
TWO RESULTS ON SPECIAL POINTS

ALAN DOW

Abstract. We show that there is a nowhere ccc σ-compact space which has

a remote point. We show that it is consistent to have non-compact σ-compact

separable space X such that every point of the remainder is a limit of a count-
able discrete subset of non-isolated points of X. This example shows that

one cannot prove in ZFC that every locally compact non-compact space has
discrete weak P -points.

1. Introduction

A point p ∈ βX \X is a remote point of X if p is not the limit of any nowhere
dense subset of X. Remote points were introduced by Fine and Gillman [7]. The
reals and, with additional set-theoretic assumptions, many ccc spaces, have been
shown to have remote points ([14, 4, 2]). In addition, specifically under the contin-
uum hypothesis, non-pseudocompact spaces of weight ℵ1 have remote points [10]
and a weak form of the continuum hypothesis is necessary [3].

Many weakenings of the notion of remote have been considered in which the
collection of sets that p should be remote from is restricted. Thus a point p could
be said to be a remote discrete weak P -point of a space X if p is not in the closure of
any countable discrete subset of X. If X has no isolated points then a remote point
is a remote discrete weak P -point. van Mill asks in [15, 10.1] if every σ-compact
locally compact space of weight at most 2ω has a remote discrete weak P -point.
We show in this paper that this is not the case. The author has asked [6] if there
is, in ZFC, a nowhere ccc σ-compact space which has a remote point and we show
that this is the case.

Our primary interest will be in spaces which have the form ΣnX, i.e. has the
form ω × X, for a compact space X. We will also consider countable free unions
of posets P . In each case, we will refer to the elements of ΣnX (or ΣnP ) using
ordered pairs (n, x) (or (n, p)) but when there is no danger of confusion, we will
suppress the first coordinate.

We recall the following two results from the Handbook of Boolean algebra [8,
4.11,4.16]

Definition 1.1. (and LEMMA) Let P be a partial order, and for p ∈ P , let
up = {q ∈ P : q ≤ p}. The set {up : p ∈ P} is a base of the partial order topology
on P . A subset u of P is open iff [p] ∈ u and q ≤ p imply q ∈ u.

Any space P with a topology, has an associated complete Boolean algebra,
RO(P ), consisting of the regular open subsets (join and complement involve taking
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interior of closures). Although a given up need not be regular open, the mapping
e(p) = int cl up is an order preserving embedding of (P,<) into (RO(P ),⊂).

Proposition 1.2. Let P be a partial order and (e,B = RO(P )) the completion of
P constructed in 1.1. The following are equivalent:

(1) P is separative,
(2) e(p) = int cl up coincides with up, for every p ∈ P ,
(3) e is an isomorphism from P onto the partial order e[P ] ⊂ B.

For each of our two constructions, we will obtain our space by constructing (or
examining) a poset. By Proposition 1.2, we may define B(P ) to be the Boolean
subalgebra of RO(P ) which is generated by P . Thus it will be convenient to trans-
late the existence of a remote point on Σn (S(B(P ))) to a combinatorial property
of ΣnP . For convenience, if we say that A = ΣnAn is a subset of ΣnP , we will infer
that A ∩ ({n} × Pn) = {n} ×An.

Definition 1.3. A collection L of subsets of ΣnP will be a remote filter if
(1) for each L = ΣnLn ∈ L, Ln is finite for each n,
(2) for each maximal antichain A = ΣnAn, there is an L = ΣnLn ∈ L such

that L ⊂ A,
(3) for any finite set L′ ⊂ L, there is an n and a p ∈ P so that for each

ΣnLn ∈ L′, there is a q ∈ Ln such that p < q.

Lemma 1.4. Let P be an atomless poset. The space ΣnS(B(P )) has a remote
point if and only if ΣnP has a remote filter.

