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Abstract. W. W. Comfort, in collaboration with A. Kato and S.
Shelah, explored the problem of determining which spaces Y satisfy
that for every 2-coloring of βω there will be a monochromatic copy
of Y . We continue the exploration and answer some questions
raised in their paper.

1. Introduction

In this paper we extend the work begun in [3]. More specifically we
consider the instances of the topological partition relation X → (Y )12
where X is the space βω. The relation X → (Y )12 holds if for each
partition X0 ∪X1 of X, there is a topological copy of Y contained in
one of X0 or X1 (see [20]). As explained in the introduction of [3],
the classical Bernstein subset of the reals and its complement serve to
verify that C 6→ (C)12, and that, in the positive direction, the fact that
Q → (Q)12 is quite easily verified. Adopting the notation from [3], we
let Y ⊆h X denote the relation that there is a subspace of X that is
homeomorphic copy of Y . Also, we let A ≈ B abbreviate that A and
B are homeomorphic topological spaces. It is obvious that if A ⊆h Y
and X → (Y )12, then X → (A)12 also holds. Also if Y ⊆h X1 ⊆h X and
X1 → (Y )12, then X → (Y )12. Since βω ⊂h ω∗ ⊂h βω, it follows that,
for all spaces Y , βω → (Y )12 is equivalent to ω∗ → (Y )12.

The main results from [3] that lead to this work are the following:

Proposition 1.1 ([3]). (1) If βω → (Y )12, then |Y | < 2c.
(2) There is a non-discrete P -space Y such that βω → (Y )12.
(3) For each p ∈ ω∗, βω 6→ (ω ∪ {p})12.
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2 A. DOW

A space is a P -space if countable intersections of open sets (Gδ-sets)
are also open. A point of a space is P -point if each Gδ-set containing
the point is a neighborhood of the point. Of course it follows from
(3), that if βω → (Y )12 holds, then countable discrete subsets of Y are
closed. A point in a space is called a weak P-point if it is not the limit
point of any countable set ([15]) and a discrete weak P-point if it is not
the limit of any countable discrete set ([17]).

The following questions and problems are raised in [3]

Question 1.1. (1) Characterize those Y such that βω → (Y )12.
(2) Does βω → (Y )12 for all P-spaces Y with |Y | < 2c?
(3) If βω → (Y )12 must Y be a P-space?
(4) If Y is countable and βω → (Y )12, must Y be discrete?

We are not really any closer to an answer to (1), but we have some
results about the other questions. Concerning question (2), we show
that βω → (Y )12 for every P-space of weight and cardinality ℵ1. This
answers (2) in the affirmative if GCH holds. Next we discover that
βω → (Y )12 does hold for some countable non-discrete spaces. These
spaces are special examples of van Douwen’s maximal crowded spaces
[5]. We show that βω → (Y )12 holds for some but not all such spaces. In
fact the only countable examples Y that we have for when βω → (Y )12
does hold are those that arise in studying βω as a right topological semi-
group ([14]). The question seems ripe for more exploration. The key
tool in the investigation is Froĺık’s theorem concerning fixed points of
self-embeddings of compact extremally disconnected spaces combined
with the methods from [3] of building partitions of ω∗ to be ω ∪ {p}-
avoiding.

2. P -spaces

It was shown in [3] that ω∗ → (Y )12 for all P -spaces of the form
{κ} ∪ {α+ 1 : α < κ} as subspaces of the usual compact ordinal space
κ+ 1 (where κ has uncountable cofinality). This result depends on van
Douwen’s result (see [8]) that every P-space of weight at most c can be
embedded into βω. This suggests a seemingly related open question.

Question 2.1. Does βω → (Y )12 for all P-spaces Y ⊂h βω that have
at most one non-isolated point?

For any space X, Xδ is often used to denote the P-space obtained
by endowing the set X with the Gδ-topology. For any index set I,
we use 2I to denote the product space {0, 1}I . Since the Gδ-topology
modification of a space X of weight at most c will also have weight at
most c, it follows from van Douwen’s result, that (2ω1)δ ⊂h βω. Since
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each non-empty Gδ subset of (2ω1)δ contains a copy of (2ω1)δ. The
fact that βω → (Y )12 for all P-spaces Y with cardinality and weight ℵ1
follows from the next two lemmas. The proof of the second is similar
to the proof that every countable first-countable space embeds into Q.

Lemma 2.1. If X ⊂ βω, then either X contains a copy of (2ω1)δ or
βω \X contains a copy of some dense subset of (2ω1)δ.

Proof. Let X be a subset of βω and assume that X contains no copy of
(2ω1)δ. Let h be an embedding of (2ω1)δ into βω. Since X contains no
copy of (2ω1)δ, h

−1[X] does not contain any non-empty open subsets of
(2ω1)δ. This implies that h[(2ω1)δ] \X does contain a copy of a dense
subset of (2ω1)δ. �

Lemma 2.2. If Y is a P-space with cardinality and weight ℵ1, then Y
embeds in each dense subset of (2ω1)δ.

Proof. Let X be any dense subset of (2ω1)δ and let {yα : α ∈ ω1} be
an enumeration of Y . For each α ∈ ω1, let {U(α, ξ) : ξ < ω1} be an
enumeration of descending clopen local base for yα. Since Y is a P-
space, we can choose, for each α ∈ ω1, a value α ≤ ζα < ω1 large enough
so that the members of the family {U(β, ζα) : β ≤ α} are pairwise
disjoint, and, for all γ < α, each membber of {U(β, ζα) : β ≤ α} is
contained in, or disjoint from, each member of {U(ξ, ζγ) : ξ ≤ γ}.
Choose ζ0 = 0 and assume, for convenience, that U(0, 0) = Y .

For each x ∈ X and ξ ∈ ω1, let [x � ξ] = {z ∈ X : x � ξ ⊂ z}. We
note that [x � ξ] is a Gδ-subset of 2ω1 , and that {[x � ξ] : ξ ∈ ω1} is
a descending clopen base for x in X. We choose xα ∈ X by recursion
on α ∈ ω1 with the intention that the mapping sending yα to xα will
be a homeomorphism. Choose x0 ∈ X arbitrarily and assume that we
have chosen {xβ : β < α} ⊂ X. Our inductive hypotheses are that
for ξ ≤ γ < β < α, if yβ ∈ U(ξ, ζγ), then xβ ∈ [xξ � (γ + ω)], and if
yβ /∈ U(ξ, ζγ), then xβ /∈ [xξ � (γ + ω)].

Now we choose xα. Let Iα denote the set of γ < α such that yα ∈⋃
{U(ξ, ζγ) : ξ ≤ γ}. We have that Iα is not empty since our choice of

U(0, ζ0) ensures that 0 ∈ Iα. For each γ ∈ Iα, choose the unique βαγ ≤ γ
such that yα ∈ U(βαγ , ζγ). If γ < δ are both in Iα, and if βαγ 6= βαδ ,
then γ < βαδ , since U(βαγ , ζγ) ∩ U(ξ, ζγ) is empty for βαγ 6= ξ ≤ γ. If H
is a finite subset of Iα and β is the maximum element of {βαδ : δ ∈ H},
then yβ is an element of U(βαγ , ζγ) for all γ ∈ H. Also if δ ∈ H is
minimal such that β = βαδ , then by the first induction hypothesis,
xβ ∈ [xβαγ � (γ + ω)] for all γ ∈ H. This implies that the family
{[xβαγ � (γ + ω)] : γ ∈ Iα} has non-empty intersection in the compact
space 2ω1 and so we may choose a point xα ∈ X \ {xβ : β < α} in
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this intersection. Moreover, if we let δ = sup(Iα), then using that X is
dense, we can, and do, also ensure that xα /∈

⋃
{[xβ � (δ+ω)] : β < α}.

The definition of the sequence {βαγ : γ ∈ Iα} ensured that the first
inductive hypothesis is maintained. We verify the second. Choose any
ξ ≤ γ < α and assume that yα /∈ U(ξ, ζγ). If there is a βαγ 6= ξ such
that yα ∈ U(βαγ , ζγ), then it follows from the induction hypotheses that
xβαγ � (γ + ω) 6= xξ � (γ + ω). Otherwise, we have that γ /∈ Iα. If
γ ≤ sup(Iα), then our choice of xα ensured that xα /∈

⋃
{[xξ � (γ +ω) :

ξ ≤ γ}. Otherwise, let δ be the minimum element of Iα \ γ and note
that yβαδ /∈

⋃
{U(ξ, ζγ) : ξ ≤ γ} since yα ∈ U(βαδ , ζδ) witnesses that

U(βαδ , ζδ) it not contained in any member of {U(ξ, ζγ) : ξ ≤ γ}. Again,
by the induction assumption, xβαδ /∈

⋃
{[xξ � (γ + ω)] : ξ ≤ γ} and

xα ∈ [xβαδ � (γ + ω)].
Finally, it should be clear that the inductive hypotheses have ensured

that if ξ < γ ∈ ω1, then for ξ < α ∈ ω1:

yα ∈ U(ξ, ζγ) iff xα ∈ [xξ � (γ + ω)] .

