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Abstract. It is shown that in the model obtained by adding supercom-
pact many random reals every C∗-embedded subset of a first countable
space (even with character smaller than c) is C-embedded. It is also
proved that if two ground model sets are completely separated after
adding a random real then they were completely separated originally
while CH implies that the Cohen poset does not have this property.

1. Introduction

Ohta and Yamazaki asked [7] if every C∗-embedded subset of a first count-
able space is C-embedded. It is shown in [4] that a counterexample can be
derived from the assumption b = s = c and that if the Product Measure Ex-
tension Axiom (PMEA) holds then the answer is affirmative in some special
cases.

We will show in Section 3 that in the model obtained by adding super-
compact many random reals Ohta and Yamazaki’s question has a positive
answer with no extra assumptions needed. It is well known that this model
satisfies PMEA and therefore this result improves the one from [4].

One of the key devices in Section 3 is that adding random reals does
not introduce a continuous real-valued function that separates two ground
model sets that were not so separated to begin with. In view of the results
from [1] concerning separation of sets by disjoint open sets (namely, that if
one can separate ground model subsets with open sets after adding random
or Cohen reals then those sets were separated by open sets in the ground
model) it is natural to ask if the Cohen poset behaves in the same way.
Section 4 provides a construction (assuming CH) which shows that this is
not the case.

2. Preliminaries

The purpose of this section is to establish the basic terminology. Our
primary sources are [2] for topology; [6] and [3] for forcing and set theory
(large cardinals and elementary embeddings).
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Let X be a topological space. A subset A ⊆ X is C-embedded if every
continuous real-valued function with domain A can be extended continu-
ously to X. If every continuous function from A into [0, 1] has a continuous
extension to X then A is C∗-embedded in X.

A zero-set in X is a set of the form f−1(0) for some continuous f : X →
[0, 1]. Two sets A,B ⊆ X are completely separated if there is a continuous
f : X → [0, 1] such that f [A] ⊆ {0} and f [B] ⊆ {1}; equivalently, A and B
are contained in disjoint zero-sets.

If j is a function whose domain is transitive we will denote by j(a) the
value that j assigns to the element a ∈ dom j and j′′a will be used to
represent {j(x) : x ∈ a}.

Let κ be a cardinal. We say that X has character less than κ (in symbols,
χ(X) < κ) if any point in X has a local base of cardinality < κ. 2κ denotes
the set of all functions from κ into 2 = {0, 1}. For each α < κ the set
aα := {f ∈ 2κ : f(α) = 0} is a clopen subset of the topological product 2κ.

Let B be the σ-algebra generated by {aα : α < κ}. For each α < κ define
µ(aα) = µ(2κ\aα) = 1/2. One can extend µ to obtain a probability measure
on B. This µ is called the Haar measure on 2κ.

2<ω is the set of all functions whose domain is an integer. Observe that
when κ = ω, B is generated by {[t] : t ∈ 2<ω}, where [t] := {f ∈ 2ω : t ⊆ f},
i.e. all the functions that extend t. Each [t] will be called a basic clopen set
for 2ω.

Mκ is the poset obtained by identifying two members of B \ {∅} if the
measure of their symmetric difference is zero. Mκ is ccc and complete,
i.e. if S ⊆ Mκ is not empty then S has a supremum in Mκ, denoted by∨
S. In particular, if Φ is a formula and σ1, . . . , σn are names so that

a  Φ(σ1, . . . , σn), for some a ∈ Mκ, then we define

[[Φ(σ1, . . . , σn)]] :=
∨
{b ∈ Mκ : b  Φ(σ1, . . . , σn)}.

If S is a non-empty subset of Mκ and has a lower bound in Mκ then S
has an infimum which will be denoted by

∧
S.

If τ is a topology for X and P is any forcing notion then it could be the
case that, in the generic extension, τ is no longer a topology for X due to the
presence of new subsets of τ but τ will always be a base for some topology
for X. Hence, whenever we refer to the topological space (X, τ) (or simply
X) we will be referring to the topology on X that has τ as a base.