Proof. Let X denote the space ΣnS(B(P )) = ω × S(B(P )). The assumption that
P is atomless is equivalent to the condition that S(B(P )) has no isolated points,
hence every point of x is in the closure of a nowhere dense subset of X, and so is
not a remote point of X. Suppose that x ∈ βX \X is a remote point of X. For each
A = ΣnAn ⊂ ΣnP which is a maximal antichain, set UA =

⋃
{up : p ∈ A}. Since

{up : p ∈ P} is a dense subset of the Boolean algebra RO(P ) and A is a maximal
antichain of ΣnP , it follows that UA is a dense open subset of ΣnS(B(P )). Since
x is a remote point, there is a compact neighborhood KA of x in βX, such that
KA avoids X \ UA. For each n, KA ∩ ({n} × S(B(P ))) is a compact subset and so
is covered by some finite subset of {up : p ∈ An}. Thus, there is a finite Ln ⊂ An

so that x is in the interior of the closure of Σn{up : p ∈ Ln}, i.e. this union is a
dense open subset of a neighborhood of x. Clearly by the construction, the set L
of families ΣnLn constructed in this way will satisfy the first and second clause of
Definition 1.3. Verification of the third clause follows immediately from the fact
that any finite intersection of open sets each of which is dense in a neighborhood
of x will again be dense in a neighborhood of x.

For the other direction, assume that L is a remote filter on ΣnP . We basically
reverse the steps above. For each L = ΣnLn in L, let UL = Σn (

⋃
{up : p ∈ Ln}).

By condition three of Definition 1.3, the collection {UL : L ∈ L} will form a filter
of open subsets of X. Fix any point x of βX which is in the closure of UL for
all L ∈ L. We check that x is a remote point of X. Fix any nowhere dense set
D ⊂ X. Let A = ΣnAn be any maximal antichain of ΣnP with respect to the
property that (cl up)∩D is empty for each p ∈ A. Since P is atomless and is dense
in B(P ), it follows that A is a maximal antichain of ΣnP . Let L = ΣnLn ∈ L
be any element satisfying the second condition of 1.3, then we have a closed set
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F = Σncl (
⋃
{up : p ∈ Ln}) of X which has x in its closure and which is disjoint

from the closed set D. Since X is normal, F is completely separated from D, hence
F (and x) has a neighborhood in βX which is disjoint from D. �

2. A nowhere ccc space with a remote point

In this section we prove that ΣnP has a remote filter where P is a poset invented
by Baumgartner (see Definition 2.1) to illustrate the difference between Axiom A
forcings and proper forcings. It is interesting to us because it is nowhere ccc but
everywhere ω1. The combination of its being proper (with finite conditions) and
having cardinality ω1 allow us to generalize an older proof that every compact ccc
space with π-weight ω1 has remote points.

Definition 2.1. [12, VII 4.3A] A condition p is a member of P if p is finite and
there is a continuous increasing f : ω1 → ω1 such that p ⊂ f . This is the same
as f being the enumeration of a cub subset of ω1. P is ordered by simple reverse
inclusion: p < q if p ⊃ q.

Let p ∈ P and let C ⊂ ω1 be any cub such that p is a subset of the enumerating
function for C. Fix δ ∈ C such that dom(p) ⊂ δ and C ∩ δ has order type δ. It
is easily shown that {p ∪ {(δ + 1, γ)} : δ < γ < ω1} is an uncountable antichain of
conditions below p. Therefore, P (and S(B(P ))) is nowhere ccc.

As we said, Baumgartner shows (see 2.3) that this poset P is proper in a very
strong sense. For the rest of the paper, we may fix a regular cardinal θ which is
larger than 2ℵ1 and let H denote any sufficiently large submodel of the set-theoretic
universe with the property that Hω1 ⊂ H such as H(θ) or Vθ. We will use the notion
of a subset M of H being an elementary submodel, denoted M ≺ H (see [9, 11]).
For our purposes it should be enough to realize that this means intuitively that if
m1, · · · ,mn are elements of M , and ϕ(x1, . . . , xn) is a formula of set-theory (using
only ε and =) with all free variables shown, then ϕ(m1, . . . ,mn) holds in M if and
only if it holds in H.

