any function such that t2n ⊂ ρ2 for all n. Observe that for all

ψ ∈ C1, the function ρ2 · 1a2 + ψ · 1a3∪a4 is in Un for each n. Choose B0 ∈ {An :
n ∈ ω}⊥ so that each of T (ρ2 · 1a2 · 1a1), T (ρ+

2 · 1a2 · 1a1), and T (ρ−2 · 1a2 · 1a1)
converges to 0 on the set c1 \ B0. By shrinking a3 we may suppose that there is
some c3 ⊂ c1 \B0 so that (a3, c3) ∈ L1. Therefore we can choose ψ3 ∈ C1 and some
b ∈ B+(ψ3, a3, c3) so that the function T (ψ+

3 · 1a3) only has values greater than
L
2 −

ε
4 on the set b.

Now choose B1 ∈ {An : n ∈ ω}⊥ containing B0 so that each of T (ρ2 ·1a2 ·1a1 +ψ3 ·
1a3)·1c1\B1

, T ((ρ2 ·1a2 ·1a1 +ψ3 ·1a3)+)·1c1\B1
, and T ((ρ2 ·1a2 ·1a1 +ψ3 ·1a3)−)·1c1\B1

converges to 0.
Similarly, by shrinking a4, choose a function ψ4 ∈ C1 and an infinite set d ⊂

c1 \ B1 so that the image of d by T (ψ4 · 1a4) has no values below L − ε, and the
image of d by T (ψ+

4 · 1a4) has no values below L
2 − ε.

Now set ρ = ρ2 · 1a2 + ψ3 · 1a3 − ψ4 · 1a4 which is a member of the dense Gδ
set

⋂
n Un. By the choice of B1 and the linearity of T , we have that T (ρ · 1a1) =

T (ρ2 · 1a2 · 1a1 + ψ3 · 1a3 − ψ4 · 1a4) asymptotically agrees with T (−ψ4 · 1a4) on d.
Similarly T (ρ− · 1a1) asymptotically agrees with T (ψ4 · 1a4) on d. This proves that
items (3) and (4) of the Claim hold.

By Claim 2, we have that each of T (ψ4 ·1a4) and T (ψ−4 ·1a4) converge to 0 along
b. We also have that T (ρ2 ·1a2 ·1a1 +ψ3 ·1a3) asymptotically agrees with T (ψ3 ·1a3)
along b; and T (ρ+

2 · 1a2 · 1a1 + ψ+
3 · 1a3) asymptotically agrees with T (ψ+

3 · 1a3)
along b. Putting all this together we have that T (ρ · 1a1) asymptotically agrees
with T (ψ3 · 1a3) along b, and T (ρ+ · 1a1) asymptotically agrees with T (ψ+

3 · 1a3)
along b. This verifies items (1) and (2) of the Claim. �
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Now we are ready to apply OCA arguments to continue the proof. For each
j ∈ Ja, choose any injection ψj from 2<ω into a ∩ Aj . Also choose, for each
j ∈ Jc, an injection σj of Jc into Aj ∩ c. For each r ∈ 2ω, let ar denote the set
ar = {ψj(r � `) : j < ` ∈ ω}.

Let X denote the collection of functions of the form ρ = ρ · 1ar for some r ∈ 2ω,
and ρ ∈ C1 so that Claim 4 holds for some pair b, d ⊂ c.

For ρ ∈ X , let

bρ = {k ∈ c : T (ρ+)(k) > .45L and T (ρ)(k) > .9L}
and

dρ = {k ∈ c : T (ρ−)(k) > .45L and T (ρ)(k) < −.9L}
We define an open relation K0 on [X ]2 as follows. A pair (ρr, ρs) ∈ K0 providing

(1) r 6= s are members of 2ω,
(2) ρr · 1ar = ρr,
(3) ρs · 1as = ρs,
(4) ρr and ρs agree on ar ∩ as,
(5) there is a k ∈ (bρr ∩ dρs) ∪ (bρs ∩ dρr )

Assume that {ρα : α ∈ ω1} ⊂ C1 and {rα : α ∈ ω1} ⊂ 2ω are such that
[{ρα · 1arα : α ∈ ω1}]2 is contained in K0. For each α, let aα = arα and assume,
with no loss, that ρα = ρα · 1aα . For each α, let bα = bρα and dα = dρα Because of
(5) the family {(bα, dα) : α ∈ ω1} forms a Luzin family and so there is no set Y ⊂ N
and uncountable Γ ⊂ ω1 such that Y mod finite separates the family {bα : α ∈ Γ}
from the family {dα : α ∈ Γ}.

We consider the functions f+, f− where, for each k,

f+(k) = max{ρ+
α (k) : α ∈ ω1} and f−(k) = max{ρ−α (k) : α ∈ ω1} .