3. Consistency Modulo a Supercompact Cardinal

We start this section with an auxiliary result which is itself of significant
interest.

Theorem 3.1. Let κ be a cardinal. If X is a topological space and A,B ⊆
X, then the following are equivalent.

(1) A and B are completely separated.
(2) Mκ  “A and B are completely separated”
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Proof. To show that (1) implies (2) note that any continuous function from
the ground model remains continuous in the generic extension.

Now assume (2) and let ḟ be a name for a real-valued continuous function
on X so that Mκ  “ḟ [A] ⊆ {0} ∧ ḟ [B] ⊆ {1} ∧ ḟ [X] ⊆ [0, 1]”.

For each 0 < r < 1 define Ur := {x ∈ X : µ([[ḟ(x) < r]]) > 1 − r}. We
show below that {Ur : r ∈ (0, 1)} is a family of open sets satisfying Ur ⊆ Us

whenever s < t, and A ⊆ Ur ⊆ X \ B for every r. And therefore the map
h : S → [0, 1] given by h(x) := inf({1} ∪ {r ∈ (0, 1) : x ∈ Ur}) is continuous,
h[A] ⊆ {0} and h[B] ⊆ {1}.

Let r be arbitrary. If x ∈ Ur and b := [[ḟ(x) < r]] then there exists a name
for an open set Ẇ so that b  “x ∈ Ẇ ∧ ḟ [Ẇ ] ⊆ [0, r)”. Fix an antichain
{bn : n < ω} and a family {Wn : n < ω} of open sets from the ground model
so that b =

∨
{bn : n < ω} and bn  x ∈ Wn ⊆ Ẇ . Since

∑
n<ω µ(bn) =

µ(b) > 1 − r there is an integer m for which
∑

n<m µ(bn) > 1 − r. Define
a :=

∧
{bn : n < m} and O :=

⋂
{Wn : n < m}. Hence a  ḟ [O] ⊆ [0, r) and

therefore 1− r < µ(a) ≤ µ([[ḟ(y) < r]]) for each y ∈ O. Clearly x ∈ O ⊆ Ur

so Ur is open.
To prove that A ⊆ Ur ⊆ X \ B observe that µ([[ḟ(x) = 0]]) = 1 and

µ([[ḟ(y) = 1]]) = 1 for all x ∈ A and y ∈ B.
To finish the proof assume that r < s and let x ∈ Ur be arbitrary. Let

W be the collection of all open sets from the ground model that contain
x. For each W ∈ W the condition bW :=

∨
{[[ḟ(y) < r]] : y ∈ W ∩ Ur}

satisfies bW  “ḟ [W ] ∩ [0, r) 6= ∅”and µ(bW ) > 1 − r. Set b :=
∧
{bW :

W ∈ W}. Since {bW : W ∈ W} is closed under finite intersections, we
obtain µ(b) ≥ 1− r > 1− s. We also have that b  ḟ(x) ≤ r which implies
1− s < µ(b) ≤ µ([[ḟ(x) < s]]). Thus x ∈ Us. �

Assume that ν : Mκ → [0, 1] is a probability measure. Note that the
argument given above shows that if ḟ is an Mκ-name for a continuous real-
valued function with domain X, then h : X → [0, 1] given by

h(x) := inf({1} ∪ {r ∈ (0, 1) : ν([[ḟ(x) < r]]) > 1− r})
is continuous.

Before proving the main theorem let us discuss a simplification that will
be used: Any real-valued continuous function f can be expressed as f =
(f+ + 1) − (f− + 1), where both, f+ and f−, are continuous and non-
negative. This simple remark shows that a set A is C-embedded in X iff
any continuous function from A into [1,∞) has a continuous extension to
X.

Theorem 3.2. Let κ be a supercompact cardinal. In the model obtained
by adding κ many random reals, every C∗-embedded subset of space whose
character < κ is C-embedded.