This proves that the map sending yξ to xξ is a homeomorphism. �

Corollary 2.3. βω → (Y )12 for every P-space of cardinality and weight
ℵ1.

3. countable crowded spaces

A spaceX is extremally disconnected if the closure of every open sub-
set is open. Extremally disconnected spaces were defined in [13, Defini-
tion 16]. If an extremally disconnected space X is regular, then βX is
also extremally disconnected. Therefore βω is extremally disconnected.
For a Tychonoff space X and a mapping from A into a compact space
K, we let fβ denote the continuous extension of f to all of βX (see
[12]). Here is Froĺık’s important theorem about fixed points of maps
on extremally disconnected spaces.

Proposition 3.1. [10] If f is an embedding of a compact extremally
disconnected space X into itself, then the set of fixed points, fix(f), of
f is a clopen subset of X.

Now we recall some useful properties of countable subspaces of βω.
The first is shown in [14, 3.40].

Proposition 3.2. If A,B are σ-compact subsets of βω such that A∩B
and A ∩B are both empty, then A and B have disjoint closures.

Proof. Note that ω ∪ A ∪ B is a σ-compact (hence Lindelöf) space in
which A and B have disjoint closures. Since this space is normal, there
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are disjoint open sets UA, UB such that A ⊂ UA and B ⊂ UB. Since
the closures of (UA ∩ω) and (UB ∩ω) are disjoint clopen subsets of βω
containing A and B respectively, we have that A and B have disjoint
closures. �

Corollary 3.3. If A,B are countable subsets of βω and x ∈ A∩B, then
there is clopen subset U of βω such that x ∈ U and either U ∩ B ⊂ A
or U ∩ A ⊂ B.

Proof. Let A1 = A \ B and B1 = B \ A. By Proposition 3.2, A1 and
B1 have disjoint closures. By symmetry, assume that x has a clopen
neighborhood U of x that is disjoint from B1. It follows that U ∩B is
contained in A. �

Proposition 3.4. If A is a countable subspace of βω, then A is ex-
tremally disconnected and ιβA (where ιA is the identity map on A) is a
homeomorphism from βA to A.

Proof. It follows from Proposition 3.2 that disjoint open subsets of
A have disjoint closures in A. This is equivalent to the definition of
A being extremally disconnected. Similarly, disjoint open subsets of A
have disjoint closures in βω and this implies that iβA is a 1-to-1 map. �

Corollary 3.5. If A is a countable subspace of βω and h is a homeo-
morphism from A into βω, then fix(h) is a clopen subset of A.

Proof. Let h : A → B ⊂ βω be a homeomorphism and assume that
fix(h) is not empty. Now let f = hβ be the continuous extension of h
to βA = A as introduced above. Clearly, by continuity, f [A] = B. By
Proposition 3.4, B = βB and since h is a homeomorphism, f is also an
embedding. By Froĺık’s Theorem, Proposition 3.1, fix(f) is a clopen
subset of A. Therefore fix(h) = A ∩ fix(f) is a clopen subset of A. �

A space A is called a vD-space (for van Douwen space) if it is regular,
countable, and the crowded subsets of A correspond to the open subsets
of A. A space is crowded if it has no isolated points. Van Douwen
constructed such spaces and proved that the topology on a vD-space
is a maximal crowded topology (see [5]).

If f is a topological embedding of a countable space A into βω, then
we saw in Proposition 3.4 that fβ is also an embedding. A point x is a
far point of a space A if x ∈ βA \ A and is not the limit of any closed
discrete subset of A.

Proposition 3.6 ([5]). If A is a vD-space, then

(1) A is Tychonoff and extremally disconnected,
(2) A is nodec (nowhere dense subsets of A are closed)



6 A. DOW

(3) A ∪ {x} is a vD-space for each far point x of A,
(4) there is a 1-to-1 function f from ω into ω∗ such that A ≈ f [ω]

and, for each n ∈ ω, f(n) is the only point p of ω∗ such that
fβ(p) = f(n).

Furthermore, if there is a map f as in (4), then A is a vD-space.

Proof. We prove the last item first. Suppose that f is an embedding of
ω into ω∗ and let A = f [ω]. Note that fβ(a) = a, for a ∈ A, and that
fβ[ω∗ \ A] is disjoint from A. We have to show that A has no isolated
points and that every crowded subset is open. Since ω∗ ∩ (fβ)−1(A) is
equal to A, it is a nowhere dense subset of ω∗ and this shows that A
has empty interior in A. Now suppose that B ⊂ A is crowded. Since
the compact subsets of A are finite, it follows that the closure of B \A
contains B. Now let U be the (unique) clopen subset of βω such that
f [U ∩ ω] = B. By continuity, fβ[U \ ω] contains B \ A, and therefore
also contains B. It then follows from the hypothesis on f that B is
disjoint from fβ[ω∗ \ U ] and that A ⊂ fβ[ω∗]. This proves that B is
open in A since we have that the closure of A \B is disjoint from B.

Next we assume that A is a vD-space and verify properties (1)-(4)
Since A is a vD-space, we have that A is countable, regular crowded
and a subset of A is open if and only if it is crowded. The closure
of a crowded set (in any space) is crowded, and so closures of open
subsets of A are also open. Since A is regular, this also shows that A
is Tychonoff.

Let D be a nowhere dense subset of A. To prove that A is nodec we
simply have to prove that (A \D) is crowded. Since A \D is open it
is crowded, and since it is also dense, (A \D) ∪ {x} is crowded, hence
open, for each x ∈ A.

If x ∈ βA is a far point of A, thenA∪{x} is clearly regular, countable,
and crowded. It is immediate that open subsets of A∪{x} are crowded,
so assume that x is an element of a crowded B ⊂ A ∪ {x}. We know
that A \ B and A ∩ B have disjoint closures in βA, and so x is not in
the closure of A \B. It follows that B is a neighborhood of x.

Let g be any bijection from ω to A and so gβ is a continuous function
from βω onto βA. Using Zorn’s Lemma, there is a compact subset K
of βω which is minimal with respect to the property that gβ[K] =
βA. Since images of proper closed subsets are proper closed subsets
of βA, images of open sets have relatively dense interior. Since βA
is extremally disconnected, images of disjoint clopen sets are disjoint.
Therefore gβ maps K bijectively to βA. It follows that B = (gβ)−1[A]
is a copy of A. Let h denote the inverse function of (gβ) � K. Now let
f = h ◦ g be the function mapping ω bijectively to B. By continuity,
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it follows that fβ = h ◦ gβ, and therefore that fβ is the identity on
K. Fix any p ∈ ω∗ \ K and let x = fβ(p). Choose a clopen set
p ∈ U of βω disjoint from K. It follows that fβ[ω \ U ] is dense in

K = fβ[K] ⊂ fβ[ω \ U ]. Therefore fβ[U ∩ω] is not open in B, and so,
by item (2), it is discrete and closed. It now follows that fβ(p) is not
a point in B. �

We now answer Questions 1.1 (3) and (4) from above (and from [3]).

Theorem 3.7. There is a countable crowded space Y such that βω →
(Y )12.

The proof follows from the next three. The first is surely folklore.

Proposition 3.8. Every non-empty open subset of a countable crowded
regular homogeneous space X is homeomorphic to X.

Proof. Let X be a countable crowded regular homogeneous space. Let
U = {un : n ∈ ω} be a non-empty open subset of X, and let X = {xn :
n ∈ ω} be an enumeration of X. By induction on n, choose a sequence
{Un, Vn : n ∈ ω} of clopen subsets of X such that, for each n,

(1) Un ≈ Vn,
(2) un ∈

⋃
k≤n Uk ( U , and xn ∈

⋃
k≤n Vk ( X ,

(3) {Uk : k ≤ n} and {Vk : k ≤ n} are each pairwise disjoint
families.

Assume that we have chosen {Uk : k < n} and {Vk : k < n} as above.
Let m be minimal such that um ∈ U \

⋃
k<n Uk and let j be minimal

such that xj ∈ X \
⋃
k<n Vk. Let h be any homeomorphism of X such

that h(um) = xj. Choose a clopen Un such that um ∈ Un ( U \
⋃
k<n Uk

and Vn = h[Un] is a proper subset of X \
⋃
k<n Vk. Clearly it follows

that
⋃
n Un is homeomorphic to

⋃
n Vn. �

Lemma 3.9. If A is a homogeneous vD-space, then A→ (A)12.

