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Two applications of reflection and forcing to topology
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Abstract A brief review of the method of reflection and forcing is given. This
technique is then applied to show that two metrizability theorems following from
CH are also consistent with the negation of CH (one is relative to the
existence of a weakly compact cardinal). The first is "a compact space is
metrizable if so are all of its subspaces of size Rl" . The second (requiring

a weakly compact cardinal) is "a first countable compact space with a small )
diagonal is metrizable". The forcing for the first is simple Cohen real forcing
and the second is the Mitchell collapse.
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Introduction. All spaces are Hausdorff. In recent years many important ang
interesting questions in general topology have been resolved using the method of
reflection and forcing together with large cardinals. However, large cardinalg
are not an essential element of the technique, their only role is to allow one
to assume more reflection. Indeed mast forcing arguments involve some sort of
reflection. In this article we begin with a brief and simplified exposition of
this method. We then give two applications as mentioned in the abstract, one of
which does not require a large cardinal but for which this technique seems
particularly suitable. A much more detailed exposition of this technique (using
supercompact cardinals and a slightly different approach) is available in [DTW].

Suppose that I is a class of topological objects; e.g. X €T implies
X = <X,T,€¢> where <X,T> is a topological space and ¢ , for instance, is a
family of subsets of X . We shall say that ¥ is a subobject of X if for
some Y < X , ¥ = <Y,7|Y,¢'> where, in this case, ¢ = {CNY: cet¢} . (The
demand on €' may vary but we do insist that ¥ is a subspace of %) &
would say that ¥ has size less than x if |Y] <% and |€'] <% -

Let us say that ®(T,x,P) holds if and only if for every object X in
r , with P(X) failing, % has a subobject ¥ of size less than % (mot
necessarily in TI') for which ¥(¥) also fails. Equivalently, ¥(¥) holding
for all subobjects ¥ of X of size less than x for any X € I implies
P(X) holds if and only if =R(T,x,P) holds. It will be convenient to let

(x,P) denote the subclass of TI' consisting of those %X in I for which
£(Y) holds for all subobjects ¥ of % of size less than X .

Many "large" cardinals have formulations in terms of reflection schemes of
a slightly different nature. Of course if % is uncountable then the following
holds: for any set X , formula ¢ end ordinal B (> rank of X) if
vB = £(X) , then there is an elementary submodel M of V such that X € M,

IM| <% and Mk £(X) . We shall frequently assume without mention that V
hence M , is a model of any needed axioms of ZFC

’
+ One would have in mindB
that it may be possible to derive that P(X N M) is valid in V thus cbtaining
a reflection theorem of the sort postulated in the previous paragraph. This, of
course, is not in general true but if additional second order properties are
imposed on M (possibly increasing the minimum size of such an M) it may well
be possible. For example, we may demand that M is closed under w—-sequences

([M]u c M) . More generally, one method of imposing second order Properties on
. 1 s k

M is to demand that a certain nl formula holds (as is done in weakly compact

(with B = %) or supercompact reflection (see [De] or [Ma])) . A formyya

ormula if it is of the form V X, *<Xo--~-.xn)

, 1
p(xl,...,xn) isa m f and
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¥(Xgs-++»X) is the usual kind of formula in the language {€,X;,...,X} with
variables VgrVyseee and the )(i are unary predicate symbols. For
(Al""'An) c (M) , we say that <M,¢,A1,...,An> ] P(Al,...,An) if for all

Ag €M M@ Ag e A kR ¥(Ag, A )

Another difficulty enters when we return to our problem of ®([,x,P) . We

would like to deduce ®R(I',x,P) from the fact that % reflects ¥ in the sense
of the above paragraph. That is, if X € I and we can show that for some
suitable M with Mk P(X) and |M| < x , we have in fact that P("%x n M")
holds in V ("X N M" should be clear from context). However, for =R(I,x,P)
we are demanding that "X N M" is a subobject of %X . This is achieved by a
combination of second order conditions on M (but not too many since we must

have |M| < %) and local conditions on I . For instance it suffices to have

that % € F(P,x) implies that % is first countable.
Finally, we throw forcing into the brew. Let [ be a class of P-names

for some poset P . Assume that x is sufficiently large to satisfy the

following reflection condition: if % € I' and p € P is such that
P I-P A P(tit) then there is an M as above such that p N M "'mM A ?("ﬁ“. n M)
(we are already assuming appropriate second order properties on M and P to

get from Mk I-P b P(.’:t) to the above). We shall also have to impose conditions

on M and P in order to get that P is forcing isomorphic to
PNMx (P/PAM) , i.e. PN M is completely embedded in P . Finally, in order
to conclude, as we would like, that for some q<p, q ll-E A P("i‘. nuM") , we

mst show that "P/PNM preserves = P("i N M")". We will also need to go back

and check that the local conditions on I are sufficient to ensure that X N M

is a subobject of % ; again first countability suffices but see [DTW] for a

more general situation.