Proof. Let Ẋ, τ̇ , Ȧ and ḟ be Mκ-names so that Mκ  “χ(Ẋ, τ̇) < κ, Ȧ
is C∗-embedded in Ẋ and ḟ : Ȧ → [1,∞) is continuous.” As remarked
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above, it is enough to show that ḟ has a continuous extension to Ẋ. In
order to do this we may assume that Ẋ and Ȧ have been decided, i.e. there
are two sets (in fact ordinals) X and A from the ground model satisfying
1  “Ẋ = X̌ ∧ Ȧ = Ǎ.”

Let G be an Mκ-generic filter. Working in V [G] we observe that 1/f is
a function from A to [0, 1] and so can be extended to a continuous map
h : X → [0, 1]. Note that we only have to prove that A and Z(h) are
completely separated. Indeed, if s : X → [0, 1] is a continuous function so
that s[A] ⊆ {0} and s[Z(h)] ⊆ {1} then 1/(s+ h) extends f .

In V [G] let ρ be a name for the canonical random real added by Mω. In
other words, Mω  ρ : ω → 2 and µ([[ρ(n) = i]]) = 1/2 for all n ∈ ω and
i < 2, where µ is the Haar measure on 2ω described before. Also let ġ be an
Mω-name for the piecewise linear extension of ρ on [1,∞), i.e. ġ � [n, n+ 1]
is the line segment that connects the points (n, ρ(n)) and (n + 1, ρ(n + 1))
for each positive integer n.

Fix a cardinal λ > max{|X|, c}. Since κ is supercompact, there exists an
elementary embedding j0 : V → M , where M is a transitive class closed
under λ-sequences, so that j0(α) = α for each α < κ and j0(κ) > λ. There-
fore (see [1]) G can be extended to G∗, an Mj(κ)-generic filter over M , and
j0 can be exentended to an elementary embedding j : V [G] → M [G∗] in
such a way that V [G] and M [G] have exactly the same sets of rank < λ.
As a consequence of this we obtain that j(A) is a C∗-embedded subspace
of (j(X), j(τ)) and j(f) is a continuous function from j(A) into [1,∞).
Since ġ can be interpreted as an Mκ+ω-name and κ+ ω < j(κ) we get that
g := val(ġ, G∗) is a continuous function from [1,∞) into [0, 1]. Hence g◦j(f)
has a continuous extension ψ : j(X) → [0, 1].

Elementarity, the fact that (X, τ) has character < κ, and our choice of
λ imply that j � X : X → j′′X is a homeomorphism (proof of Lemma 2.4
of [1]) where j′′X is considered as a subspace of j(X). Thus the function
ϕ0 : X → [0, 1] given by ϕ0(x) = ψ(j(x)) is continuous. To show that it
extends g◦f we only have to observe that if x ∈ A then j(f)(j(x)) = j(f(x))
by elementarity and that j(f(x)) = f(x) because f(x) is a real number.

The argument given above proves that there is an Mj(κ)-name, ϕ̇0, for a
continuous extension of ġ ◦ ḟ . Using the fact that Mj(κ) is ccc and assuming
that ϕ̇0 is a nice name we can find an ordinal α for which ϕ̇0 is an Mκ+ω∗Mα-
name and κ+ α+ ω < j(κ).

Since Mκ+ω ∗ Mα and Mκ+α ∗ Mω are forcing equivalent we can arrange
things in such a way that ϕ̇0 is an Mκ+α ∗Mω-name, G is extended to G, an
Mκ+α-generic filter over V , and, in V [G], ρ is an Mω-name for the canonical
random real added by Mω. The rest of the argument takes place in V [G].

Let ϕ̇1 and ϕ̇2 be names for the maps 1− ϕ̇0 and |ϕ̇0− 1/2|, respectively.
If b ∈ Mω then µb : Mω → [0, 1] defined by

µb(a) =
µ(a ∧ b)
µ(b)

,
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where a ∧ b is the infimum of {a, b}, is a probability measure and therefore
(see the remark following Theorem 3.1) the function ψb,i : X → [0, 1] given
by