Proof. If A = A0∪A1 then at least one of A0 or A1 contains a crowded
subset U . By Proposition 3.8, U is a copy of A. �

Now we need an example of a homogeneous vD-space. A variety
of vD-spaces were constructed in [7,8] but none were constructed that
were homogeneous. Homogeneous extremally disconnected spaces were
discovered in [4] but they were not vD-spaces. Remarkably homoge-
neous vD-spaces arose in the study of the semi-group structure of βω.
The interested reader is referred to the influential [14]. It will be more
convenient to temporarily work with the discrete space Z (of the set
of all integers) rather than ω. Briefly, the operation + is defined on
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βZ by extending the successor map σ on Z to all of βZ with σβ. For
an ultrafilter q on Z and n ∈ Z, n + q is defined to be (σβ)n(q). This
defines a function ρq from Z into βZ where ρq(n) = n + q, and for
p ∈ Z∗, p + q = ρβq (p). Since σβ is an autohomeomorphism of Z∗, it is
clear that {n + q : n ∈ Z} is a homogeneous subspace of βZ. A point
q ∈ Z∗ is an idempotent if q + q = q, and right maximal idempotents
are discussed in [14, 2.12]. Finally, a right maximal idempotent q is
strongly right maximal if p+ q = q implies that p = q. This is equiva-
lent to having that (ρq)

β is the extension of the 1-to-1 function from Z
onto A = {n + q : n ∈ Z} that has the properties required in item (4)
of Proposition 3.6. All of this is shown in [14, 9.11,9.15,9.17].

Proposition 3.10 ([14]). There is a homogeneous vD-space. In fact,
there are 2c many pairwise non-homeomorphic homogeneous vD-spaces.

Naturally this raises more questions about non-homogeneous vD-
spaces. We only have results for non-homogeneous vD-spaces that
contain a non-clopen copy of a homogeneous vD-space. In particular
we investigate if βω → (E ∪ {x})12 for x a far point of a homogeneous
vD-space E ⊂ βω.

Definition 3.11. For a homogeneous vD-space E, let HE denote the
set of embeddings of E into ω∗. For A ⊂ ω∗, let HE(A) = {h ∈ HE :
h[E] ⊂ A}.

For any far point x of E, let HE,x(A) = A ∪ {hβ(x) : h ∈ HE(A)}.
By recursion on 0 < α ≤ ω1, let Hα

E,x(A) =
⋃
η<αHE,x(Hη

E,x(A)).

Say that a point x of a space X is an E-point of X if x ∈ A ⊂
X for some A ≈ E. For the remainder of this section E denotes a
homogeneous vD-space. The first result is nearly immediate.

Theorem 3.12. If x is a far point of E with the property that hβ(x) is
not an E-point of βω for any h ∈ HE, then Y = E ∪{x} is a vD-space
satisfying that βω 6→ (Y )12.

Proof. Let X0 be the set of E-points of βω and let X1 = βω \X0. Let
h ∈ HE. By assumption h[E] ⊂ X0 and hβ(x) /∈ X0. �

It is not known to follow from ZFC that each vD-space has far points.
We postpone the discussion of the existence of far points of homoge-
neous vD-spaces until the next section. We make the following defini-
tion to help with the analysis of which far points x of a vD-space E
might satisfy that βω → (E ∪ {x})12.
Theorem 3.13. If x is a far point of E such that there is an A ≈ E
and an odd integer k such that A ∩ (Hk

E,x(A) \ Hk−1
E,x (A)) 6= ∅, then

βω → (E ∪ {x})12.
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Proof. Choose A as in the statement and let c be any 2-coloring of
A. Since A is homogeneous, we may, by passing to a clopen subset
of A, assume that c is constant on A. By symmetry assume that
c(A) = 0. Note that if c(y) = 0 for any y ∈ HE,x(A), then c is
constant on a copy of E ∪ {x}. Similarly, by induction on j ≤ k, and
y ∈ (Hj+1

E,x (A) \ Hj
E,x(A)), we must have that c(y) = 1 if and only if

j is even. However, for the even number j = k − 1, we obtain an
a ∈ (Hj+1

E,x (A) \ Hj
E,x(A)) with c(a) = 0. �

Say that a point y of ω∗ is an (E, x)-point if there is an h ∈ HE such
that y = hβ(x).

Definition 3.14. A set Y ⊂ ω∗ will be said to be (E, x)-open if for
each (E, x)-point y ∈ Y , there is an h ∈ HE(Y ) such that hβ(x) = y.
A coloring c : Y → 2 is (E ∪ {x})-free if there is no monochromatic
copy of E ∪ {x}.

Proposition 3.15. The union of any family of (E, x)-open sets is
again (E, x)-open. In addition, if Y is (E, x)-open, then HE,x(Y ) is
(E, x)-open.

Corollary 3.16. If Y is (E, x)-open, then Hω1
E,x(Y ) is also (E, x)-open.

Lemma 3.17. If h1, h2 ∈ HE and y = hβ1 (x) = hβ2 (x), then there is an
h ∈ HE such that hβ(x) = y and h[E] ⊂ h1[E] ∩ h2[E].

Proof. The map sending y to itself, and h1(e) to h2(e) (for e ∈ E)
is an embedding of h1[E] ∪ {y} to h2[E] ∪ {y} and so, by Lemma
3.1, U = {y} ∪ fix(h2 ◦ h−11 ) is a relative clopen neighborhood of y in
{y} ∪ h1[E]. Choose any relatively clopen W ⊂ U such that y ∈ W
and U \ W is not empty. Then h−11 [U ] = h−12 [U ] and h−11 [W ] is a
proper clopen subset of E. There is an h ∈ HE such that h(e) = h1(e)
for all e ∈ h−11 [W ] and h(e) ∈ U \W for all e ∈ E \ h−11 [W ]. Clear
h[E] ⊂ U \ {y} ⊂ h1[E] ∩ h2[E] and hβ(x) = y as required. �

Corollary 3.18. If Y is (E, x)-open and if y = hβ(x) ∈ Y for some
h ∈ HE, then {y} ∪ (Y ∩ h[E]) contains a copy of E ∪ {x}.

Lemma 3.19. If Y is (E, x)-open and c is an E∪{x}-free 2-coloring of
Y , then c extends uniquely to an (E ∪{x})-free 2-coloring of Hω1

E,x(Y ).

Proof. We prove by induction on α < ω1, that c extends uniquely
to an (E ∪ {x})-free 2-coloring, cα, of Hα

E,x(Y ). If α = η + 1, and
h ∈ HE(Hη(Y )), then, since E ∪ {x} is a vD-space, there is a clopen
U ⊂ E such that x ∈ U and cη is constant on h[U ]. If y = hβ(x)
is not in Hη(Y )), then define cα(y) = 1 − cη(u) for any u ∈ U . It
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then follows by induction and Proposition 3.18 that cα is (E ∪ {x})-
free. If α is a limit, then we just have to check that cα =

⋃
η<α cη is

(E, x)-free. Suppose that h ∈ HE and hβ(x) = y ∈ Hα
E,x(Y ), then,

there is an η < α such that y is in the (E, x)-open set Hη
E,x(Y ). By

Proposition 3.18 and by induction assumption, cη assumes 2 colors on
{y} ∪ (h[E] ∩Hη

E,x(Y )). �

Lemma 3.20. If each point y ∈ ω∗ is an element of an (E, x)-open set
that has an (E ∪ {x})-free 2-coloring, then βω 6→ (E ∪ {x})12.

Proof. Let {yα : α ∈ 2c} be a well-ordering of ω∗. For each α, let
yα ∈ Nα be an (E, x)-open set with an E ∪ {x}-free 2-coloring dα.

Let c0 ⊃ d0 be the unique (E∪{x})-free 2-coloring on Y0 = Hω1
E,x(N0)

as per Lemma 3.19. By Lemma 3.16, Y0 is also (E, x)-open. Let
α < 2c, and assume that for η < α, we have defined an (E, x)-open
set Yη and an E ∪ {x}-free 2-coloring cη of Yη so that for γ < η < α,
Nγ ∪Hω1

E,x(Yγ) ⊂ Yη and cγ ⊂ cη.
If α is a limit ordinal, then set Yα =

⋃
η<α Yη and cα =

⋃
η<α cη. By

Lemma 3.16, Yα is (E, x)-open and, clearly, cα is a 2-coloring. We have
to check that cα is (E ∪ {x})-free. Assume that h ∈ HE(Yα) and that
y = hβ(x) ∈ Yα. Choose η < α so that y ∈ Yη. Since Yη is (E, x)-open,
by Proposition 3.18, {y} ∪ (h[E] ∩ Yη) contains a copy of E ∪ {x} and
so it is 2-colored by cη.

Now assume that α = η + 1 and that Yη and cη have been chosen.
We simply define Yα to be Hω1

E,x(Yη)∪Nη, and we now have to define cα.
By Lemma 3.19, cα extends uniquely to an (E ∪ {x})-free 2-coloring,
c′α, on Hω1

E,x(Yη). Let Dη = Nη \ Y ′η and define cα = c′α ∪ (dη � Dη).
To check that cα is (E, x)-free, we consider any h ∈ HE(Yα). By
Proposition 3.18, we may assume that hβ(x) = d is in Dη. Since d is
not in Hω1

E,x(Yη), it is not in the closure of h[E] ∩ Hω1
E,x(Yη). Therefore

then {d} ∪ (h[E] ∩Dη) contains a copy of E ∪ {x}, which means it is
2-colored by dη. �

Now we improve Theorem 3.12.