Also let f = f+ − f−. Notice that f · 1a = f and, for each α ∈ ω1, f · 1aα = ρα.

Claim 5. The liminf of T (f) on bα is at least .8L

Proof of Claim. Assume that b is any infinite subset of bα and assume that T (f) � b
converges to some Lb. By thinning b we may also assume that each of T (ρα) � b
and T (f · 1a\aα) � b also converge. We know that T (ρα) � b, converges to some
value greater than or equal to .9L. By Claim 2, T (f · 1a\aα) � b must converge to
values with absolute value less than or equal to .1L. �

Similarly, we have

Claim 6. The limsup of T (f) on dα is at most −.8L.

Now that we have that Y = T (f)−1(0,∞) will mod finite separate the entire
family {bα : α ∈ ω1} from {dα : α ∈ ω1}, there is evidently no such uncountable
K0-homogeneous set.

Therefore, by OCA, we deduce there is a countable family {Yn : n ∈ ω} which
covers X with the property that [Yn]2 ∩K0 is empty for all n. For each n, there
is a countable Yn which is a dense subset of Yn in the suitable metric topology
inherited from X .

Choose any selective ultrafilter U on ω such that Jc ∈ U . For each U ∈ U , let σ[U ]
denote the set {σj(k) : j, k ∈ U∩Jc and |U∩k| > j}. The family {σ[U ] : U ∈ U} is a
base for an ultrafilter on N. It is the U-limit of the sequence {σj(U) : j ∈ Jc}. To see

this, assume that W ⊂ N is such that UW = {j ∈ Jc : σ−1
j (W ∩Aj) = Uj ∈ U} ∈ U .
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Since U is selective, there is a U ∈ U such that U ⊂ UW and, for each j ∈ U ,
U \

⋂
`<j U` has cardinality less than j. It follows that σ[U ] ⊂W .

Fix any countable elementary submodel with each of the above objects as ele-
ments. For η ∈ X , let rη denote the member of 2ω such that η · 1arη = η. We will
choose an r ∈ 2ω and then recursively define a ρ ∈ C1 with ρ · 1ar = ρ.

Let us consider any s ∈ 2<ω and let as = {ψj(s � m) : j < m < |s|} which
is the maximal common initial segment of ar for all s ⊂ r ∈ 2ω. Also fix any
ρs : as → {−1, 0, 1}. For any n ∈ ω and s ⊂ t ∈ 2<ω, define ρs,t ⊃ ρs to be the
function with domain at which has value 0 on at \as. We will consider the two sets

W (ρs, n, t, 0) = {k ∈ c : (∃η ∈ Yn)ρs,t ⊂ η, t ⊂ rη and T (η)(k) > .9L}

and

W (ρs, n, t, 1) = {k ∈ c : (∃η ∈ Yn)ρs,t ⊂ η, t ⊂ rη and T (η)(k) < −.9L} .

There is a sequence {Um : m ∈ ω} ⊂ U such that for each such s, ρs, n, t, there
is an m such that σ[Um] is either contained in, or disjoint from, W (ρs, n, t, 0) ∩
W (ρs, n, t, 1). Fix any U ∈ U which is mod finite contained in each Um.

Choose any r ∈ 2ω with the property that it does not contain any infinite chain
of the form En,s,ρs = {t ∈ 2<ω : s ⊂ t, and W (ρs, n, t, 0) ∩ W (ρs, n, t, 1) ∈ U}
where s ∈ {r � ` : ` ∈ ω}, n ∈ ω, and ρs : as → {−1, 0, 1}. In other words, if such
an En,s,ρs is contained in r, then it is finite. Since there are only countably many
such chains, there is such an r.

Consider the forcing Pr consisting of finite approximations ρs : as → {−1, 0, 1}
to a generic function ρ : ar → {−1, 0, 1}. Since (ar, σ[U ]) ∈ L1, whenever D is a
countable family of dense subsets of Pr, there will be a non-meager set of D-generic
ρ that will satisfy that, not only is ρ ∈ X , but also that bρ and dρ each hit σ[U ] in
an infinite set.

Now for each integer n, define

Dn = {ρs,t ∈ Pr : either t /∈ En,s,ρs or (∃t̄ ∈ En,s,ρs)(s ⊂ t̄ ⊥ t)} .

Fix any ρs ∈ Pr. If En,s,ρs is a chain, there is an extension s ⊂ t ⊂ r such that
t /∈ En,s,ρs . Therefore ρs,t ∈ Dn. Otherwise, there is an extension t̄ ⊃ s such that
t̄ 6⊂ r and t̄ ∈ En,s,ρs . Choose any s ⊂ t ⊂ r such that t ⊥ t̄. Then we have that
ρs,t ∈ Dn. This shows that Dn is dense.

