
A NEW LINDELOF SPACE WITH POINTS Gδ

ALAN DOW

Abstract. We prove that ♦∗ implies there is a zero-dimensional
Hausdorff Lindelöf space of cardinality 2ℵ1 which has points Gδ. In
addition, this space has the property that it need not be Lindelöf
after countably closed forcing.

1. Introduction

The set-theoretic principle ♦∗ was formulated by Jensen ([2, p128]
and [6, VI #16, p181]).

Definition 1.1. ♦∗ is the statement that there are countable Aα ⊂
P(α), for α ∈ ω1, such that for every A ⊂ ω1 there is a cub C ⊂ ω1

such that A ∩ α ∈ Aα for all α ∈ C.

Definition 1.2. [7] A Lindelöf space is indestructible if it remains Lin-
delöf after any countably closed forcing. A Lindelöf space is destructible
if it is not indestructible.

Notice that ♦∗ implies CH but is consistent with 2ℵ1 being arbitrarily
large ([6, VII (H18)-(H20) p249]). As is well-known, Shelah proved,
using forcing, that it is consistent with CH to have Hausdorff zero-
dimensional Lindelöf spaces with points Gδ which had cardinality ℵ2
(see [5]). In establishing the consistency with CH of there being no
such spaces with cardinality strictly between ℵ1 and 2ℵ1 , Shelah also
established the relevance of the notion of a space being destructible
(see [5]). I. Gorelič produced another forcing construction to establish
the consistency of the existence of Lindelöf spaces with points Gδ which
had cardinality 2ℵ1 while allowing 2ℵ1 to be as large as desired. F. Tall
[7] points out that each of these examples is indestructible.

In this note we will prove

Theorem 1.3. ♦∗ implies there is a space that is zero-dimensional
Hausdorff Lindelöf destructible of cardinality 2ℵ1 and that has points
Gδ.
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This is the first consistent example of a Lindelöf Hausdorff destruc-
tible space with points Gδ.

Question 1. Does every Lindelöf Hausdorff destructible space have car-
dinality at least 2ℵ1?

2. A Lindelöf tree

We build our space X using the structure 2≤ω1 . For each t ∈ 2≤ω1 let
[t] denote the set {s ∈ 2≤ω1 : t ⊆ s}. For any t ∈ 2<ω1 such that dom(t)
is a successor, let t† be the other immediate successor of the immediate
predecessor of t, i.e. t and t† are the two immediate successors of t∩ t†.

Let σ denote the standard topology on 2≤ω1 that has the family

{∅} ∪ {[ρ � ξ + 1] : ξ ∈ ω1}∪
{[t � ξ + 1] \ ([t_0] ∪ [t_1]) : ξ ∈ dom(t), t ∈ 2<ω1}

as a subbase. Of course t is isolated and [t] is clopen for all t such that
dom(t) ∈ ω1 is not a limit.

This next lemma is very well-known but since it is crucial to our
construction, we include a proof.

Lemma 2.1. The topology σ on 2≤ω1 is compact zero-dimensional and
Hausdorff. Also, for each α ∈ ω1, 2≤α is a compact first-countable
subspace.

Proof. One standard method of proof is to construct a canonical em-
bedding of 2≤ω1 into 22<ω1 and show that the range is closed in the
product topology. However we will give a more direct proof. Certainly
σ is zero-dimensional since the members of the generating subbase are
easily shown to also be closed. If s, t are distinct elements of 2≤ω1 ,
we show they have disjoint neighborhoods. If t ⊂ s, then, for any
ξ ∈ dom(t), t ∈ [t � ξ + 1] \ ([t_0] ∪ [t_1]) and s ∈ ([t_0] ∪ [t_1]).
Otherwise, we may assume that y = s∩ t is strictly below each of s and
t, and note that [y_0] and [y_1] are disjoint and each contains one of
s, t.

Now assume that U is a cover by basic open sets. Let TU denote
the set of all t ∈ 2<ω1 such that there is no finite subcollection of U
whose union contains [t]. If ∅ /∈ TU then U has a finite subcover. So
assume that TU is not empty. Observe that if t ∈ TU , then t � ξ ∈ TU
for all ξ ∈ dom(t). For each ρ ∈ 2ω1 , there is a ξ ∈ ω1 such that
[ρ � ξ + 1] ∈ U , so we have that TU is a subtree of 2<ω1 with no
uncountable branch. Similarly, TU has no maximal elements, since if
each of [t_0] and [t_1] are covered by a finite union from U , then
certainly, [t] = {t}∪ [t_0]∪ [t_1] is as well. Choose any maximal chain
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{tξ : ξ ∈ α} ⊂ TU and let t =
⋃
{tξ : ξ ∈ α}. Since T has no maximal

elements, t is on a limit level and U contains a finite cover of [t]. But
in addition, there is some ξ < α such that [tξ] \ ([t_0] ∪ [t_1]) is in U .
This is a contradiction, since it shows that U has a finite cover of [tξ]
– contradicting that tξ ∈ TU .