Theorem 3.21. If E is a homogeneous vD-space and x is a far point
of E which is not an E-point in E, then βω 6→ (E ∪ {x})12.

Proof. By Lemma 3.20, it suffices to prove that each y ∈ ω∗ is an
element of an (E, x)-open set, Ny, with an (E, x)-free 2-coloring. If y
is not an (E, x)-point, then Ny = {y} is such a set. Similarly, if there
is an h ∈ HE such that hβ(x) = y and no point of h[E] is an (E, x)-
point, then Ny = {y} ∪ h[E] is such a set. Otherwise we inductively
construct Ny as the union of a family {y} ∪ {Dn : n ∈ ω}. Let σ be
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a function from ω \ {0} onto ω × ω satisfying that σ(n) ∈ n × ω for
each n > 0 Let D0 = {d(0,m) : m ∈ ω} ≈ E be a sequence of (E, x)-
points chosen so that y ∈ HE,x(D0). By induction on n > 0, we choose
Dn = {d(n,m) : m ∈ ω} ≈ E so that

(1) for i < n, Dn ∩Di is empty,
(2) there is a unique (in, jn) ∈ n×ω such that d(in, jn) ∈ HE,x(Dn),
(3) for (in, jn) 6= (i, j) ∈ n× ω, d(i, j) /∈ Dn

(4) if d(σ(n)) is an (E, x)-point, then there i ≤ n such that d(i, j)
is in HE,x(Di).

Note that it follows from item (2) and the fact that y ∈ D0, that y is
not in Dn for n > 0. Assume we have chosen {Di : i < n} satisfying
the inductive conditions and choose minimal `n ∈ ω such that d(σ(`n))
is an (E, x)-point while d(σ(`n)) /∈ HE,x(Di) for all i < n. There is
such a value for `n by condition (2) and the fact that each point of
D0 is an (E, x)-point. Let (in, jn) = σ(`n). By condition (1), choose a
clopen set U of βω such that d(in, jn) ∈ U and U ∩Di = ∅ for i < in.
For each in < i < n, d(in, jn) /∈ Di so we may also assume that U ∩Di

is empty for each in < i. When choosing Dn ⊂ U this ensures that
d(i, j) /∈ Dn for all (i, j) ∈ n × ω with i 6= in. Choose an A ≈ E so
that there is an h ∈ HE(A) with hβ(x) = d(in, jn). We may assume
that A = h[E] ⊂ U . Since Din is a copy of E and (hβ)−1(Din ∩ A)
contains x, it follows from the assumption that x is not an E-point in
E that Din ∩ A is discrete. By choosing Dn ⊂ A, we can arrange that
Dn ∩Din = {d(in, jn)}. This completes the construction.

It is straightforward to check that Ny = {y} ∪
⋃
nDn is (E, x)-

open. Let c(y) = 1 and c[D0] = 0. We define a coloring c � Dn

by induction on n > 0. For each n, (in, jn) as in the construction
satisfies that in < n. Define c[Dn] = 1 − c(d(in, jn)). We show that
c is (E, x)-free. Assume that h ∈ HE(Ny) and that hβ(x) ∈ Ny. If
hβ(x) = y, then {y}∪(h[E]∩D0) contains a copy of E∪{x}. Otherwise,
hβ(x) = d(i, j) ∈ Di for some i ∈ ω, and d(i, j) is evidently and (E, x)-
point. With σ(n) = d(i, j), there is, by condition (4), an m ≤ n such
that d(i, j) = d(im, jm) ∈ HE,x(Dm). By Proposition 3.18, h[E] ∩Dm

is not empty and {d(i, j)} ∪ (h[E] ∩Dm) is 2-colored by c. �

Theorem 3.22. If E is a homogeneous vD-space and x is a far point
of E, then βω 6→ (E∪{x})12 if HE,x(E) contains a nowhere dense copy
of E.

Proof. Again, by Lemma 3.20, it suffices to prove that each y ∈ ω∗ is
an element of an (E, x)-open set, Ny, with an (E, x)-free 2-coloring. If
y is not an (E, x)-point, then Ny = {y} is such a set. Otherwise, we



12 A. DOW

show that we can choose an Ax ≈ E such that x ∈ Ax and Ax∩E = ∅.
By the hypothesis of the Theorem, there is an A ≈ E contained in
HE,x(E) \ E and such that A is nowhere dense in E. We note that
D = A∩E is discrete and, since each point of HE,x(E) is a far point of
E, D is disjoint from A. Replace A by any crowded subset of A whose
closure is disjoint from D. There is a Fix any x′ ∈ A and h ∈ HE(E)
such that hβ(x) = x′.

Since (E ∪ {x}) ∩ Ax = {x} it follows that E ∪ {x} is not homeo-
morphic to a subspace of E.

Claim 1. For each relatively clopen U of Ax, there is a relatively clopen
EU of E such that HE,x(EU) ∩ Ax = U .

Proof of Claim. By Proposition 3.2, U and Ax\U have disjoint closures
in E. Therefore we can choose a clopen EU ⊂ E such that EU∩Ax = U .
It is clear from the definition that HE,x(EU) is contained in EU , hence
HE,x(EU) ∩ Ax ⊂ U . Since Ax ∩ E is empty, we may choose a clopen
W ⊂ EU such that W ∩Ax is empty. Fix any u ∈ U and hu ∈ HE,x(E)
such that hβu(x) = u. Since EU \W is a clopen neighborhood of u in E,
U2 = E ∩ (hβ)−1(EU \W ) is a clopen subset of E with x in its closure.
Also, E \ U2 is homeomorphic to W so there is an h ∈ HE,x(EU) such
that h � U2 = hu � U2. This proves that U ⊂ HE,x(EU). �

Claim 2. If D ≈ E and each point of D is an (E, x)-point, then there
is an A ⊂ HE,x(E), such that A ≈ E, A ⊂ A ⊂ (E \ E), and there is
an h ∈ HE such that D = hβ[A].

Proof of Claim. For each d ∈ D, choose an hd ∈ HE such that hβd(x) =
d. By Proposition 3.1, we can, by simply shrinking the domain of hd,
arrange that hd[Ax] ⊂ D is a relatively clopen neighborhood of d in
D. In addition, since there is no copy of E ∪ {x} in E, d is not in the
closure of hd[E] ∩ D. Therefore we may also arrange that hd[E] ∩ D
is empty. Fix an enumeration {dn : n ∈ ω} of D. For each n, Let

U0 = hβ0 [Ax] ⊂ D. Of course we have that d0 ∈ U0. Since U0 and D\U0

have disjoint closures in βω, we can choose clopen W0 ⊂ βω such that
W0 ∩ D = U0. Set D1,0 = W0 ∩ h0[E]. It follows easily that Ax is
contain in the closure of h−10 [D1,0] (a clopen subset of E). By shrinking
the domain of h0, as in Claim 1, we can simply assume that h0[E] ⊂ W0

and still have that U0 = hβ0 [Ax]. Choose n1 minimal so that dn1 /∈ U0.
Working within βω \W0, we repeat the process and find U1, D1,1,W1

such that W1 is a clopen subset of βω\W0, dn1 ∈ U1 = D∩W1 and, with
h1 = hdn1 , h1[E] ⊂ W1. Continuing recursively, for at most ω steps,
we have {Wk : k ∈ ω}, pairwise disjoint clopen subsets of βω whose
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union covers D, and for each k, an hk ∈ HE such that hk[E] ⊂ Wk and

hβk [Ax] = Uk = D ∩Wk. It follows easily that D1 =
⋃
{hk[E] : k ∈ ω}

is a copy of E and that D ⊂ HE,x(D1) and D ⊂ D1 \D1. Given any
h ∈ HE such that h[E] = D1, simply set A = (hβ)−1[D]. �

We are ready to define Ny in Case 1. By recursion, choose a sequence
{Dn : n ∈ ω} and {hn : n ∈ ω} ⊂ HE so that, for each n > 0,

(1) y = hβ0 (x) and D0 = h0[E],
(2) Dn is a clopen subset of hn[E],
(3) D0

n, the set of (E, x)-points of Dn, is a relatively clopen set,
(4) if D0

n is empty, then Dn+1 is empty,
(5) An ⊂ E \ E where An = (hβn)−1[D0

n−1].

To begin the construction, choose any h0 ∈ HE so that hβ0 (x) = y. By
removing a closed nowhere dense set, we may assume that D0

0 is clopen
(and change h0 accordingly). Now let n > 0 and assume we have chosen
{hk, Dk : k < n}. If D0

n−1 is empty, we may stop. Otherwise, we apply
Claim 2 to D = D0

n−1 and choose hn ∈ HE so that (hβn)−1[D0
n−1] = An

and Dn = hn[E] are as in the statement of Claim 2. Again, by possibly
removing a nowhere dense subset of Dn, we may assume that D0

n is
clopen.