ψb,i(x) = inf({1} ∪ {r ∈ (0, 1) : µb([[ϕ̇i(x) < r]]) > 1− r})

is continuous for all i < 3.
We claim that if b is a basic clopen set then there is an integer nb so

that f−1[nb,∞) ⊆ ψ−1
b,i [1/3, 1] for all i < 3. To see that this is true let

t ∈ 2<ω be such that b = [t] and let nb ∈ ω \ dom t be arbitrary. The
arguments needed for each individual i are similar so we will present here
only the case i = 0. Start with arbitrary x ∈ f−1[nb,∞) and r ∈ (0, 1/3).
Define c := [[ϕ̇0(x) < r]] and fix integers m ≥ n and k < 3 such that
m+k/3 ≤ f(x) ≤ m+(k+1)/3. If k = 0 or k = 2 we obtain c = [[ρ(m) = 0]]
or c = [[ρ(m + 1) = 0]], respectively, and therefore µb(c) = 1/2. When
k = 1, c = [[ρ(m) = ρ(m + 1) = 0]] and hence µb(c) = 1/4. In any case,
µb(c) < 2/3 < 1− r which implies that ψb,i(x) ≥ 1/3.

For each basic clopen set b and each integer i < 3 define Z(b, i) :=
h−1[1/nb, 1] ∪ ψ−1

b,i [1/3, 1] to obtain a zero-set in X that contains A. We
will show that Z(h) and

⋂
{Z([t], i) : t ∈ 2<ω ∧ i < 3} are disjoint and thus

A and Z(h) are completely separated (recall that two sets are completely
separated iff they can be separated by disjoint zero-sets).

Given z ∈ Z(h) let a ∈ Mω and 0 ≤ k ≤ 3 be so that a  k/4 ≤
ϕ̇0(z) ≤ (k+1)/4. There is an integer i < 3 depending entirely on k so that
a  ϕ̇i(z) ≤ 1/4. Fix a real number 1/4 < r < 1/3. Since µ is the Haar
measure on 2ω we can apply the analogue to Lebesgue Density Lemma for
µ (see Section 17.B of [5]) and claim the existence of a basic clopen set b
for which 1− r < µb(a). On the other hand, a ≤ [[ϕ̇i(z) < r]] and therefore
1− r < µb([[ϕ̇i(z) < r]]). Clearly ψb,i(z) < 1/3 and hence z /∈ Z(b, i).

We just showed that, in V [G], A and Z(h) are completely separated after
adding (an additional) α + ω many random reals. According to Theorem
3.1 this implies that A and Z(h) are completely separated in V [G] and this
finishes the argument.

�

4. A Distinction Between Random and Cohen

Does Theorem 3.2 remain true if we replace random with Cohen? Theo-
rem 4.2 shows, at least, that the method used above does not work for the
Cohen poset.

For any two sets A and B, BA denotes the set of all functions from A into
B. In particular, if α is an ordinal, B<α :=

⋃
{Bβ : β < α} and similarly

for B≤α.
We will consider every integer as an ordinal and therefore 2n, 2<n and 2≤n

make sense. For each t ∈ ω<ω and k < 2 we define t_i := t ∪ {(dom t, k)}
(note that we are considering functions as collections of ordered pairs).
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For the next two results we will use the poset P = 2<ω ordered by s ≤ t
if s extends t.

Lemma 4.1. There is a family {U(t, i) : t ∈ P ∧ i < 2} of subsets of ω so
that

(1) If s < t then U(t, i) ⊆ U(s, i) for all i < 2.
(2) U(t, 0) ∩ U(t, 1) = ∅ for all t.
(3) If F is a finite antichain in P and f : F → 2 then

⋂
{U(t, f(t)) : t ∈

F} is infinite.
(4) n ∈ U(t, 0) ∪ U(t, 1) for all n ∈ ω and each t ∈ 2n.

Proof. We will use induction on the levels of P to construct the family. For
level 1 we only have to nodes: 0 and 1. Partition ω into five infinite parts,
a0, a1, b0, b1 and c. Now define U(0, 0) = a0 ∪ a1, U(0, 1) = b0 ∪ b1,
U(1, 0) = a0 ∪ b0 and U(1, 1) = a1 ∪ b1.

Assume that for n ∈ ω we have constructed {U(t, i) : t ∈ 2≤n ∧ i < 2} in
such a way that conditions (1), (2) and (4) from the lemma hold and the
following are also true.