It is obvious that 2≤α is a closed subset of 2≤ω1 , and, for each non-
isolated t ∈ 2≤α, the collection {[t � ξ+1]\([t_0]∪ [t_1]) : ξ ∈ dom(t)}
is a neighborhood base at t. �

Next we consider Lindelöf subspaces.

Lemma 2.2. If Y ⊂ 2<ω1 satisfies that Y ∩ 2α is countable for all
α ∈ ω1, then the complement of Y in 2≤ω1 is Lindelöf in the topology
induced by σ.

Proof. Assume that U is a cover of 2≤ω1 \Y by basic clopen sets. Let us
again set TU to be the set of t ∈ 2<ω1 such that U contains a countable
cover of [t] \ Y . As in the proof of Lemma 2.1, TU (if non-empty)
is downwards closed, has no maximal elements, and no uncountable
branches. Now let us show that TU is branching. Suppose that TU ∩ [t]
is a chain. Then it is a countable chain (with supremum in Y ), and let
{tγ : γ ∈ α} be an enumeration in increasing order and let tα denote

the union. For each γ ∈ α, we have that t†γ+1 is not in TU , and so

there is a countable Uγ ⊂ U whose union covers ({tγ} ∪ [t†γ+1]) \ Y .
Furthermore there is a countable Uα ⊂ U that covers [tα]\Y . It should
be clear that

⋃⋃
{Uγ : γ ≤ α} covers [t].

Now we have established that TU is branching and has no maximal
elements. Set t∅ = ∅ and by recursion on s ∈ 2<ω, choose ts ∈ TU so
that for s ∈ 2<ω, ts ⊂ (ts_0 ∩ ts_1) and ts_0 ⊥ ts_1. Let δ ∈ ω1 so that
{ts : s ∈ 2<ω} ⊂ 2<δ. Choose any x ∈ 2ω so that tx =

⋃
n tx�n ∈ 2≤δ\Y .

By construction, dom(tx) is a limit ordinal. Choose any ξ ∈ dom(tx)
so that [tx � ξ + 1] \ ([t_x 0] ∪ [t_x 1]) is contained in some U ∈ U . Fix n
so that ξ < dom(tx�n), and choose any s ∈ 2<ω so that x � n ⊂ s and
s 6⊂ x. Finally we can conclude that TU must be empty, since we have
that [ts] ⊂ U . �

3. points Gδ

Let {Aα : α ∈ ω1} be a sequence as in Definition 1.1 witnessing the
statement ♦∗.

Definition 3.1. For each limit α ∈ ω1 let Sα = {t ∈ 2α : t−1(1) ∈ Aα}.
For 0 < α not a limit, let Sα be the empty set, and let S0 = {∅}.
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Lemma 3.2. For each ρ ∈ 2ω1, there is a cub Cρ ⊂ ω1 such that
Cρ ⊂ {α : ρ � α ∈ Sα}.

Proof. This is just a restatement of the fact that the sequence {Aα :
α ∈ ω1} is a ♦∗ sequence. �

For each ρ ∈ 2ω1 fix a cub Cρ as in Lemma 3.2.

Proposition 3.3. For each ρ ∈ 2ω1, there is a countable-to-one func-
tion fρ : ω1 → 2ω so that for each x ∈ 2ω, there is a δx ∈ Cρ ∪ {0} and
δx < γx ∈ Cρ so that f−1ρ (x) is equal to the interval [δx, γx).

Proof. First let {δx : x ∈ 2ω} be any enumeration of Cρ∪{0}. For each
x ∈ 2ω, define γx to be min(Cρ \ [0, δx]). Assume that δx < δy. Then
it is obvious that γx ≤ δy. Now define fρ so that fρ([δx, γx)) = {x} for
all x ∈ 2ω. �

Now we are ready to prove our main theorem.

Proof of Theorem 1.3. Fix the sequence {Sα : α ∈ ω1} as in Definition
3.1, and let Y equal the union of this family. Our space X will have
as its base set (2ω1 × 2ω)∪ 2<ω1 \ Y . We will use the fact (Lemma 2.2)
that 2≤ω1 \ Y is Lindelöf when using the topology σ. Recall that for
each ρ ∈ 2ω1 and ξ ∈ ω1, [ρ � ξ + 1] \ Y is a clopen set. In this proof,
for any s ∈ 2<ω, we will use [s]2ω to denote the set {x ∈ 2ω : s ⊂ x}.