Definition 2.2. Let P be a poset. A set D ⊂ P is predense below an element
p ∈ P if for each q ≤ p, there is a d ∈ D and an r ≤ q such that r ≤ d. A set is
said to be predense if it is predense below every element of P .

Proposition 2.3. If P ∈ M ≺ H and p ∈ P ∩M , then p∪{〈δ, δ〉} is (P,M)-generic
where δ = M ∩ω1. That is, if A ∈ M is any predense subset of P , the subset A∩M
is predense below p ∪ {〈δ, δ〉}.

The above statement implicitly recalls the definition of proper (see [12, III 1.9
and 2.8]) as it applies to P .

Proof. Let p ∈ P ∩M , δ = M ∩ω1, and A ∈ M be predense. To check that A∩M
is predense below p′ = p ∪ {(δ, δ)}, we let q ≤ p. By the definition of P , it is clear
that q ∩ M = q ∩ (δ × δ) is also a member of M ∩ P . Applying elementarity to
q ∩M and A, there is an a ∈ A ∩M such that a ∪ (q ∩M) is a member of P . We
finish by checking that a ∪ q is also a member of P . Fix any cub Cq ⊂ ω1 such
that q is a subset of the enumeration function of Cq. Also, fix such a cub C ′ for
a ∪ (q ∩M) but choose C ′ ∈ M . Since C ′ is closed and unbounded, and M ≺ H it
follows that δ ∈ C ′. Set C = (C ′ ∩ δ)∪ (Cq \ δ) and let fC denote the enumerating
function of C. It is easily seen that C is closed, that (a ∪ (q � δ)) ⊂ fC � δ, and
that q � [δ, ω1) ⊂ fC . Therefore, a ∪ q is in P as required. �
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It is useful to make note of the following result which follows directly from the
proof.

Corollary 2.4. If M ≺ H is countable with P ∈ M and M ∩ ω1 = δ, then each
p ∈ P such that p(δ) = δ is (P,M)-generic.

If U is a filter on ω, then the ordering, <U , on ωω is given by f <U g if {n :
f(n) < g(n)} is a member of U . If U is an ultrafilter, than <U determines a linear
ordering (on the equivalence classes). We will hereafter fix an ultrafilter U on ω and
let κU denote the minimum cardinality of a cofinal sequence in (ωω, <U ) (i.e. the
ultrapower ordering). It is easily seen that κU is a regular uncountable cardinal.

Theorem 2.5. There is a remote filter on ΣnP , hence the space X = ΣnSt(RO(P ))
is σ-compact, nowhere ccc and has remote points.

Proof. Fix any ultrafilter U on ω and let κ = κU . Also, fix any sequence {fγ : γ < κ}
which is U-increasing and cofinal in (ωω, <U ).

Throughout the proof, fix for each δ ∈ ω1 a 1-1 enumeration Pδ = {p(δ, k) : k ∈
ω} where p ∈ Pδ so long as p ⊂ δ× δ. In effect, we have a function ι : ω1 × ω → P ,
and we will let ιδ(p) = k abbreviate that p ∈ Pδ and p(δ, k) = p.

Fix any maximal antichain A = ΣnAn of ΣnP , we show how to construct an L =
ΣnLn to put in a remote collection L. Fix a countable elementary submodel M0 =
MA of H so that ι, P, ΣnAn,U , {fγ : γ < κ} are all in M0. Next, for 0 < j < ω,
let Mj ⊃ Mj−1 be a countable elementary submodel containing ι, P, ΣnAn,U , {fγ :
γ < κ} and Mj−1. Since Mj−1 is countable, there is an ordinal γ < κ such that
fγ is bigger than any function g ∈ ωω ∩Mj−1 in the ordering <U . By elementary,
there is some γA

j < κ in Mj such that g <U fγA
j

whenever g ∈ Mj−1 ∩ ωω.
Let δA = MA ∩ ω1 and put ηA = sup{γA

j : j ∈ ω}.
The definition of the required L = ΣnLn is completely trivial, simply

Ln = {p ∈ An : ιδA(p) < fηA(n)} .