(i) If f is a binary function whose domain is an antichain contained in
2≤n then

⋂
{U(t, f(t)) : t ∈ dom f} is infinite.

(ii) ω \
⋃
{U(t, i) : t ∈ 2≤n ∧ i < 2} is infinite.

Let {tk : k < 2n} be an enumeration of 2n. For each k < 2n let {fk
` : ` <

m} be an enumeration of all binary functions whose domain is an antichain
in 2≤n and no element of its domain is compatible with tk. Using induction
on ` < m we obtain four pairwise disjoint infinite sets a0

k, a
1
k, b

0
k and b1k so

that each one of them intersects
⋂
{U(t, fk

` (t)) : t ∈ dom(fk
` )} in an infinite

set for all ` < m.
To finish the construction fix a partition {cik : k < 2n∧i < 2}∪{d} ⊆ [ω]ω

of ω \
⋃
{U(t, i) : t ∈ 2≤n ∧ i < 2} and define U(t_k i, 0) := U(tk, 0) ∪ ai

k ∪ c0k
and U(t_k i, 1) := U(tk, 1)∪ bik ∪ c1k (and if the integer n+1 is not an element
of U(t_k i, 0) ∪ U(t_k i, 1) then add it to exactly one of them). �

Given two sets A and B we say that A ⊆∗ B if B \A is finite. If S is an
infinite set and for each A ∈ A we have S ⊆∗ A then S is a pseudointersection
of A.

[ω]ω and [ω]<ω denote the set of all infinite subsets of ω and all finite
subsets of ω, respectively.

For an infinite set S ⊆ ω and a function h : ω → [0, 1] we will say that
h[S] converges to p (in symbols, h[S] → p) if the sequence 〈h(xn) : n ∈ ω〉
converges to p, where S = {xn : n ∈ ω} and xn < xn+1 for each n < ω.

Theorem 4.2. CH implies that there exist a first countable Tychonoff zero-
dimensional space X and two sets A0, A1 ⊆ X which are not completely
separated but after a Cohen real they are completely separated.
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Proof. Let P and {U(t, i) : t ∈ P ∧ i < 2} be as in the previous lemma. Use
CH to fix {hα : ω ≤ α < ω1}, an enumeration of all functions from ω into
the interval [0, 1].

The strategy is to define a topology on ω1 in such a way that ω is open
discrete and each ω ≤ α < ω1 will have a neighborhood base of the form
{{α} ∪ Sα \ n : n ∈ ω} for some Sα ∈ [ω]ω.

We will obtain this topology by induction. To be accurate, at stage α we
will get three sets: Dα, a maximal antichain in P; xα, a function from Dα

into 2; and Sα ∈ [ω]ω satisfying the following.
(1α) Sα ⊆∗ U(t, xα(t)) for each t ∈ Dα.
(2α) β < α implies |Sβ ∩ Sα| < ω.
(3α) One of the following conditions holds.

(a) hα[Sξ] does not converge for some ξ ≤ α.
(b) There exist k < 2 and ξ ≤ α so that xξ ≡ k (i.e. xξ(t) = k for

all t ∈ Dα) and hα[Sξ] does not converge to k.
(4α) For each binary function x whose domain is a finite antichain in P

the set
⋂
{U(t, x(t)) : t ∈ domx} \

⋃
{Sξ : ξ ∈ a} is infinite for each

a ∈ [α \ ω]<ω .
Before going over the details of the induction let us show that a sequence

satisfying all the given requirements provides us with the required space.
Indeed, for each k < 2 define Ak := {α < ω1 : xα ≡ k} and assume
that h : X → [0, 1] is continuous. Let α < ω1 be so that h � ω = hα.
h’s continuity implies that condition (3α-a) fails and therefore (3α-b) must
hold. Hence there exists ξ ≤ α so that xξ ≡ k, for some k < 2, and hα[Sξ]
does not converge to k. Clearly ξ ∈ Ak and h(ξ) 6= k. Therefore A0 and A1

cannot be separated by a continuous function.
On the other hand, if G is a P-generic filter, let g :=

⋃
G and define

Uk :=
⋃
{U(g � n, k) : n ∈ ω} for each k < 2. Observe that if α ∈ X \ ω

then g � m ∈ Dα for some integer m and therefore

Sα ⊆∗ U(g � m,xα(g � m)).