We define a clopen base for the topology τ . For each t ∈ 2<ω1 , we
use the notation [t]X to denote

[t]X = [t] ∩ (2<ω1 \ Y ) ∪ ([t] ∩ 2ω1)× 2ω .

Again, for each ρ ∈ 2ω1 and each ξ ∈ ω1, the set [ρ � ξ+ 1]X is declared
to be a clopen set in τ (i.e. [ρ � ξ + 1]X and its complement are in τ).
Let us observe that for t ∈ Y , [t]X is equal to [t_0]X ∪ [t_1]X and so
is also clopen.

Next, for each ρ ∈ 2ω1 and each x ∈ 2ω, let f−1ρ ({x}) be denoted as
[δρx, γ

ρ
x) as per Proposition 3.3. For s ∈ 2<ω, and γ ∈ Cρ, we define

U(ρ, s, γ) = ({ρ} × [s]2ω)∪⋃
{[ρ � δρx]X \ [ρ � γρx]X : x ∈ [s]2ω and γ ≤ δρx} .

When the choice of ρ is clear from the context, we will use δx, γx as
referring to δρx, γ

ρ
x. The topology τ will also contain each such U(ρ, s, γ).

Notice that, for each γ ∈ Cρ and each n ∈ ω, the family {U(ρ, s, γ) :
s ∈ 2n} is a partition of the clopen set [ρ � γ]X , and so each is clopen.

Claim 1. For each t ∈ 2<ω1 ∩X, the family

{[t � ξ + 1]X \ ([t_0]X ∪ [t_1]X) : ξ ∈ dom(t)}
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is a neighborhood base for t.

To show this we must consider some ρ, s, γ such that t ∈ U(ρ, s, γ)
and γ ∈ Cρ. There is a unique x ∈ 2ω such that t ∈ [ρ � δx]X \ [ρ � γx]X .
Since ρ � δx ∈ Y , we know that t 6= ρ � δx. Since [t � δx + 1] \ ([t_0] ∪
[t_1]) is contained in [ρ � δx]X \ [ρ � γx]X , we have proven the claim.

Claim 2. For each ρ ∈ 2ω1 and z ∈ 2ω, the point (ρ, z) is the only
element of the intersection of the family {U(ρ, z � n, γz) : n ∈ ω}.

It is clear that for any γ ∈ Cρ, U(ρ, s, γ) ∩ ({ρ} × 2ω) is equal to
{ρ} × [s]2ω . Now suppose that ψ ∈ 2ω1 \ {ρ} and t ∈ X ∩ 2<ω1 . Let
ρ � ξψ = ψ ∩ ρ and ρ � ξt = t∩ ρ. Choose any s ∈ 2<ω so that z ∈ [s]2ω
and neither of fρ(ξt), fρ(ξψ) are in [s]2ω \ {z}. But now, if γz ≤ ξ then
fρ(ξ) 6= z. Therefore, for all x ∈ [s]2ω with γz ≤ γx, we have that
{ξt, ξψ} is disjoint from [δx, γx), and therefore [ρ � δx]X \ [ρ � γx]X is
disjoint from {t}∪ ({ψ}× 2ω). This completes the proof of the claim.

Let Φ be the canonical map from X (with topology τ) onto 2≤ω1 \
Y (with topology σ). That is, Φ(t) = t for all t ∈ X ∩ 2<ω1 , and
Φ((ρ, x)) = ρ for all ρ ∈ 2ω1 and x ∈ 2ω. It is evident that point
preimages under Φ are compact. It is immediate that Φ is continuous
since Φ−1[t] = [t]X for all t ∈ 2<ω1 . This is also useful to show that
Φ is closed. By [3, 1.4.13] it is sufficient to show that if U ⊂ X is an
open set containing a fiber Φ−1(t) for some t ∈ 2≤ω1 \ Y , then there is
a neighborhood W of t such that Φ−1(W ) is contained in U . Let then,
t ∈ 2≤ω1 \Y and suppose that U ⊂ X is an open set containing Φ−1(t).
This is obvious if t ∈ 2<ω1 , so suppose that t = ρ ∈ 2ω1 . Since Φ−1(ρ)
is simply {ρ} × 2ω, it is clear that there is γ ∈ Cρ and n ∈ ω such that
U(ρ, s, γ) ⊂ U for each s ∈ 2n. As remarked above, this implies that
[ρ � γ]X is contained in U . Since [ρ � γ] is a neighborhood of ρ and,
again, [ρ � γ]X = Φ−1([ρ � γ]), this completes the proof that Φ is a
closed mapping.