Now we assume that ρ is {Dn : n ∈ ω}-generic over Pr and that ρ ∈ X and that
each of bρ and dρ meet σ[U ] in an infinite set. Notice also that bρ and dρ necessarily
meet each c ∩ Aj in a finite set. Therefore, bρ ∩ σ[U ] and dρ ∩ σ[U ] are mod finite
contained in σ[Um] for each m. Consider any n and assume that ρ ∈ Yn. By the
density of Dn, there is an s ⊂ t ⊂ r such that ρs,t ⊂ ρ and ρs,t ∈ Dn. Choose the
t̄ ⊥ t so that ρs,t̄ ∈ En,s,ρs . Since there is an m such that σ[Um] ⊂ W (ρs, n, t̄, 0),
there is a k ∈ dρ ∩W (ρs, n, t̄, 0). Choose η ∈ Yn so that ρs,t̄ ⊂ η, t ⊂ rη, and
T (η)(k) > .9L. We have now produced ρ, η ∈ Yn such that {ρ, η} ∈ K0.

This completes the proof of the Lemma. �

Let us say that a set a is T -orthogonal to a set c if for all ρ ∈ C1, T (ρ · 1c) · 1a
converges to 0. So far as we know, this is not a symmetric relation. Although it
does follow from Lemma 2 that there are mutually T -orthogonal pairs, we do not
know if there is such a choice with c ∈ J (as we will need), and so we are satisfied
with the asymmetry.
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Following a standard method of producing a proper poset for the application
of PFA we pass to the CH extension obtained by forcing with ω<ω1

2 . For any
h ∈ C1 and d ∈ I+, we define the poset Ph,d to be the set of partial functions
p from N into {−1, 0, 1} such that dom(p) ⊂∗ d and p ⊂∗ h (in the sense of
only finitely many disagreements). For any α ≤ ω1 and sequence 〈fβ , dβ : β < α〉
of such fβ ∈ C1 and dβ ∈ I+, satisfying that for β < γ < α dβ ⊂∗ dγ and
fγ · 1dβ =∗ fβ · 1dβ , the poset P〈fβ ,dβ :β<α〉 is defined to be

⋃
β<α Pfβ ,dβ We can fix

a ♦-sequence {Sα : α ∈ ω1} ⊂ [ω1]≤ω and fix an enumeration {Hα : α ∈ ω1} of
H(ω1) (the hereditarily countable sets).

Now we define a sequence {dβ , fβ , ρβ , aβ ,Dβ : β ∈ ω1} subject to the following
inductive assumptions on α: for β < γ < α,

(1) dγ ∈ J ,
(2) aβ ⊂ dγ , aβ ∈ I+, and dβ ∪ aβ ⊂ dβ+1,
(3) fβ , fγ ∈ C1 and fβ = fβ · 1dβ =∗ fγ · 1dβ ,
(4) fγ · 1aβ = ρβ
(5) for all ρ ∈ C1, T (ρ · 1N\dγ ) · 1aβ converges to 0
(6) Dβ is a countable family of predense subsets of Pfβ ,dβ
(7) Dβ ⊂ Dγ ,
(8) if Dγ = {Hξ : ξ ∈ Sγ} is a predense subset of P〈fβ ,dβ :β<γ〉, then Dγ ∈ Dγ

This construction using ♦ as in condition (8) will ensure that the poset Pω1 =
P〈fβ ,dβ :β<ω1〉 is ccc. This is from Shelah’s oracle chain condition method of [10,

§IV]. We also work with a listing, {Ẏβ : β < ω1}, of all nice Pω1-names of subsets

of N such that Ẏβ is a Pfγ ,dγ -name (for any β < γ). And we add the inductive
condition

(9) for β < γ, P〈fξ,dξ:ξ<γ〉 forces that Ẏβ does not mod finite separate bγ from

eγ where bγ = {k ∈ aγ : T (fγ+1)(k) > 2
3} and

eγ = {k ∈ aγ : T (fγ+1)(k) < 1
3}.

After constructing aγ and ργ , we are able to preserve the property in item (9)
by adding a specific countable family of dense sets to Dγ+1.

The construction of this sequence will be explained in a series of Lemmas. How-
ever before doing so, we indicate how this will prove the main theorem. After
forcing with Pω1 , we have that the family {bγ , eγ : γ ∈ ω1} can not be σ-separated.
This implies ([13, Theorem 2] and [11, Lemma 2]) there is a proper poset Q which
introduces an uncountable Γ ⊂ ω1 so that the family {bγ , eγ : γ ∈ Γ} is a Luzin
family (it is unsplit in any proper forcing extension). Now, we meet ω1 many
dense subsets of ω<ω1