This definition certainly guarantees that L satisfies the conditions (1) and (2) of
1.3 but we have to check the non-trivial third (filter) condition.

Suppose that Ai = ΣnAi
n are dense sequences for i ≤ m and are enumerated

so that η0 ≤ η1 ≤ · · · ≤ ηm, where ηi = ηAi . Let us denote similarly δi = δAi

,
γi

j = γAi
j and M i

j = MAi
j . We will let M i denote M i

0, hence δi = M i ∩ ω1.
Let r denote the identity function with domain {δi : i ≤ m}. Clearly r ∈ P since

the set ω1 is cub in ω1. Note also that each extension of r is (M,P )-generic for any
countable M ≺ H such that M ∩ ω1 ∈ dom r, in particular, for every M i, i ≤ m.

For each i ≤ m choose γi
ji

from the strictly increasing sequence used to define ηi

so that 1 < ji and γi
ji+1 < γi+1

ji+1−1.
Now we prove the following condition (∗)m by induction on m; it is clear that it

completes the proof that L is a remote filter.
(∗)m There is a set U ∈ U such that for each n ∈ U and i ≤ m, there are

ki(n) < fγi
ji

(n) such that

p(δi, ki(n)) ∈ Ai
n and

r ∪
⋃

i≤m

p(δi, ki(n))

 ∈ P .

If m = 0, then for s = r � δ0 + 1, and n ∈ ω, there is some p(n) ∈ A0
n ∩ M0

such that s ∪ p(n) ∈ P by 2.4. We can find such a p(n) with ιδ0(p(n)) minimal.



TWO RESULTS ON SPECIAL POINTS 5

Then the function g(n) = ιδ0(p(n)) + 1 is defined with all parameters in M0
1 . By

the definition of γ0
j0

we know that the inequality g(n) < fγ0
j0

(n) holds for all n ∈ U

for some U ∈ U . We obviously have that r∪p(n) is an extension of r � δ0 +1∪p(n)
which is in P . Therefore setting k0(n) = ιδ0(p(n)) for each n demonstrates the
validity of (∗)0.

Induction step. Put s = r � δm and define h : m+1 → m+1 by h(i) = i if δi ≤ m,
and h(i) = m otherwise. By induction assumption, there is some U ∈ U such that
for each n ∈ U and i < m there is a ki(n) < fγi

ji
(n) such that p(δi, ki(n)) ∈ Ai

n∩Pδi

and r ∪
⋃

i<m p(δi, ki(n)) ∈ P . If we put p′i,n = p(δi, ki(n)) � δm, then we have
r ∪

⋃
i<m p′i,n ∈ Pδm

as well.
Let `i(n) ∈ ω be such that p′i,n = p(δh(i), `i(n)). Obviously `i(n) = ki(n) if

δi ≤ δm. We claim that there is a set U ′ ∈ U such that for each n ∈ U ′ and
i < m, `i(n) < fγi

ji+1
(n). This is a clear consequence of the inductive assumption if

δi ≤ δm, since then `i(n) = ki(n) and the inequality ki(n) < fγi
ji

(n) is satisified for
all n ∈ U . But if δm < δi, we can still capture enough of this relationship between
the functions k and `. Define a mapping g : ω → ω by the rule

g(n) = min{c ∈ ω : if k < fγi
ji

(n) and p(δi, k) � δm = p(δm, `)}, then ` < c} .