This property and the fact that α ∈ U0 if and only if Sα∩U0 is infinite imply
that U0 ∩ U1 = ∅ (recall item (2) from Lemma 4.1). The same property
implies that if α ∈ Ak then α ∈ U(g � m, k) ⊆ Uk; in other words, Ak ⊆ Uk.
Therefore A0 and A1 are forced to be completely separated.

The only thing left is to construct the sequence. To do this let us assume
that we are at stage α and we have defined {(Dβ, xβ, Sβ) : ω ≤ β < α} so
that conditions (1β)-(4β) are satisfied for all β. For each binary function x
for which domx is a maximal antichain let

F(x) := {U(t, x(t)) \ I : t ∈ domx ∧ I ∈ I},
where I := {

⋃
{Sξ : ξ ∈ a} : a ∈ [α \ ω]<ω}. Observe that F(x) is countable

and henceforth it has pseudointersections.
Seeking a contradiction, which comes at the end of the proof, we assume

that for every maximal antichain D, for all functions x : D → 2 and for
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every pseudointersection S of F(x) the set hα[S] converges and if x ≡ k for
some k < 2 then hα[S] → k.

Note that if S and S′ are pseudointersections of F(x) then S∪S′ is also a
pseudointersection of F(x) and therefore hα[S ∪ S′] converges to some real
number r. Thus hα[S] → r and hα[S′] → r. Hence, if x is a binary function
for which domx is a maximal antichain in P then there is a real number
ϕ(x) so that hα[S] → ϕ(x) for any pseudointersection S of F(x).

We claim that if D is a maximal antichain and x ∈ 2D, the map x 7→ ϕ(x)
is continuous, where 2D is equipped with the product topology. Since D is
countable, we only have to prove that if {xn : n ∈ ω} ⊆ 2D converges to
x ∈ 2D then ϕ(xn) → ϕ(x). If this were not the case then we would be able
to find ε > 0 so that infinitely many n’s satisfy |ϕ(xn)−ϕ(x)| > ε. Without
loss of generality let us assume that this happens for all n ∈ ω. Now let Hn

be a pseudointersection of F(xn). By removing finitely many elements from
Hn we can assume that |hα(k)− ϕ(x)| > ε for all k ∈ Hn.

Write D as an increasing union of finite sets, D =
⋃

n Fn, and enumerate
I = {In : n ∈ ω}. Let S = {kn : n ∈ ω} be a sequence of integers satisfying
kn ∈ Hn∩

⋂
{U(t, xn(t)) : t ∈ Fn}\ (kn−1∪ In). Observe that for each t ∈ D

and n ∈ ω there exists m > n so that t ∈ Fm and xi � Fm = x � Fm for all
i ≥ m. Hence {ki : i ≥ m} ⊆ U(t, x(t)) \ In (recall that Fm ⊆ Fi). This
proves that S is a pseudointersection of F(x) and therefore hα[S] → ϕ(x).
In particular, there is an n ∈ ω so that |hα(kn) − ϕ(x)| < ε, but kn ∈ Hn.
This contradiction shows that ϕ � 2D is continuous.

For any set Y ⊆ P define Y ↓ := {t ∈ P : ∃s ∈ Y (t < s)}.
Claim: Let E0 and E1 be maximal antichains. If y0 : E0 → 2 and

y1 : E1 → 2 agree on cones (i.e. y0(s) = y1(t) whenever s ∈ E0 and t ∈ E1

are comparable) then ϕ(y0) = ϕ(y1).
Proof of the Claim: To show that ϕ(y0) = ϕ(y1) we only have to prove

that F(y0) and F(y1) have a common pseudointersection.
Let us start by proving that E := (E0 \ E↓