We check that c(y) = 1, c[
⋃
kD2k] = 0, and c[

⋃
kD2k+1] = 1 is

an (E, x)-free coloring of Ny = {y} ∪
⋃
kDk. Let h ∈ HE(Ny) and

assume that hβ(x) ∈ Ny. If hβ(x) = y, then, by Proposition 3.1,
h[E] ∩ D0 is not empty, and so h[E] ∪ {y} is not mono-chromatic.
Similarly, if hβ(x) ∈ Dk, then hβ(x) ∈ D0

k, and again, by Proposition
3.1, h[E] ∩ Dk+1 is not empty. It follows that c(hβ(x)) 6= c(d) for
d ∈ h[E] ∩Dk+1. �

We complement Theorem 3.22 with this next result. We do not know
if the assumption of being relatively closed can be dropped. However
we do show in Lemma 4.10 that the hypothesis is not vacuous.

Theorem 3.23. If E is a homogeneous vD-space and x is a far point
of E such that, for each A ≈ E, A∩HE,x(E) is discrete and relatively
closed in E ∪HE,x(E) then βω 6→ (E ∪ {x})12.

Proof. By Lemma 3.20, it suffices to prove that each y ∈ ω∗ is an
element of an (E, x)-open set, Ny, with an (E, x)-free 2-coloring. If y
is not an (E, x)-point, then Ny = {y} is such a set. Otherwise choose

any D0 = h0[E] for some h0 ∈ HE such that hβ0 (x) = y. If no point of
D0 is an (E, x)-point, then {y} ∪D0 is (E, x)-open.

Let {t` : ` ∈ ω} be an <-preserving enumeration of ω<ω. For each
∅ 6= t ∈ ω<ω, let t− denote the immediate predecessor of t. Also let≺ be
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any well-ordering of E in type ω, and we assume whenever we choose
any D ≈ E, D acquires a similar well-ordering ≺D. We inductively
choose a family {Dt : t ∈ ω<ω} such that, for each t, Dt is empty or
Dt ≈ E. For brevity, when Dt ≈ E, the ordering ≺Dt is denoted as
≺t. We have chosen D∅, and let t denote t1. We let dt be the ≺∅
member of D∅ that is an (E, x)-point. Choose Dt ≈ E so that dt is the
unique point of HE,x(Dt) ∩D0. In addition, dt is not in the closure of
D1∩HE,x(D0), so we may simply assume that D1∩HE,x(D0) is empty.

By induction on j < `, assume that we have chosen pairwise disjoint
{Dtj : j < `} and points {dtj : j < `} so that, for i < j < `,

(1) dtj is the ≺(t−j )-least (E, x)-point of Dt−j
\ {dtk : k < j} if one

exists, and dtj = y otherwise,
(2) if dtj 6= y, then Dtj ≈ E and dtj ∈ HE,x(Dtj),
(3) if dtj = y, then Dtj = ∅,
(4) HE,x(Dtj) ∩Dti ⊂ {dtj},
(5) HE,x(Dti) ∩Dtj is empty.

To choose Dt` , assume there is an (E, x)-point in Dt−`
\ {dtj : j < `},

and let dt` be the ≺t`-least. Let h` ∈ HE be chosen so that hβ` (x) = dt` .
Let A` = h`[E]. We can assume that A` ∩Dtj is empty, for each j < `,
because dt` is not in HE,x(Dtj). Since dt` is a far point of A`, it is not
in the closure of A` ∩ HE,x(Dtj) for all j < `. Therefore, by shrinking
the domain of h` we can ensure that A` ∩ HE,x(Dtj) is empty for all
j < `. Similarly, the discrete set HE,x(A`) ∩ Dtj does not have dt` as
a limit and so we can assume that Dt` ⊂ A` is a copy of E with dt` as
limit and satisfies that HE,x(Dt`) ∩Dtj ⊂ {dt`} for all j < `.

Having completed the construction, we define the coloring c of N` =
{y} ∪

⋃
`Dt` where c(y) = 1 and c[Dt` ] = 0 if | dom(t`)| is even, oth-

erwise c[Dt` ] = 1. Suppose h ∈ HE(Ny) and hβ(x) ∈ Dtj . It follows

from the construction that there is an ` with dt` = hβ(x) and t−` = tj.
By Proposition 3.1, we have that h[E] ∩ Dt` is not empty. Therefore
hβ(x) ∪ h[E] is not a monochromatic copy of E ∪ {x}. �

4. far points

Now we must discuss if there any far points of a vD-space E. It would
be interesting to know more about βA for A a homogeneous vD-space.
There is a natural, and useful, candidate for what its homeomorphism
type. The space E(2c) is defined as the unique extremally disconnected
space that maps irreducibly onto the product space 2c. It is often called
the Gleason cover or Iliadis absolute of 2c ([11]). One can construct (a
copy) of E(2c) as a subspace of βω as follows. Since 2c is separable,



MORE TOPOLOGICAL PARTITION RELATIONS ON βω 15

there is a continuous map f of βω onto 2c. By Zorn’s Lemma, there is
a closed subset K of βω satisfying that f [K] = 2c while f [J ] 6= 2c for
all closed J ⊂ K. This subspace K is a copy of E(2c). It was shown
in [8] that there are vD-spaces that occur naturally as dense subsets
of E(2c). Moreover, it is known that if q is a minimal idempotent of
ω∗, then the closure of {n+ q : n ∈ ω} is homeomorphic to E(2c) ([1]).
We note that there are examples of vD-spaces A for which βA 6≈ E(2c)
(see [7]).

We recall the Rudin-Keisler (see [2, p410]) and the Rudin-Frolik
relations on ultrafilters.

Definition 4.1. Let U ,V be ultrafilters on ω.

(1) U <RK V if there is a function f ∈ ωω and an e ∈ E such that
fβ(e) = V,

(2) U <RF V if there is an embedding f of ω into βω such that
fβ(U) = V.

Let RE denote the set of ultrafilters U such that U <RK e for some
e ∈ E.

If S is a discrete subset of βω and U ∈ ω∗, a point x is said to be a
U -limit of S if there is a 1-to-1 function f : ω → S such that fβ(U) = x.
Of course, we then have U <RF x. It is well-known that if U <RF V ,
then U <RK V and that RE has cardinality at most c.

A point p of ω∗ is a weak P-point if p is not the limit of any countable
subset of ω∗. A subset K of ω∗ is a weak P-set if D∩K is empty for all
countable subsets D of ω∗ \K. More generally, a subset K of a space
X is a weak P-set if D is disjoint from K for all countable D ⊂ X. We
make some simple useful observations about weak P-sets.

Proposition 4.2. If K is a weak P-set of a Tychonoff space X and
K1 ⊂ K is a weak P-set of K, then K1 is a weak P-set of X. If f is
a continuous map from a compact space X onto a space Y , then the
pre-image of each weak P-set of Y is a weak P-set of X.

Proof. Let K be a weak P-set of X and let K1 ⊂ K be a weak P-set
of K. Let D be a countable subset of X \K1. Now D ∩K1 is empty

because each of D \X and D ∩X are disjoint from K.
Now assume that f maps the compact space X onto Y and suppose

that K ⊂ Y is a weak P-set of Y . Let D be a countable subset of
ω∗ \ f−1[K]. Since f [D] is disjoint from K and f [D] ⊂ f [D], it follows
that D is disjoint from f−1[K]. �

We will need to use the techniques for constructing weak P-points
from [15] and [16]. The reader may well wonder if the effort is worth
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it, but most of the extra effort would not be needed in the likely event
that Theorem 3.23 could be improved (see Question 4.1). However
once we started down the rabbit hole, it seemed important to have a
result about an example of the form E ∪ {x} where x was an E-point.
Kuen [15] proved that weak P-points exist and this was improved in
[19] as follows.

Proposition 4.3. The set of weak P-points of ω∗ contains a set of
cardinality 2c consisting of pairwise <RK-incomparable ultrafilters.

Corollary 4.4. There is a pairwise disjoint family K consisting of
infinite compact weak P-set subsets of ω∗.

Proof. Let f : ω → ω be any finite-to-one map with the property that
f−1(n) has cardinality greater than n for all n ∈ ω. As usual, fβ

denotes the Stone-Čech extension mapping βω onto βω. Evidently,
(fβ)−1(p) is an infinite compact subset of ω∗ for all p ∈ ω∗. For each
weak P-point p ∈ ω∗, (fβ)−1(p) is easily seen to be a weak P-set. �

This next result is proven in [18, 4.1.5]

Proposition 4.5 (van Mill). Each compact extremally disconnected
continuous image of ω∗ is homeomorphic to some weak P-set in ω∗.

The construction of weak P-points and weak P-sets utilizes the ex-
istence of c × c-independent matrices as introduced in [15]. For more
general topological constructions, we have seen that it is useful to re-
formulate this with the help of continuous mappings onto large powers
of the 1-point compactification, c + 1, of the discrete space c. For a
function s from a finite subset of c into c, we let [s] denote the clopen
subset of (c + 1)c consisting of all those full functions that extend s.