Since all parameters in this formula belong to M i
j , the mapping g is in M i

j .
Since g <U fγi

ji
+1 , there is a set Ui ∈ U such that g(n) < fγi

ji
(n) for all n ∈ Ui. It

remains to put U ′ = U ∩
⋂

i<m,δm<δi
Ui. Note that ki(n) < fγi

ji
(n) for all n ∈ U ′

and so `i(n) < g(n) < fγi
j+1

(n).
Let U ′′ ⊂ U ′ be a member of U such that for all n ∈ U ′′ and all i < m,

fγi
ji+1

(n) < fγm
jm−1

(n) < fγm
jm

(n).
Now recall that s in (Mm, P )-generic since s(δm) = δm. Therefore, we can define

a mapping f : ω → ω by the rule: f(n) is the minimal c < ω satisfying, whenever
a finite sequence of integers 〈`i(n) : i < m〉 ∈ fγm

jm−1
(n)m is such that(

s ∪
⋃

i<m

p(δh(i), `i(n))

)
∈ P ,

then there is an integer km(n) < c such that p(δm, km(n)) ∈ Am
n and

p(δm, km(n)) ∪

(
s ∪

⋃
i<m

p(δh(i), `i(n))

)
∈ P .

All parameters again belong to Mm
jm−1, hence f belongs to Mm

jm−1. Since f <U
fγm

jm
, there is some U ′′′ ∈ U , U ′′′ ⊂ U ′′ such that for all n ∈ U ′′′, f(n) < fγm

jm
(n).

From (∗)m−1 and from the fact that s is (Mm, P )-generic, we conclude that for
all n ∈ U ′′′ and i ≤ m, there is some ki(n) < fγi

ji
(n) with p(δi, ki(n)) ∈ Ai

n such
that

r ∪
⋃

i<m

p(δi, ki(n)) ∈ P

and with
p(δm, km(n)) ∪ s ∪

⋃
i<m

p(δh(i), `i(n)) ∈ P .
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Since p(δm, km(n)) ∈ Pδm and since p(δh(i), `i(n)) either equals to p(δi, ki(n)) or
is a restriction of some p(δi, ki(n)) to δm, we obtain also that

r ∪
⋃

i≤m

p(δi, ki(n)) ∈ P

whenever n ∈ U ′′′, which shows (∗)m. �

3. A separable space with no remote weak P -point

In this section we prove that the space constructed in [5] provides an example
which will prove the following theorem.

Theorem 3.1. It is consistent that there is a compact separable space X with no
isolated points such that ΣnX does not have any remote discrete weak P -points. In
particular, every point of β (ΣnX) is a limit point of a countable nowhere dense
discrete subset of ΣnX.

The space X is given as S(B(P )) for a poset of the following type.

Definition 3.2. For Z ⊂ 2ω, consider 2<ω ∪ Z as a subtree of 2≤ω and define
PZ = {a ⊂ 2<ω ∪ Z : a is a finite non-maximal antichain }. PZ is ordered by
reverse inclusion.

Since PZ is separative we can think of the elements of PZ as corresponding to
members of B(PZ) and also as corresponding to clopen subsets of S(B(PZ)). For
a, b ∈ PZ , we let a ⊥ b denote the relation that a∪ b /∈ PZ (which means that either
a ∪ b is maximal or is not an antichain of 2<ω ∪ Z). Note that being an antichain
of PZ is different than being an antichain of 2≤ω. For a ∈ PZ , we let [a] denote the
set consisting of all branches b ∈ 2ω with the property that either b ∈ a or b � n ∈ a
for some n ∈ ω.

PZ is σ-centered since for each b ∈ P∅, {a ∈ PZ : a ∩ 2<ω = b} is centered. It is
shown in [5] that if Z = 2ω then ΣNPZ has remote filters. However, the following
is also established.

Theorem 3.3. [5] In the model obtained by adding ω2 side-by-side Sacks reals,
there is an uncountable dense and co-dense subset Z of 2ω such that ΣnPZ does
not have a remote filter.

Since every non-remote point is in the closure of a nowhere dense subset, we
finish the proof of Theorem 3.1 by establishing the following Lemma.