Let us now record a slightly more specific summary of the above discussion.
let ' be a formula which describes the class of topological objects we are
interested in. For example, [(X,7,¢,8) holds implies that (without loss of
generality, X is an ordinal) Tt € X X 8 X X codes a base for a topology
(where (x,a,y) € v if and only if y is in the ath neighbourhood of x)
and ¢ c X x 8 codes some indexed family of subsets of X (i.e.

Ca = {x: (x,a) € €}) . Also let P(vl,vz,va,v4) be a topological property and

assume that both ' and ¥ are, Hi‘ formulas. Let % be a cardinal and let

Pc V“ be a u-cc poset. Our aim is to prove 1 L R(C,%,P) . Let X and ©

be ordinals and let + and ¢ be P-names of subsets of X x@ x X and X X ©
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respectively. Suppose that p o r(x,r,¢,8) and = ?(X,7,¢,8) ; in fact
shall ignore a technical point never entering topology (?) and assume th“tthu
®

is a B large enough so that for any P-names b 5 2 of subsets of X xg X x

and X X 8 respectively, q FP F(X,ﬁ,i,e) and q PP ?(X,b,é,e) hold if and
only if they hold in ‘VB (see [DTW] for a discussion of local properties),

Step 1 (Reflection) Let X be a suitable ni formula and A ¢ V8 « Find (i3
possible) M < VB with |M| <% so that (in the H} sense)

M,€,P,X,7,€,8,A> k [x(A) and p Fp T(X,7,£,8) A = P(X,7,%,08)] .

Step 2 (Absoluteness) Using x and A deduce that

PAMI T(XOM, 1AM, €NM,0NM A~P(X, TNM,e€NM,00MN
and PN M is completely embedded in P . (For example if P is Cohen real
forcing, then P N M is always completely embedded in P) .

Step 3 (Preservation) Show that if G is P N M-generic over V then V[G] k
forcing with P/PMM preserves the failure of ¥(Y,p,2,a) for spaces such that

C(Y,p,2,a) holds. Deduce that pNMI, 7 P(XNM, TAM, ENM, 0NN .
Step 4 (More absoluteness) Show that p N M FP <XNM, T N M> is a subspace
of <X,r> .

It is sometimes necessary (especially for Steps 3 and 4) to work with
f'(x,?) rather than [ . However, in this case we would expect to reach a

contradiction since there should be no spaces in ©°(x,P) for which P fails.

Frequently the contradiction is simply obtained by showing - ?("& n M") (since

we are assuming P("i nM)) .

Proposition. Assume that PN M is completely embedded in P and that
1 WP <X,t> 1is first countable (in fact assume 1 FP rcXxwxX) . Then step

4 holds; that is 11, <XNM, T AM is a subspace of <X,T> .

Proof. Since P N M is completely embedded in P we may assume that
P-PNM%Q for some Q. lLet x,ye XNM and n €« and assume that

<p é> F <x,n,y> € + . It suffices to prove that <p,1> Ikp <X,n,¥> € T . For
b
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all p' <p in M, <p',1> is compatible with <p,q> , hence it cannot be the

case that p' n—mM <X,n,y> ¢ T Therefore, by absoluteness,

Mk - p' I}-P <x,n,y> ¢ + for all p' < p . In other words, Mmw p l-P {X,n,y> € T

from which it follows that: p I-P {X,n,y> € T
A situation discussed at length in [DTW] is the case when u is
is weakly compact and each of X,0 and B are at most

supercompact (or x
in order to guarantee that there

%) . In this case we can formulate x and A

is a strongly inaccessible A <% so that M N V“ = Vk . [M]d‘ cM and PN M

has the A = cc (in V). Now step 1 can be accomplished by the properties of

% being supercompact (or weakly compact) (see [Ma], [Ka Ma], [De] or [DTW]).
Using X we have already guaranteed that P N M is completely embedded in P
and it is quite likely that all of step 2 holds, but this must be checked (also
x can be further strengthened). In most cases, Step 3 is the heart of the
argument and is where the greatest difficulty lies. Step 4 can be shown to
hold, for example, if each point of % has character less than u (again see
[DTW]).
In section 4 we present an argument where it is sufficient to have that

[M]U c M hence M can be chosen to have cardinality c . In this case we are

using Cohen real forcing, hence P N M will be completely embedded in P , but

Steps 3 and 4 requires some work.