1) ∪ (E1 \ E↓
0) is a maximal

antichain. Given s, t ∈ E there are two cases: Both belong to the same Ei

(so they are incompatible) or (without loss of generality) s ∈ E0 \ E↓
1 and

t ∈ E1 \ E↓
0 . In the second case we obtain s 6≤ t and t 6≤ s and therefore s

and t are incompatible. To prove maximality let t ∈ P be arbitrary. Since
Ei is maximal, there exists ti ∈ Ei which is incompatible with t for each
i < 2. If, for example, t0 ∈ E↓

1 then t0 < s for some s ∈ E1 and thus s and
t are compatible, which gives s = t1. Clearly, t1 /∈ E↓

0 so t1 ∈ E.
The function y := y0 � (E0 \E↓

1)∪y1 � (E1 \E↓
0) has domain E and agrees

on cones with y0 and y1.
Let S be a pseudointersection of F(y) and let i < 2 be arbitrary. In order

to prove that S is a pseudointersection of F(yi) let F be a finite subset of
Ei. For each t ∈ F there exists t′ ∈ E so that t ≤ t′. Therefore

S ⊆∗
⋂
{U(t′, y(t′)) : t ∈ F} \ I ⊆

⋂
{U(t, yi(t)) : t ∈ F} \ I,
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for all I ∈ I. Which finishes the proof of the Claim.
Fix a sequence of positive real numbers {εn : n ∈ ω} so that

∑
n<ω εn <

1/3.
The fact that ω<ω embeds densely in 2<ω and vice versa implies that

everything we have done so far can be coded for ω<ω via the embedding.
To simplify the next arguments we will switch to P = ω<ω and keep the
notation we developed for 2<ω.

For each n ∈ ω the set Dn of all functions from n into ω is a maximal
antichain in P and therefore ϕ � 2Dn is continuous. Moreover, 2Dn is compact
and therefore ϕ is uniformly continuous so there exists a finite set Fn ⊆ Dn

so that for all x, y ∈ 2Dn if x � Fn = y � Fn then |ϕ(x) − ϕ(y)| < εn. By
enlarging Fn we can assume that there is an integer mn so that Fn is the
set of all functions from n into mn and mn < mn+1.

The set D0 := {t_i : ∃n ∈ ω(t ∈ Dn)∧∀k < n(t(k) < mk)∧mn ≤ i < ω}
is a maximal antichain in P. Let F 0 be a finite subset of D0 so that x �
F 0 = y � F 0 implies |ϕ(x)− ϕ(y)| < 1/3 for all x, y : D0 → 2. Let ` < ω be
large enough so that F 0 ⊆ ω<`.

For all 1 ≤ k ≤ ` define xk : Dk → 2 by xk(t) = 1 iff x � i ∈ F 0 for some
i ≤ k. Also let yk : Dk → 2 be given by yk(t) = xk(t � (k − 1)_0). If t ∈ Fk

then t and t � (k − 1) have the same predecessors and since Fk ∩ F 0 = ∅ we
obtain xk � Fk = yk � Fk which implies |ϕ(xk)− ϕ(yk)| < εk.

On the other hand, if s ∈ Dk−1 and t ∈ Dk satisfy t < s then yk(t) =
xk−1(s_0) and therefore xk−1 and yk agree on cones. Hence ϕ(yk) =
ϕ(xk−1).

The two previous paragraphs show that |ϕ(x`)−ϕ(x1)| <
∑`

k=1 εk < 1/3.
Note that x1 ≡ 0 and thus ϕ(x1) = 0 which gives ϕ(x`) < 1/3.

For each t ∈ D0 fix a t′ ∈ D` which is compatible with t. The function
z : D0 → 2 defined by z(t) = x`(t′) agrees on cones with x` and hence
ϕ(z) = ϕ(x`). If y : D0 → 2 satisfies y ≡ 1 then z � F 0 = y � F 0 so
|ϕ(z)−ϕ(y)| < 1/3 and since ϕ(y) = 1 we conclude that ϕ(x`) = ϕ(z) > 1/3,
a contradiction. This ends the proof of the theorem. �

As mentioned in the introduction, it is consistent that Ohta and Ya-
mazaki’s question has a negative answer. More precisely, the counterexam-
ple is a pseudocompact first countable space that contains ω as a discrete
C∗-embedded subspace but not C-embedded. It was also shown in [4] that
under PMEA there is no such a space. The following result shows that the
same is true if we add supercompact many Cohen reals.