2 ∗ Pω1
∗Q in order to decide on the generic function f = fω1

added by Pω1 , and the Luzin gap {bγ , eγ : γ ∈ Γ} as well as the basic properties
of the family as detailed in items (1) - (6). Notice that (by the inclusion of ω1

many dense subsets of Pω1
) f · 1dγ is almost equal to fγ . It follows then that T (f)

can not exist. This is because Y = T (f)−1(( 1
2 ,∞)) is required to split the Luzin

gap. To see this we have to show that T (f) · 1bγ has liminf greater than 1
2 , while

T (f) · 1eγ has limsup less than 1
2 . We consider T (f) · 1aγ as asymptotically equal

to T (f · 1dγ+1
) · 1aγ + T (f · 1N\dγ+1

) · 1aγ . Items (3) and (5) ensure that this is
asymptotically equal to T (fγ+1) · 1aγ . Therefore, Y ∩ aγ does separate bγ and cγ .

We construct, by induction on α ∈ ω1, the sequences

〈fβ , dβ ,Dβ : β < α〉 ∪ 〈ρβ , aβ : β + 1 < α〉
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as per inductive items (1)-(9) above. We can start very simply with d0 = ∅, f0 the
constant 0 function, and D0 = {∅}.

If α is a limit ordinal, then the choices of fα, dα and Dα are handled at the end
in Lemma 6. Therefore, we can proceed by assuming that we have constructed the
family

〈fβ , dβ ,Dβ : β ≤ α〉 ∪ 〈ρβ , aβ : β + 1 ≤ α〉 .
The choices for fα+1, dα+1,Dα+1 together with aα, ρα are established in Lemma 5.
We will need preparatory lemmas leading up it.

This next lemma is (essentially) statement (*1) of [10, IV §5, p134]. We sketch
a proof for the reader’s convenience.

Lemma 3. Assume that h ∈ C1 and d ∈ J are such that h · 1d = h and assume
that c ∈ I+ is disjoint from d. If E is a countable family of predense subsets of
Ph,d, then there is an a ⊂ c such that Ja = Ja\c = Jc so that for all ρ ∈ C1 each
E ∈ E is a predense subset of the poset Ph+ρ·1a,d∪a.

Moreover, given c and a as above let d1 = d ∪ (c \ a). Then there is an h1 such
that h1 · 1d1 = h1, h1 · 1d = h · 1d, and such that for all ρ ∈ C1 with ρ · 1a = ρ, each
E ∈ E is a predense subset of Ph1+ρ,d1∪a.

Proof. Let {p` : ` ∈ ω} enumerate all members finite functions from the poset Ph,d.
Let p` ⊕ h denote the function p` ∪ h � (d \ dom(p`)). Let {E` : ` ∈ ω} be a
descending sequence of dense subsets of Ph,d so that the downward closure of each
E ∈ E contains one of them. Recursively define an increasing sequence 〈nk : k ∈ ω〉
of integers as follows. Let n0 = 0 and given nk ensure that nk+1 is large enough
so that dom(p`) ⊂ nk+1 for all ` < nk and that there is some `k < nk+1 so that
dom(p`k) is contained in [nk, nk+1) \ d, and, for all ` such that dom(p`) = nk,
p`k ∪ (p` ⊕ h) ∈ Ek. In addition, ensure that c ∩ Aj ∩ [nk, nk+1) is not empty for
each j ∈ Jc ∩ nk.

Let a = c ∩
⋃
{[n2k, n2k+1) : k ∈ ω}. Note that Ja = Jc\a = Jc. Let ρ be any

member of C1 and fix any E ∈ E . We check that E is predense in Ph+ρ·1a,d∪a.
To do so we consider any q ∈ Ph+ρ,d∪a. By extending q we may assume that
dom(q) contains d ∪ a. Choose k large enough so that the downward closure of E
in Ph,d contains Ek, dom(q) ⊂ d ∪ a ∪ n2k+1, and such that q(j) = (h + ρ)(j) for
all n2k+1 < j ∈ d ∪ a. There is an ` such that q � n2k+1 is contained in p` and
dom(p`) = n2k+1. By construction p`2k+1

∪ (p`⊕h) is in E2k. Since p`2k+1
∪ (p`⊕h)

is contained in p`2k+1
∪ q, we have that q is compatible with a member of E.

Now assume that d ∪ c ∈ J and choose h1 ∈ C1 so that h1 · 1d = h · 1d and
so that h � c =

⋃
{p`k � c : k ∈ ω}. Also ensure that h1 · 1N\d1 is 0. The same

argument as above shows that each E ∈ E is predense in Ph1,d1 because pk � c ⊂ h1

for all k. �

Having chosen fα, dα, we are ready to choose aα. First apply Lemma 2 to find
ãα ∈ I+ and disjoint cα ⊂ N \ dα so that ãα is T -orthogonal to cα and so that
Jcα = ω. Next apply Lemma 3 (with c = ãα) to choose any aα ∈ I+ contained in
ãα and hα,0 so that hα,0 ·1dα = fα, hα,0 ·1aα∪cα = 0 such that we are free to choose
any ρα ∈ C1 with ρα = ρα · 1ãα so as to preserve that each member of the family
Dα is predense in the poset Phα,0+ρα,N\(aα∪cα). Set dα,0 = N \ (aα ∪ cα).