This next result can be seen as a topological reformulation of the
Boolean algebraic result [18, 4.1.2] (which we state without proof).

Proposition 4.6. There is a mapping ϕ from ω∗ onto ω∗ × (c + 1)c.

For the remainder of the section, we fix a map ϕ as in Proposition
4.6, and we let π denote the composition of ϕ with the projection onto
the first coordinate copy of ω∗. Using the methods of [6,18] we improve
Proposition 4.5.

Lemma 4.7. Suppose that K ⊂ ω∗ is an infinite compact weak P-set.
Then, for any separable extremally disconnected space E, there is a
copy A of E such ϕ[A] ⊂ K × (c + 1)c, A is a weak P-set, and no two
points of A are RK-equivalent.
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Proof. Let K ⊂ ω∗ be an infinite weak P-set. It follows from Proposi-
tion 4.2 that K × (c + 1)c is a weak P-set in ω∗ × (c + 1)c. Let X be
the ϕ pre-image of K × (c + 1)c, and note that, by Proposition 4.2, X
is a weak P-set in ω∗. Proposition 4.2 also shows that any subset of
X that is a weak P-set in X will also be a weak P-set in ω∗. We will
construct A ⊂ X so that A is a weak P-set in X. Choose any copy
E1 of E contained in K. and fix an enumeration {yn : n ∈ ω} of E1.
By induction on ξ < c, we choose a closed subset Xξ of X and a set
Iξ ⊂ c with

⋃
η<ξ Iη ⊂ Iξ and |Iξ| ≤ |ξ + ω| such that ϕ maps Xξ to

a set that projects onto E1 × (c + 1)c\Iξ . Of course I0 = ∅ and X0 is
X ∩ π−1(E1). We ensure that the family {Xξ : ξ < c} is a descending
sequence. At limit ξ, Xξ is the intersection of the family {Xη : η < ξ}
and Iξ =

⋃
η<ξ Iη. By compactness, for limit ordinals ξ, ϕ[Xξ] will

project onto E1 × (c + 1)c\Iξ . When the construction is complete, we
let Xc =

⋂
{Xξ : ξ ∈ c}. In this recursive construction we have three

distinct tasks so we let ι be any function from c onto {1, 2, 3} so that
each of ι−1(1), ι−1(2), and ι−1(3) have cardinality c. We fix enumera-
tions of the clopen subsets of X, ω-sequences of clopen subsets of X,
and the set of all permutations, h, of ω. Let {Wξ : ξ ∈ ι−1(1)} enu-
merate CO(X) (the clopen subsets of X). Let {hξ, Uξ : ξ ∈ ι−1(2)}
enumerate the pairs (h, U) where h is a permutation on ω and U is a
clopen subset of E1. Finally, let {{U ξ

n : n ∈ ω} : ξ ∈ ι−1(3)} enumerate
all countable families of pairwise disjoint elements of CO(X) so that
each such family is enumerated c many times.

Now assume that {Xγ, Iγ : γ < ξ} has been chosen as described
above in such a way that these next three Claims govern how Xγ+1

was chosen according to the value of ι(γ). We recall that for limit γ,
Xγ is defined to be

⋂
{Xη : η < γ} and Iγ =

⋃
{Iη : η < γ}. We also

reiterate that the inductive hypothesis that must be preserved is that
ϕ[Xγ] must project onto E1 × (c + 1)c\Iγ .

This next claim ultimately ensures that π � Xc is 1-to-1, and there-
fore a homeomorphism.

Claim 3. If ι(ξ) = 1, then Xξ+1 can be chosen so that for each y ∈ E1,
π−1(y) ∩Xξ+1 ⊂ Wξ or π−1(y) ∩Xξ+1 is disjoint from Wξ.

Proof of Claim. For each y ∈ E1, let Fξ,y = π−1(y) ∩ Xξ. Assume s
is a finite function from c \ Iξ into c such that Fξ,y is disjoint from
Wξ ∩π−1[s] (respectively π−1[s] \Wξ). Then there is a clopen Ky ⊂ E1

such that y ∈ Ky and Ky × [s] is disjoint from π[Wξ] (respectively
π[Xξ \Wξ]). Choose n0 minimal so that there is an s0 such that Fξ,yn0
is either disjoint from Wξ∩π−1[s0] or from π−1[s0]\Wξ. Choose n1 > n0
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minimal so that there is an s1 extending s0 such that such that Fξ,yn1 is

either disjoint from Wξ∩π−1[s1] or from π−1[s1]\Wξ. Continue choosing
the sequences {n` : ` ∈ ω} and {s` : ` ∈ ω}. If we allow repetitions,
we may assume, for convenience, that this sequence is infinite. Let
L0 be the set of ` such that Fξ,yn` is disjoint from Wξ ∩ π−1[sn` ], and

thus for ` ∈ L1 = ω \ L, Fξ,yn` is disjoint from π−1[sn` ] \ Wξ. For
each ` ∈ L0, there is a clopen subset K` of K such that yn` ∈ K` and
π−1[K` × [sn` ]] is disjoint from Wξ. Similarly, for ` ∈ L1, there is a K`

such that π−1[K` × [sn` ]] is contained in Wξ. Since E1 is extremally
disconnected, the closure, U0, of

⋃
{K` : ` ∈ L0} is a clopen subset of

E1. Let ρ be the function
⋃
{sn` : ` ∈ ω} and set Xξ+1 be the union

of U0 × [ρ] and Wξ ∩
(
(E1 \ U0)× [ρ]

)
, where [ρ] =

⋂
{[sn` ] : ` ∈ ω}. It

is clear that, for all y ∈ U0, π
−1(y) ∩Xξ+1 is disjoint from Wξ, and for

y ∈ E1\U0, π
−1(y) ⊂ Wξ. Now set Iξ+1 = Iξ∪dom(ρ) and we prove that

π[Xξ+1] projects onto E1×(c+1)c\Iξ+1 . It suffices to prove that π[Xξ+1]
projects onto the dense set

⋃
n{yn}× (c+ 1)c\Iξ+1 . A further reduction

is that it suffices to show that, for each n ∈ ω, Fξ,yn ∩Xξ+1 ∩ π−1[s] is
not empty for each finite function s from c\Iξ+1 into c is not empty. We
note that, by the induction hypothesis and compactness, Fξ,y ∩ [ρ]∩ [s]
is not empty. For n = n` (` ∈ L0) Fξ,yn ∩ Xξ+1 ∩ π−1[s] is equal to
Fξ,yn ∩ [ρ] ∩ π−1[s], and so is not empty. For n /∈ {n` : ` ∈ L0},
we have that, for any ` > n, since n /∈ L0, Fξ,yn ∩ [s′] ∩ W is not
empty for all finite functions s′ extending sn` . Therefore it follows that
Fξ,yn ∩ [ρ] ∩ [s] ∩Wξ is not empty. �

This next claim, for values of ξ < c with ι(ξ) = 2, is the step that
will ensure that if h is a permutation of ω and x ∈ Xc either hβ(x) = x
or hβ(x) /∈ Xc.

Claim 4. If ι(ξ) = 2 and then there is a choice for Xξ+1 and Iξ+1 such

that hβξ [π−1(Uξ)] \ π−1(Uξ) is disjoint from Xξ+1.

Proof of Claim. Let h = hξ and U = Uξ. Choose any clopen Ũ ⊂ ω∗

such that Ũ ∩E1 = U . Fix any ζ ∈ c \ Iξ and for each α ∈ c, let Oα be

the clopen set ϕ−1(Ũ × [〈ζ, α〉]). Since h is a permutation, it follows
that W̃α = Xξ \hβ[ϕ−1([〈ζ, α〉])] is a clopen subset of Xξ. We note that

hβ[π−1(U) ∩ ϕ−1([〈ζ, α〉]) ∩Xξ] \ π−1(U) is disjoint from W̃α.
For each y ∈ E1 \ U , we again let Fξ,y denote the set π−1(y) ∩ Xξ.

Similar to Claim 3, we choose, if possible, values n0 ∈ ω, α0 < c, and a
finite function sn0 from c\(Iξ∪{ζ}) such that Fξ,yn0∩ϕ

−1[sn0 ] is disjoint

from W̃α0 . Continue choosing, when possible, n`+1 with yn`+1
/∈ U , α`+1
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and s`+1 ⊃ sn` , so that Fξ,yn`+1
∩ ϕ−1[s`+1] is disjoint from W̃α`+1

. Let

ρ =
⋃
{s` : ` ∈ ω} and [ρ] =

⋂
{[s`] : ` ∈ ω}.