Now that we have established that there is a perfect map (continuous,
closed, point-preimages compact) from X onto a Lindelöf space, we
conclude [3, 3.8.8] that X is also Lindelöf.

Finally, it is immediate that the forcing notion 2<ω1 will introduce
a new member ψ of 2<ω1 . Since the forcing adds no new members to
2<ω1 , the set {ψ � ξ + 1 : ξ ∈ ω1} is a subset of X and has no complete
accumulation point in X. We conclude that X is not Lindelöf in the
forcing extension. �
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4. Remarks on Consistency

Let us consider the following principle which is evidently weaker than
♦∗.

Definition 4.1. w♦∗ is the statement that there is a subset Y ⊂ 2<ω1

such that

(1) for each α ∈ ω1, Y ∩ 2≤α contains no perfect set,
(2) for each ρ ∈ 2ω1 , there is a cub Cρ ⊂ ω1 such that {ρ � γ : γ ∈

Cρ} is contained in Y .

Say that the set Y is a w♦∗ sequence.

The hypothesis “CH and w♦∗” is sufficient to prove Theorem 1.3. It
is probable that this is a weaker statement than ♦∗ but, just as a ♦∗
sequence is destroyed by forcing with 2<ω1 (see [6, p300 J5]), so too is
a w♦∗-sequence. This implies that w♦∗ fails in the models in which it
has been shown that any Lindelöf points Gδ space of cardinality greater
than ω1 must be destructible. In particular, such a model (see [7]) is
obtained by countably closed forcing that collapses a supercompact
cardinal to ℵ2. It is a reasonable conjecture to hope that in that model
Lindelöf spaces with points Gδ will have cardinality at most ℵ1, and
the approach till now has focussed on trying to show that there are (in
ZFC) no destructible Lindelöf spaces with points Gδ. However there is
a stronger property that such spaces must have which we now define.

Definition 4.2. Say that a regular Lindelöf space with points Gδ is
reconstructible if it is destructible and, there is a countably closed poset
so that in the forcing extension, it is no longer Lindelöf but it can be
embedded into a regular Lindelöf space with points Gδ.

It may not be as natural, but there is a similar, but weaker, property
which is the property we are really after. We use the word elementar-
ily in reference to the set-theoretic notion of elementary extensions of
models.

Definition 4.3. Say that a regular Lindelöf space X with points Gδ

is elementarily reconstructible if there is a countably closed poset so
that in the forcing extension, it is no longer Lindelöf and there is a
regular Lindelöf space Y with points Gδ that has a dense subspace Z
and a continuous mapping f from Z onto X and satisfies that f is a
homeomorphism on the pre-image of the points with character at most
ω1.

Clearly an elementarily reconstructible space that has character at
most ω1 will be reconstructible. A reader of Tall’s paper [7] will realize
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that in the forcing extension mentioned above, if there is a Lindelöf
space with points Gδ and character at most ω1 which has cardinality
greater than ω1 then that space will be reconstructible and that the
cardinal collapsing poset described above will be the witness. It is also
true, but not as easily checked, that each Lindelöf space with points Gδ

and cardinality greater than ω1 will be elementarily reconstructible.
On the other hand, not only does the poset 2<ω1 render our space to

be non-Lindelöf, it also creates a subspace which can not be embedded
into a Lindelöf space with points Gδ.

Proposition 4.4. If Y ⊂ 2<ω1 is a w♦∗-sequence, then in the forcing
extension by 2<ω1, there is a ψ ∈ 2ω1 such that Tψ(Y ) = {α : ψ � α ∈
Y } is stationary.

Since {ψ � α : α ∈ Tψ(Y )}, as a subspace of 2<ω1 , is homeomorphic
to Tψ(Y ) as a subspace of the ordinal ω1, this next proposition shows
that our space X is not reconstructible.

Proposition 4.5. If S is a stationary subset of ω1, then S can not be
embedded in a Lindelöf space with points Gδ.

Proof. Assume that Z is a Lindelöf space with S as a subspace. Since
S can not equal a union of non-stationary sets, and Z is Lindelöf, there
is a point z of Z with the property that every neighborhood of z meets
S in a non-stationary set. Let us show that z is not a Gδ-point. Let
{Un : n ∈ ω} be a family of open subsets of Z, each meeting S in a
non-stationary set. Since S is a subspace, S \ Un is a closed subset of
S that misses the stationary set Un. Of course this implies that S \Un
is countable. This shows that each Gδ of Z that contains z will also
contain many points of S. �

We close with the obvious question.

Question 2. Does CH imply there is a regular Lindelöf space with points
Gδ that is elementarily reconstructible?
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