With this reduction, we have now guaranteed that with this choice of aα and
dα+1 = N\ cα, then for all γ > α, so long as fγ ·1dα+1

=∗ fα+1 = fα+1 ·1dα+1
(as in

inductive condition (3)) is satisfied, then T (fγ) · 1aα will be asymptotically equal
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to T (fα+1) · 1aα . The reason is that T (fγ)− T (fα+1) will be asymptotically equal
to T (fγ · 1cα), and aα is T -orthogonal to cα.

The key property of the choice of ρα is the requirement on Ẏβ for each β < α.
This next Lemma shows how to handle one such β, then we extend to all countably
many in the subsequent Lemma.

Lemma 4. Let a, d be disjoint members of I+ and let h ∈ C1 be such that h·1d = h.
Further suppose that Ẏ is a Ph,d-name for a subset of N and let p0 be any member
of Ph,d. Then there is a ρ ∈ C1 such that, p0 ⊂ ρ, ρ · 1d∪a =∗ ρ, and such that

ρ � (d ∪ a) forces, with respect to the poset Ph+ρ·1a,d∪a, that Ẏ does not mod finite
separate a ∩ T (ρ)−1( 2

3 ,∞) and a ∩ T (ρ)−1(−∞, 1
3 ).

Proof. Assume that Ẏ is such a name and that there is no such ρ. Fix any integer
L, we will prove that T has norm exceeding L. We may obviously assume that
a is disjoint from dom(p0) and that dom(p0) ⊃ d. We may assume that Ẏ is a

simple name that is a subset of N × Ph,d and, for a generic filter G, valG(Ẏ ) =

{k : (∃r ∈ G)(k, r) ∈ Ẏ }. Let p_0 0̄ ∈ C1 denote the extension of p0 satisfying that
p_0 0̄ · 1dom(p0) = p_0 0̄. By the properties of T we have that T (p_0 0̄) converges to
0 on a ∩ Aj for each j ∈ Ja. By removing a finite set from each a ∩ Aj , we may
assume that T (p_0 0̄)(k) has absolute value less than 1

9 for all k ∈ a.
Fix, for each j ∈ Ja an injection ψj : 2<ω → a ∩ Aj . Our plan is to choose

ρ ∈ C1 so that for all j, xρ,j = {s ∈ 2<ω : ρ(ψj(s)) 6= 0} is a chain. Let Q ⊂ Ph,d
denote the set of those p ∈ Ph,d with this same property, namely, that for all j,
xp,j = {s ∈ 2<ω : p(ψj(s)) 6= 0} is a (possibly empty) chain. Let x+

p,j = {s ∈
xp,j : p(ψj(s)) > 7

9} and x−p,j = {s ∈ xp,j : p(ψj(s)) < 2
9}. The ordering on

Q, inherited from Ph,d, is that r ≤Q q providing q ⊆ r. We may consider Ẏ

(equivalently Ẏ ∩ (N×Q)) as a Q-name. Fix an enumeration {q` : ` ∈ ω} of
{q ∈ Q : dom(q) ∩ a = ∅}.

For any j ∈ Ja, say that an element q ∈ Q is j-decisive if for all q ⊂ r in Q,
r Q ψj(t) ∈ Ẏ for all t ∈ x+

r,j \ xq,j , and r Q ψj(t) /∈ Ẏ for all t ∈ x−r,j \ xq,j .

Claim 7. For each p0 ⊆ p ∈ Q and j ∈ Ja there is a p ⊆ q in Q which is j-decisive.

If no such q exists, then, we recursively choose an ⊂-increasing sequence {rk : k ∈
ω} ⊂ Q with p = r0 and dom(rk\p) ⊂ a for all k. Also ensure that

⋃
k dom(rk) = a.

The inductive hypothesis is that for each k and each ` < k, if q` ∪ rk ∈ Q, then
either there is `′ and a t ∈ x+

rk+1,j
\xrk,j such that q`′∪rk+1 ∈ Q, q`′∪rk+1 < q`∪rk,

and q`′ ∪ rk+1  ψj(t) /∈ Ẏ , or a similar conclusion for some t ∈ x−rk+1,j
\ xrk,j .

Upon completion of this recursion, set ρ =
⋃
k rk. We check that ρ is as required

in the conclusion of the Lemma. First of all, let us recall that ρ and T (ρ) are asymp-
totically equivalent on a∩Aj . So there is an k0 such that |ρ(ψj(t))−T (ρ)(ψj(t))| < 1

9
for all t ∈

⋃
k xrk \ xrk0 .