Lemma 3.4. If Z is an uncountable dense co-dense subset of 2ω, every nowhere
dense subset of S(B(PZ)) is contained in the closure of a countable discrete subset
of S(B(PZ)).

Proof. Fix any maximal antichain {an : n ∈ ω} of PZ . Let {c` : ` ∈ ω} enumerate
P∅. We define an,m for each n, m so that {an,m : m ∈ ω} is an antichain which is
predense below an and so that for each ` ≤ n, and each i, an,i ⊥ c` or c` ⊂ an,i

(it is easy to see that this can be done). We also assume, for convenience, that
an,i ∩ Z is not empty for each n, i. Next, for each n, i, we fix any yn,i ∈ 2ω so that
yn,i /∈ Z ∪ [an,i], hence an,i ∪ {yn,i} is an antichain. Since yn,i is not in [an,i] ∪ Z,
we may let j0(n, i) be minimal such that an,i ∩ Z is disjoint from [yn,i � j0(n, i)].
Suppose that b ∈ PZ is such that an,i ⊂ b. Clearly yn,i /∈ b since yn,i /∈ Z. In
addition, yn,i � j /∈ b for each j < j0(n, i) since, by the minimality of j0(n, i),
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an,i ∪ {yn,i � j} is not in PZ . For each j ≥ j0(n, i), the choice of yn,i and the
definition of j0(n, i) ensure that an,i,j = an,i∪{yn,i � j} is an antichain. In addition,
since an,i ∩ Z is not empty, an,i,j ∈ PZ since it is not maximal. For j < j0(n, i),
an,i ∪ {yn,i � j} is not an antichain, hence it follows that {an,i,j : j0(n, i) ≤ j} is
predense below an,i.

Now, for each n, i and j0(n, i) ≤ j, we define a filter base on B(PZ). Let

Yn,i,j = {a′ ∪ b ∈ PZ : a′ ⊆ an,i,j and b ⊂ (Z \ [an,i,j ])} .

It can be shown that Yn,i,j is a point (generates an ultrafilter) in S(B(PZ)). We
note that the family {Yn,i,j : n, i ∈ ω, and j0(n, i) ≤ j} is discrete. The key
properties then are:

(1) {an,i : i ∈ ω} is an antichain, an ⊂ an,i for each i, and for each ` ≤ n, c` is
contained in an,i or it is incompatible with an,i.

(2) for each n, i, {an,i,j : j0(n, i) ≤ j ∈ ω} are defined as an,i ∪ {yn,i � j}
where yn,i /∈ Z, and, clearly if j0(n, i) ≤ j1 < j2, then an,i,j1 and an,i,j2 are
incompatible.

Now suppose that b ∈ PZ is such that b∪an ∈ PZ for infinitely many n. We will
show that there is n, i, j such that (an,i∪b) ∈ Yn,i,j . Let ` be such that c` = b∩2<ω.
Fix n > ` such that b ∪ an ∈ PZ . Fix any i such that b ∪ an,i ∈ PZ , note that
c` ⊂ an,i. Now fix any j ≥ j0(n, i) large enough so that [yn,i � j] is disjoint from
b ∩ Z. Since b ∩ 2<ω = c` ⊂ an,i,j and (b ∩ Z) ∩ [an,i] is empty, it follows that
(b∩Z)∩ [an,i ∪ {yn,i � j}] is also empty. It then follows that b ∈ Yn,i,j as required.

This proves that the closure of the discrete set {Yn,i,j : n, i ∈ ω and j0(n, i) ≤ j}
contains the complement of

⋃
{an : n ∈ ω} (when the latter is consider as an open

subset of S(B(PZ))). �

It is an open problem to determine if all extremally disconnected spaces have a
discrete weak P -point (also called discretely untouchable). Simon [13] proves if the
space is ccc and satisfies cf(g(Clop(X))) > ω then it will have such points, where
g(B) for a boolean algebra B is the minimum cardinality of a subfamily which is
not contained in a proper complete subalgebra.
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