Theorem 4.3. Let κ be a supercompact cardinal. In the model obtained
by adding κ many Cohen reals no pseudocompact space of character < κ
contains an infinite discrete C∗-embedded subspace.

Proof. Fn(I, 2) denotes the set of partial functions from I into 2 ordered by
p ≤ q iff q ⊆ p.
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We will prove the theorem by contrapositive. Assume that Ẋ and τ̇ are
names so that Fn(κ, 2)  “(Ẋ, τ̇) is a topological space that contains a C∗-
embedded copy of ω.” Without loss of generality we can assume that there is
an ordinal X so that Fn(κ, 2)  “Ẋ = X̌ and ω is discrete and C∗-embedded
in (X̌, τ̇)”

Working in V [G], where G is Fn(κ, 2)-generic over V , let ġ be the canon-
ical name for the Cohen real added by Fn(ω, 2), i.e. p  p ⊆ ġ for all
p ∈ Fn(ω, 2). Proceeding as in the proof of Theorem 3.2 we obtain an or-
dinal α and an Fn(κ + ω, 2) ∗ Fn(α, 2)-name ḟ for a continuous function
from X into [0, 1] that extends ġ. Moreover, we can arrange things in such
a way that ḟ is an Fn(κ + α, 2) ∗ Fn(ω, 2)-name, G is extended to G, an
Fn(κ + α, 2)-generic filter over V , and, in V [G], ġ is an Fn(ω, 2)-name for
the canonical Cohen real added by Fn(ω, 2). We will work in V [G] for the
rest of the argument.

Lemma 1.1 of [1] guarantees the existence of a family L of finite subsets
of P := Fn(ω, 2) such that the following holds.

(1) For each maximal antichain A ⊆ P there is L ∈ L such that L ⊆ A.
(2) For any element p ∈ P with |dom p| ≤ 3 and for any collection

{Fi : i < 3} ⊆ L there exists qi ∈ Fi (i < 3) such that the set
{p} ∪ {qi : i < 3} has a lower bound.

Given x ∈ X there exists a name U̇x so that P  “x ∈ U̇x ∈ τ and the
diameter of ḟ [U̇x] is < 1/4.” Let Ax be a maximal antichain in P and let
{Wx(p) : p ∈ Ax} ⊆ τ be such that p  W̌x(p) = U̇x, for each p ∈ Ax. Fix
Lx ∈ L satisfying Lx ⊆ Ax and define Wx :=

⋂
{Wx(p) : p ∈ Lx}.

We will show that {Wn : n ∈ ω} is a discrete family (recall that ω ⊆ X)
and therefore X is not pseudocompact. Assume that Wx∩Wn 6= ∅ for some
x ∈ X and n ∈ ω. Let m ∈ ω\{n} be arbitrary and set p0 := {(m, 0), (n, 1)}.
There exist p1 ∈ Lm, p2 ∈ Ln, p3 ∈ Lx, and q ∈ P so that q ≤ pi for all i < 4.
Therefore q  “ḟ(m) = 0 ∧ ḟ(n) = 1 ∧Wy ⊆ U̇y” for each y ∈ {m,n, x}.
This implies that q  “ḟ [U̇n]∩ ḟ [U̇x] 6= ∅ ∧ 0 ∈ ḟ [U̇m]∧ 1 ∈ ḟ [U̇n]” and since
ḟ [U̇x] is forced to have diameter smaller than 1/4 we get q  U̇m ∩ U̇x = ∅
and whence Wm ∩Wx = ∅. �

5. Questions

(1) Is the large cardinal assumption needed in the proof of Theorem 3.2?
(2) Is it a ZFC result that Cohen fails to preserve not completely sepa-

rated?
(3) Is Theorem 3.2 true if we replace random with Cohen?
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