Now let us assume that there is a q̄ ∈ Pρ,d∪a extending ρ � (d∪a), and an m ∈ ω
such that q̄ forces that Ẏ contains (a \m)∩Aj ∩T (ρ)−1( 2

3 ,∞) and is disjoint from

(a \ m) ∩ Aj ∩ T (ρ)−1(−∞, 1
3 ). By enlarging k0, we can assume that ψj(t) > m

for all t ∈
⋃
k xrk \ xrk0 . Therefore we have that q̄ forces that ψj(t) ∈ Ẏ for all

t ∈
⋃
k x

+
rk
\ xrk0 , and that ψj(t) /∈ Ẏ for all t ∈

⋃
k x
−
rk
\ xrk0 .

Set q = q̄ � (N \ a) and notice that q ∈ Q and so there is an ` with q` = q.
Choose any k > `, k0. By symmetry, since q` is not j-decisive, we may assume
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there is t ∈ x+
rk+1,j

\ xrk,j and an `′ such that q`′ ∪ rk+1 Q ψj(t) /∈ Ẏ . However,

since dom(ρ\rk+1) ⊂ a, we have that q`′∪ρ < ρ is in the poset Pρ,d∪a = Ph+ρ·1a,d∪a
and so, by the assumption on q̄, forces that ψj(t) ∈ Ẏ . By our assumption on the

name Ẏ , there is a condition r ∈ Ph,d such that (ψj(t), r) ∈ Ẏ and is such that
r ∪ q`′ ∪ ρ is an extension of q`′ ∪ ρ. Of course then, r ∪ q`′ ∪ rk+1 forces that

ψj(t) ∈ Ẏ which contradicts that q`′ ∪ rk+1 Q ψj(t) /∈ Ẏ .
Next we use the Claim to show that L is not a bound on the norm of T . The key

idea is that being j-decisive is decidable and so we can build suitably long ψj-chains
in Aj and then branch away into 5L many incomparable extensions that share an

element ψj(t) forced to be in Ẏ .

Claim 8. There is a doubly-indexed set {gki : i ≤ 5L, k ∈ ω} ⊂ Q and an increasing
sequence {jk : k ∈ ω} ⊂ Ja such that, for each k and i ≤ 5L

(1) p0 ⊂ gki ⊂ g
k+1
i ,

(2) dom(gki \ p0) ⊂ a,

(3) for each ` < k, there is an `′ such that q` ⊂ q`′ and q`′ ∪ gk+1
i is jk-decisive,

(4) gk+1
i � (a ∩Ajk) ⊂ gk+1

i+1 � (a ∩Ajk) for i < 5L,

(5) there is a tk ∈ x+

gk+1
5L ,jk

∩ x+

gk+2
i ,jk

\ xgk+1
i ,jk

,

(6) for all j ∈ Ja ∩ jk and i 6= ` ≤ 5L, xgk+2
i ,j ∪ xgk+2

` ,j is not a chain.

Proof of Claim 8. We begin with g0
i = p0 for each i ≤ 5L and j−1 = 0. Assume

that we have selected jk−1 and {gki : i ≤ 5L} for some k. Set `0 = k. Choose any
jk > jk−1 in Ja so that dom(gki ) ∩ a ∩ Ajk is empty for all i ≤ 5L. Choose any

extension ḡk+1
0 of gk0 ∪ (gk5L � (a∩Ajk−1

)) which is jk-decisive. Suppose i < 5L and

we have chosen ḡk+1
i and a value `i+1 so that for each ` < `i there is an `′ < `i+1

such that q` ⊂ q`′ and q`′ ∪ ḡk+1
i is jk-decisive. Choose ḡk+1

i+1 (in `i+1 steps) to

be any extension of gki+1 ∪ (gk5L � (a ∩ Ajk−1
)) ∪ (ḡk+1

i � (a ∩ Ajk)) so that there
is an `i+2 such that for all ` < `i+1, there is an `′ < `i+2 so that q` ⊂ q`′ and
q`′ ∪ ḡk+1