Now choose γ ∈ c \ {α` : ` ∈ ω} and we show that Fξ,yn ∩ [ρ] ∩ [s′]

meets W̃γ for all finite functions s′ from c \ (Iξ ∪ {ζ} ∪ dom(ρ)) and
all yn ∈ K1 \ U . If such a set is empty, then there is an ` such that
n = n`. However, then Fξ,yn ∩ [ρ] is contained in Xξ \ W̃α` ⊂ W̃γ. We
are ready to define Xξ+1 and Iξ+1. We set Iξ+1 = Iξ ∪ {ζ} ∪ dom(ρ),

and Xξ+1 is Xξ ∩ ϕ−1(U × [〈ζ, γ〉]) union Xξ ∩ W̃γ ∩ π−1(K1 \ U). It
should be clear that ϕ[Xξ+1] projects onto E1×(c+1)c\Iξ+1 . As mention

above, by the definition of W̃γ, h
β[Xξ∩ϕ−1(U×[〈ζ, γ〉])] is disjoint from

W̃γ ∩ π−1(E1 \ U). �

Now we adapt the steps from [6,16] (fundamentally Kunen’s original
method [15] to construct what he called c-OK points) to intertwine in
the recursive construction so as to ensure that Xc is a weak P-set of X.

Claim 5. If ι(ξ) = 3 and
⋃
n∈ω U

ξ
n is disjoint from Xξ, then Xξ+1 can

be chosen so that D ∩Xξ+1 is empty for any countable D ⊂
⋃
n∈ω U

ξ
n.

Proof of Claim: If
⋃
n∈ω U

ξ
n is not disjoint from Xξ, then simply let

Xξ+1 = Xξ and Iξ+1 = Iξ. Otherwise, let L be the set ` ∈ ω such

that there is a pair y` ∈ W̃` ∈ CO(ω∗) and, finite function s` from

c \ Iξ into c so that ϕ−1(W̃` × [s`]) is disjoint from Xξ ∩
⋃
n U

ξ
n. For

each ` ∈ L, choose W̃` and s` as indicated. For each ` ∈ L, let F` =
Xξ∩ϕ−1(W̃`× [s`]). We note that we have that each of

⋃
n Un∩

⋃
`∈L F`

and
⋃
n Un ∩

⋃
`∈L F` is empty. By Lemma 3.2, the closed set Fξ =⋃

`∈L F` is disjoint from
⋃
n U

ξ
n. Let us also note that

⋃
`∈LE1 ∩ W̃`

is a clopen subset of E1. Now we choose any countably infinite set
{αn : n ∈ ω} ⊂ c \ Iξ such that

⋃
`∈L dom(s`) ⊂ {αn : n ∈ ω}. For

each η ∈ c, choose a clopen Zη ⊂ βω satisfying that Fξ ⊂ Zη, and, for
all n ∈ ω, Zη ∩ U ξ

n = U ξ
n ∩ (

⋃
k≤n ϕ

−1([(αk, η)])). It follows that such
a clopen set Zη exists by applying Lemma 3.2 to the pair A = Fξ ∪⋃
n

(
U ξ
n ∩ (

⋃
k≤n ϕ

−1([(αk, η)]))
)

andB =
⋃
n U

ξ
n\
(⋃

k≤n ϕ
−1([(αk, η)])

)
.

Now we define Xξ+1 to be Xξ∩
⋂
{Zη : η ∈ c} and Iξ+1 = Iξ∪{αn : n ∈

ω}. It remains to prove that ϕ[Xξ+1] projects onto E1 × (c + 1)c\Iξ+1 .
Since Xξ+1 ⊃ Fξ and

⋃
`∈L dom(s`) ⊂ Iξ+1, we claim it is clear that,

for each ` ∈ L, this projection contains W̃`× (c+ 1)c\Iξ+1 . Now assume
that W is clopen subset of ω∗ that meets E1 and that is disjoint from⋃
`∈L W̃`. Also let s be any finite function from c \ Iξ+1 into c, and

let H be any finite subset of c. We have to prove that ϕ−1[W × [s] ]
meets Xξ ∩

⋂
η∈H Zη. Let {ηi : i < m} be any enumeration of H
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and let yj be any element of W ∩ E1. Let s1 be the function from
{αi : i < m} onto H where s1(αi) = ηi. Since j /∈ L, we were not
able to choose a pair W̃j, sj, hence it follows that ϕ−1[W × ([s1] ∩ [s])]

meets
⋃
n U

ξ
n∩Xξ =

⋃
n>m U

ξ
n∩Xξ. For each n > m, ϕ−1[[s1]]∩U ξ

n is a
subset of U ξ

n∩
⋂
η∈H Zη and so ϕ−1[W ×([s1]∩ [s])] meets Xξ∩

⋂
η∈H Zη.

Having completed the construction of Xξ+1, we now check that it has
the desired property. Let D be any countable subset of

⋃
n U

ξ
n. For each

m ∈ ω, there is a countable subset Sm of c such that, for all η ∈ c \Sm,
ϕ−1([(αm, η)]) ∩ D is empty. Choose any η ∈ c \

⋃
m Sm, and observe

that Zη ∩D is empty. �

This completes the proof of the Lemma. �

This next result shows that a homogeneous vD-space has far points.

Lemma 4.8. If E is a homogeneous vD-space then there is an infinite
discrete set D ⊂ E such that E ∪D ≈ E and every point of D is a far
point of E.

Proof. Let e be any point of E and note that E \ {e} is homeomorphic
to E, and by Proposition 3.6, e is a far point of E \ {e}. Therefore,
by homogeneity, E itself has far points d satisfying that E ∪ {d} ≈ E.
Fix any partition, {En : n ∈ ω} of E into non-empty clopen sets, and
for each n ∈ ω, let dn be a far point of En such that En ∪ {dn} ≈ E.
Then D = {dn : n ∈ ω} is a discrete subset of E, E ∪ D ≈ E, and
D ∩ E = ∅. We check that each point of D is a far point of E. Let S
be any discrete subset of E and note that S ∩D is empty. Therefore,
by Proposition 3.2, S ∩D is empty. �

Now we prove a result in connection to Theorem 3.21.

Lemma 4.9. If E is a homogeneous vD-space, then there is a far point
x of E that is not an E-point, and βω 6→ (E ∪ {x})12.

Proof. Fix a discrete set D ⊂ E as in Lemma 4.8. Let U be a weak
P-point of ω∗ that is not an element of RE (from Definition 4.1). Let x
be a U -limit of D. Assume that A ≈ E and that x ∈ A and fix h ∈ HE

with A = h[E]. Since U /∈ RE, it follows that x is not a limit point
of A ∩ D. This is because e = h−1(x) is not a U -limit of the discrete
set (hβ)−1[D ∩ A]. But now by Proposition 3.2, we must have that x
is a limit point of D ∩ A. This however contradicts that x is a weak
P-point of D \D and a far point of A. �

Now we show that the hypothesis of Theorem 3.23 can hold.
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Lemma 4.10. If E is a homogeneous vD-space, then there is a far
point x of E such that x is an E-point in E and βω 6→ (E ∪ {x})12.

Proof. Fix a discrete set D ⊂ E as in Lemma 4.8. Also let {Ud : d ∈ D}
be a pairwise disjoint family of clopen subsets of E such that d ∈ Ud
for each d ∈ D. Since D∩E is empty, we can assume that E ⊂

⋃
{Ud :

d ∈ D}. We will choose an x and x ∈ Ax ≈ E such that Ax ⊂ D and
Ax is a weak P-set of D \D. Let Wx ∈ ω∗ denote the ultrafilter that
will be used to select x as a Wx-limit of D. In order to decide on our
choice of Ax, and the resulting possible values for Wx, we analyze the
possible behavior of discrete subsets of HE,x(E). We want to choose
Wx in such a way that if {xn : n ∈ ω} is a discrete subset of HE,x(E),
then the closure of {xn : n ∈ ω} is disjoint from E ∪D. Since each xn
will be a Wx-limit of a discrete subset of E, we consider which choices
of Wx may fail to have our desired property.

Assume that e ∈ E∪D is the limit of a discrete set {xn : n ∈ ω} ⊂ E
and that, for some W , each xn is a W-limit of a discrete Dn ⊂ E. We
may choose, {Wn : n ∈ ω}, pairwise disjoint clopen subsets of E such
that xn ∈ Wn and, by shrinking Dn, such that Dn ⊂ Wn. Similarly,
for each n, there is a family {Wn,m : m ∈ ω} of pairwise disjoint
clopen subsets of Wn such that, for each d ∈ Dn, there is an m such
that d ∈ Wn,m. Evidently, the sequence {E ∩Wn,m : n,m ∈ ω} and
the neighborhood trace of e determines W and so there are at most c
many such W .

Let ρ be a bijection from ω onto D. We will use the family K from
Corollary 4.4. For each K ∈ K, we apply Lemma 4.7 to choose AK ≈ E
so that AK is a weak P-set of ω∗ such that π[AK ] ⊂ K and such that no
distinct points of AK are RK-equivalent. For each K ∈ K, let W(K)
be any element of AK (of course W(K) ∈ ω∗). Now we consider the
homeomorphism ρβ from ω∗ onto D \D. Since HE(E) has cardinality
c, the set Y =

⋃
{hβ[D] ∪ (hβ)−1[D] : h ∈ HE(E)} has cardinality c.