i+1 is jk-decisive. When choosing ḡk+1
5L ensure also that there is tk ∈ x+

ḡk+1
5L ,jk

which is not in xḡk+1
i ,jk

for any i < 5L. Notice that this construction has ensured

that tk−1 ∈ x+

gk+1
i ,jk−1

for each i ≤ 5L. Finally, choose gk+1
i to be an extension of

ḡk+1
i so that gk+1

i � (a ∩ Ajk) = ḡk+1
i � (a ∩ Ajk) and in such a way that for all

j ∈ Ja ∩ jk and all distinct `, i ≤ 5L, xgk+1
i ,j ∪ xgk+1

` ,j is not a chain (this last step

is a triviality). �

Now, let us consider gi =
⋃
k∈ω g

k
i for each i ≤ 5L. But also, by the additional

properties of T , we can choose a1 ⊂ a so that for each j ∈ Ja, a ∩Aj \ a1 is finite,
and so that for all i < ` < 5L, we have that gi · g` · 1a1 is constantly 0. Then we
have that T (gi ·1a1) is asymptotically equal to T (gi ·1a) and Σi<5L gi ·1a1 has norm
at most 1. Also, T (Σi<5L gi · 1a1) is asymptotically equal to T (Σi<5L gi · 1a). By
our assumption, we have that there is some q` which, for each i ≤ 5L has decided
on the m and forces that for all σj(tk) > m which are in Ẏ , we must have that
T (gi · 1a)(σj(tk)) > 1

3 .

But now if q¯̀ is any extension of q`, then for each k > ¯̀, there is a further

extension q`′ such that, for each i < 5L, q`′ ∪ gk+1
i,jk

is jk-decisive. That is, q`′ ∪ gk+1
i,jk

forces that ψjk(tk) ∈ Ẏ . Therefore, it follows that T (Σi<5L gi · 1a1)(ψjk(tk)) is
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greater than (5L)( 2
9 ) for infinitely many k. Which shows that the norm of T is

greater than L. �

Lemma 5. Given fα, dα and Dα as in the inductive construction, there is an
aα ∈ I+ which is disjoint from dα, a pair fα+1, dα+1, and a countable family Dα+1

such that for each β < α

(1) dα ∪ aα ⊂ dα+1,
(2) dα+1 ∈ J ,
(3) fα+1 · 1dα = fα, and fα+1 · 1dα+1 = fα+1,
(4) aα is T -orthogonal to cα = N \ dα+1,
(5) Dα ⊂ Dα+1 and each D ∈ Dα+1 is a predense subset of Pfα+1,dα+1

,

(6) if G is any Dα+1-generic filter on Pfα+1,dα+1
, then valG(Ẏβ) does not mod

finite separate bα and eα.

Proof. As discussed before the previous lemma, there are aα, cα and hα,0 ∈ C1 and
dα,0 = N \ (aα ∪ cα) so that

(1) dα+1 = dα,0 ∪ aα ∈ J ,
(2) hα,0 · 1dα = fα, and hα,0 · 1aα∪cα = 0
(3) for any ρα ∈ C1 with ρα = ρα·1aα , each D ∈ Dα is predense in Phα,0+ρα,dα,0 ,
(4) aα is T -orthogonal to cα,

We will recursively choose disjoint infinite subsets aα,n of aα and functions ρα,n =

ρα · 1aα,n so as to “handle” Ẏn. However, in doing so we have to take care when

defining aα,n+1 to ensure that the full ρα will not change the fact that Ẏn was
appropriately handled by ρα � aα,n. Let us again note that regardless of our choice
of ρα, each member of Dα will be predense in Phα,0+ρα,dα+1

.
However, in order to make the first step general enough to handle all later

steps, we may suppose we have some countable family Eα,0 of predense subsets
of Phα,0,N\(aα∪cα), that must be preserved. Fix any p0 ∈ Phα,0,N\(aα∪cα) and any

Ẏβ0 with β0 < α.
To begin, apply Lemma 2 to obtain disjoint subsets, ãα,0 and cα,0, of aα so that

ãα,0 is T -orthogonal to cα,0. These may be chosen so that each are in I+ and
are disjoint from dom(p0). Apply Lemma 3 to choose aα,0 ⊂ ãα,0 and a function
hα,1 ∈ C1 so that hα,1 · 1dα,0 = hα,0, hα,1 · 1aα,0∪cα,0 = 0, and, for all ρ ∈ C1 with
ρ ·1aα,0∪cα,0 = ρ, we have that each member of Eα,0 is predense in Phα,1+ρ,N\cα . Set
dα,1 = dα,0 ∪ aα \ (aα,0 ∪ cα,0).

This gives us the poset Phα,1,dα,1 and first we replace p0 by the unique extension
with domain dα,1 which agrees with hα,1 at all points not in dom(p0). Then we
apply Lemma 4, and in this way we obtain ρα,0 ∈ C1 with ρα,0 · 1aα,0 = ρα,0, so
that (p0 + ρα,0) � (dα,1 ∪ aα,0) forces with respect to the poset Phα,1+ρα,0,dα,1∪aα,0 ,

that Ẏβ0
does not mod finite split aα,0∩T (hα,1 +ρα,0)−1( 2

3 ,∞) and aα,0∩T (hα,1 +

ρα,0)−1(−∞, 1
3 ).

Let us note that for all ρ ∈ C1, T (ρ · 1cα,0) · 1aα,0 converges to 0. There is
a countable set Eα,1 ⊃ Eα,0 of predense subsets of Phα,1+ρα,0,dα,1∪aα,0 with the
property that so long as a filter G with hα,0 + ρα,0 ∈ G meets each element of

Eα,1, it will ensure that valG(Ẏβ0
) does not split aα,0 ∩ T (hα,1 + ρα,0)−1( 2

3 ,∞) and

aα,0 ∩ T (hα,1 + ρα,0)−1(−∞, 1
3 ).
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We continue by choosing any p1 ∈ Phα,1+ρα,0,dα,1∪aα,0 and any β1 < α. We will
select ãα,1 , cα,1, aα,1 as subsets of cα,0 as we did with ãα,0 , cα,0, aα,0. We set dα,2 =
N\ (aα,1∪cα,1) and hα,2 as above so that hα,2 ·1dα,0∪aα,0 = (hα,1 +ρα,0) ·1dα,0∪aα,0 .

The recursion continues for ω-many steps and we define fα+1 to be the unique
function satisfying that fα+1 ·1dα∪aα = fα+1 and fα+1 ·1dα,`∪aα,` = hα,`+ρα,` for all
` ∈ ω. In this recursion, it is easily arranged that

⋃
`(dα,` ∪ aα,`) = dα ∪ aα = dα+1

and let ρα = fα+1 · 1aα . Additionally, it is easily arranged that for each n and each
pair p ∈ Phα,n,dα,n , β < α, there is an ` ≥ n such that at stage ` we are considering
p` = p and β` = β.

Choose any q ∈ Pfα+1,dα+1
and β ∈ α. Choose any k ∈ ω so that the finite set

of places where q might disagree with fα+1 is contained in dα,k. Let p = q � dα,k
and choose ` > k so that at stage ` of this construction, we were considering p and
Ẏβ . This means that at stage `, we were working with q � dα,`+1 and we arranged

that q � (dα,`+1∪aα,`) forced over the poset Phα,`+1+ρα,`,dα,`+1
that Ẏβ did not mod

finite split aα,` ∩T (hα,`+1)−1( 2
3 ,∞) and aα,` ∩T (hα,`+1)−1(−∞, 1

3 ). We set Eα,`+1

to be a countable family of predense sets that will ensure this continues to hold, and
at stage `+ 1, we ensured that for all ρ ∈ C1 such that ρ · 1aα,`+1∪cα,`+1

= ρ, each
member of Eα,`+1 is predense in Phα,`+1+ρ,N\cα . Define Dα+1 to be any countable
collection of predense subsets of Pfα+1,dα+1

which contains Dα and
⋃
` Eα,`+1. Since

T (fα+1) · 1aα,` is asymptotically equal to T (hα,`+1) · 1aα,` , we have completed the
proof of the Lemma. �

Lemma 6. Assume that {dn : n ∈ ω} is an increasing family of members of J and
that {hn : n ∈ ω} ⊂ C1 has the property that, for each n, hn+1 · 1dn = hn. Then,
for any countable family E of predense subsets of the poset

⋃
n Phn,dn , there is a

pair h ∈ C1 and d ∈ J such that
⋃
n Phn,dn ⊂ Ph,d and each E ∈ E is predense in

Ph,d.

Proof. Similar to Lemma 3. First to choose d we define d ∩An for each n. Choose
d ∩An so that

(1) An ∩ dm ⊂ d for each m < n,
(2) (An ∩ dm) \ d is finite for all m,
(3) An \ d is infinite.

Naturally we have ensured that d ∈ J and that dm\d is contained in
⋃
n≤nAn∩dm\

d, and so is finite. We will define h so that h·1d = h and so that h·1dn∩d = hn ·1dn∩d
for each n. However, in order to ensure that each E ∈ E is still predense in Ph,d,
we will recursively shrink d while preserving that dn \ d is finite for all n. By
recursion on k we will choose a finite set Lk disjoint from dk, and will redefine d to
be d \

⋃
n Ln. Let {pk, Ek : k ∈ ω} be an enumeration of all pairs from

⋃
n Phn,dn

and E .
Suppose we have chosen Lk and we consider the pair pk, Ek. Choose nk+1 large

enough so that there is an e ∈ Ek compatible with pk and so that both e and pk are
in Phn,dn for some n < nk+1. In addition, assume that dom(pk)\dn is contained in⋃
j<nk+1

Aj . Choose a finite set Lk+1 ⊂ dnk+1
\dk so that {` : (e∪pk)(`) 6= hnk+1

(`)}
is contained in dk ∪ Lk+1. It follows that we will have that pk and e will be
compatible in Ph,d. �
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[12] Juris Steprāns, The autohomeomorphism group of the Čech-Stone compactification of
the integers, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4223–4240 (electronic).

MR MR1990584 (2004e:03087)
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