Let KY be the set of cardinality 2c, consisting of those K ∈ K such
that ρβ[AK ] is disjoint from Y . Now choose K ∈ KY so that W(K) is
not RK-equivalent to any of those c many W that arise as a partition
accumulating to some e ∈ E ∪D. Then ρβ(W(K)) = x is our desired
far point and it is an element of Ax = ρβ[AK ] ≈ E. By our choice
of Wx, we have ensured that if {xn : n ∈ ω} is a discrete subset of
HE,x(E), then the closure of {xn : n ∈ ω} is disjoint from E ∪D.

Claim 6. For each y ∈ HE,x(E) and y ∈ A ≈ E, there is an h ∈ HE(E)
and a clopen U ⊂ E with y ∈ U such that U∩A ⊂ hβ[Ax] and U∩hβ[Ax]
is nowhere dense in E.
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Proof of Claim: Let y ∈ A ≈ E and let h ∈ HE(E) be chosen so that
hβ(x) = y. As stated just before the Claim, y /∈ E. Let Ay = hβ[Ax].
Since h[E] is a crowded subset of E, it is an open subset of E and

h[E] is a clopen subset of E. Since E is homogeneous, there is a
homeomorphism g from Ay to A satisfying that g(y) = y. By Corollary
3.5, there is a clopen subset U of E such that y ∈ U and every point
of U ∩Ay is a fixed point of g. This implies that U ∩Ay is a relatively

clopen subset of A. By shrinking U we can assume that U ⊂ h[E].
Since Ay is disjoint from h[E], it follows that Ay ∩ U is a nowhere
dense subset of E. �

Claim 7. HE,x(E) ∩ Ax is simply {x}.

Proof of Claim: Let h ∈ HE(E) and assume that x 6= hβ(x) = y ∈ Ax.
Let Dy = hβ[D], hence y is theWx-limit of Dy. Let Dy = D1∪D2∪D3

where D1 = Dy ∩ D, D2 = Dy ∩ (D \ D) and D3 = Dy \ D. Since
distinct points of AK are not RK-equivalent, y is not the Wx-limit of
any subset of D, hence y /∈ D1. Also D2 ∩Ax is empty because Ax is a
weak P-set of D \D that was chosen to be disjoint from Y and D2 is
a subset of Y . Therefore it remains that y is in the closure of D3. Let
D4 = D3∩D. It follows from Corollary 3.3 that y is in the closure of D4.
Since D3 ⊂ hβ[E] we may choose D5 ⊂ E such that hβ[D5] = D4. Of
course this means that D5 ⊂ (hβ)−1[D] ⊂ Y . Moreover, D5 ⊂ (D \D)

since hβ[D5] ⊂ (hβ[D] \ hβ[D]). Also, x should be a limit point of D5

since y = hβ(x) is a limit point of hβ[D5]. However, our contradiction
is that x is not a limit of D5 since D5 is disjoint from the weak P-set
Ax. �

We finish the proof, using Theorem 3.23, by proving that, for each
A ≈ E, HE,x(E) ∩ A is relatively closed and discrete in E ∪ HE,x(E).
Let A ≈ E and let y ∈ HE,x(E) ∩ A. Choose h ∈ HE(E) and clopen
U ⊂ E as in Claim 6. Choose, by continuity, a clopen W ⊂ E such
that h[W ∩ E] = U ∩ h[E] and note that x ∈ W ∩ E. It also follows

that U∩hβ[Ax] ⊂ U ∩ h[E] = hβ[W ]. We prove that HE,x(E)∩(U∩A)
is equal to {y}. Let z be any point in HE,x(E) ∩ A ∩ U and choose
w ∈ W ∩ Ax such that hβ(w) = z. Choose an hz ∈ HE(E) such that
hβz (x) = z. Now, by Lemma 3.17, there is an h3 ∈ HE such that

hβ3 (x) = z and h3[E] ⊂ h[E]∩hz[E]. Evidently, h4 = h−1 ◦h3 ∈ HE(E)

and hβ4 (x) = w. By Claim 7, w = x, and so z = y.
By Claim 6, we have now shown that HE,x(E) ∩ A is discrete. It is

clearly closed if it is finite so assume that {xn : n ∈ ω} = HE,x(E)∩A.
By the statement just before Claim 6, we also know that {xn : n ∈ ω}



MORE TOPOLOGICAL PARTITION RELATIONS ON βω 23

has no limit points in E ∪D. Now we show that {xn : n ∈ ω} has no
limit points in HE,x(E) which will finish the proof. Let y ∈ HE,x(E)
and choose hy ∈ HE(E) such that hβy (x) = y. Again let Ay = hβy [Ax]

and Dy = hβy [D]. Since hy[E] is a crowded subset of E, it is an open

subset of E. Let U = hy[E] and note that U is a clopen subset of E
that is a neighborhood of y. Since we want to prove that y is not a
limit point of {xn : n ∈ ω} we may as well assume that {xn : n ∈ ω} is
a subset of U \ {y}.

We first prove that zn = (hβy )−1(xn) ∈ HE,x(E) for all n ∈ ω. Fix any

n and choose hn ∈ HE(E) such that hβn(x) = xn. Let A = hn[E]∩hy[E]
and note that A is an open subset of hn[E]. Therefore hn[E] \ A and

hy[E] are disjoint crowded, hence open, subsets of E. Since xn ∈ hy[E],

it follows that xn /∈ hn[E] \ A. This proves that xn ∈ A. Since xn is a
far point of hn[E] it is not in the closure of hn[E]∩(A\A). Therefore we
can choose a clopenW ⊂ E such that x ∈ W and hn[W ] ⊂ A. As usual,
we can, by shrinking W , arrange that A \ hn[W ] is also homeomorphic
to E. Now we can choose another gn ∈ HE(E) so that gn(e) = hn(e)
for e ∈ W and gn[E \W ] ⊂ A \ hn[W ]. Then h−1y ◦ gn ∈ HE(E) and

satisfies that (h−1y ◦ gn)β(x) = (hβy )−1(xn). This completes the proof
that zn is in HE,x(E).

Therefore {zn : n ∈ ω} is a discrete subset of HE,x(E) \ {x} and
so its closure is disjoint from D ∪ E. Also x /∈ {zn : n ∈ ω} and so,
by Claim 7, B = {zn : n ∈ ω} is disjoint from Ax. Since B ∩ D is
empty, it follows from Lemma 3.3 that x is not in the closure of B \D.
However we also have that x is not in the closure of B ∩ (D \D) since
Ax is a weak P-set of D \D and B ∩ Ax is empty. Now applying the
homeomorphism hβy we have that y is not in the closure of {xn : n ∈ ω}
as required. �

We close with questions.

Question 4.1. Can Theorem 3.23 be proven when we drop the hy-
pothesis of relative discreteness?

Question 4.2. If Y is a non-homogeneous vD-space that is the union
of two homogeneous vD-spaces, does βω → (Y )12?

Question 4.3. Is there a non-homogeneous vD-space Y such that
βω → (Y )12?

Question 4.4. If q is a strongly right maximal idempotent of (βω,+),
is the closure of {n+ q : n ∈ ω} homeomorphic to E(2c)?



24 A. DOW

References

[1] Bohuslav Balcar and Alexander B laszczyk, On minimal dynamical systems
on Boolean algebras, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 7–11.
MR1056164

[2] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer-
Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wis-
senschaften, Band 211. MR0396267

[3] W. W. Comfort, Akio Kato, and Saharon Shelah, Topological partition relations
of the form ω∗ → (Y )12, Papers on general topology and applications (Madison,
WI, 1991), Ann. New York Acad. Sci., vol. 704, New York Acad. Sci., New
York, 1993, pp. 70–79, DOI 10.1111/j.1749-6632.1993.tb52510.x, (to appear in
print). MR1277844

[4] W. W. Comfort and Jan van Mill, A homogeneous extremally disconnected
countably compact space, Topology Appl. 25 (1987), no. 1, 65–73, DOI
10.1016/0166-8641(87)90075-7. MR874978

[5] Eric K. van Douwen, Applications of maximal topologies, Topology Appl. 51
(1993), no. 2, 125–139, DOI 10.1016/0166-8641(93)90145-4. MR1229708

[6] Alan Dow, βN, The work of Mary Ellen Rudin (Madison, WI, 1991), Ann. New
York Acad. Sci., vol. 705, New York Acad. Sci., New York, 1993, pp. 47–66,
DOI 10.1111/j.1749-6632.1993.tb12524.x, (to appear in print). MR1277880

[7] , On van Douwen spaces and retracts of βN, Math. Bohem. 132 (2007),
no. 4, 345–368. MR2365321

[8] Alan Dow and Jan van Mill, An extremally disconnected Dowker space, Proc.
Amer. Math. Soc. 86 (1982), no. 4, 669–672, DOI 10.2307/2043607. MR674103

[9] , On n-to-one continuous images of βN, Studia Sci. Math. Hungar. 44
(2007), no. 3, 355–366, DOI 10.1556/SScMath.2007.1028. MR2361681
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