2. The forcing posets.
In this section we review the basic facts of the two forcing notions we

The first and simplest class of forcings are the well known Cohen

shall use.
real posets denoted Fn(I,2) where I is any set. Following Kunen (K],

Fn(I,2) = {p : p is a function, dom(p) € [I]<w and range(p) € 2} and is

ordered by reverse inclusion. Recall that if J is any subset of I then

Fn(I,2) is forcing isomorphic to Fn(J,2) * Fn(I - J,2) . If X is a

Fn(I,2)-generic, we shall let val(X , G N Fn(J,2))

Fn(I,2)-name and G is
such that in V[G]

denote the unique nice Fn(I - J,2)-name in V[G N Fn(J,2)]
(= v[6 N Fn(I,2)][G N Fn(I - J,2]) val(X,G) = val(val(X , G N Fn(J,2)) ,

GN Fn(I - J,2)) .
The other forcing notion which we require is the "Mitchell collapse".

For an ordinal © , let Mi(B) denote the iteration

“]
= 2 ordered

2.1 Definition.

<Pa’°a>a<e where for a even Qa= Fn(w2,2) and a odd Qa
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by reverse inclusion. The ideal of supports for Mi(8) is generated by the "

of finite subsets of the even ordinals union the set of countable subsets of the

odds.

2.2 Basic Facts about Mi(8) .
(i) If G is Mi(@)-generic, for 6 strongly inaccessible, then

< B«
V[G]th=wl,2 =6=N2.
(ii) If A <@ is even, then Mi(g) is forcing isomorphic to Mi(A) % Mi(e')

where A +8' =8 .

(iii) There is a Mi(8)-name, R , of a poset such that Mi(8) ¥ R is forcing

isomorphic to Fn(p,2) X Q@ for some w,-closed poset Q and some uncountable

1
Mg

(iv) There is a Mi(8)-name of a poset R and a Fn(wl,z)—name of a possiig
such that M (8) * R is forcing isomorphic to Fn(w),2) ¥ (Q x Fa(w - i
such that 1 n-Fn(wl,Z) Q is ul—closed.

Proof. (i) - (iii) are from Mitchell’s original paper [Mi] and (iv) is an

easy consequence of (iii) and the fact that Mi(g) is forcing isomorphic to
Fn(w),2) % Mi(@) .

2.3 Remark., If © has uncountable cofinality we will view Mi(8) as the union
of the posets {Mi(a) : « < 8} rather than the usual notion of iteration in

which the elements are functions with domain © . This point of view is

equivalent (as forcing notions) and allows us to view Mi(g8) as a subset of Ve
rather than Ve_'.1 . Furthermore, if A <@ 1is strongly inaccessible then
Mi(g) n V)L is equal to Mi(A) and is completely embedded in Mi(8) .

One final general fact about both Cohen real forcing and Mitchell forcing |
is that they are both proper. The consequence of this fact which we wish to

record is the following.

2.4 Proposition. If P is either Fn(8,2) or Mi(8) for any © and x is a
P-name such that pI x € p for any p € P and ordinal p , then there is a

countable A cp and a q < p such that ql-:'cex . In the case P ijg
Fn(8,2) , ¢ can be chosen to be p .

Proof. This follows easily from 2.2 (iii) and the fact that Fn(g,2) jg .
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3. The preservation lemmas.
In this section we shall prove the preservation properties which we shall

need to complete Step 3 in our outline.

3.1 Lemma. Let <X,t> be a space with the property that each uncountable
subset of X has a countable subset with a limit point. If P is Fn(p,2)

(for any un) or if P is wl—cloued then ll-P each uncountable Y c ¥ has a

countable subset with a limit point in <X,r> .

Proof. The simplest case is when P is ul—closed. Indeed let A be a
P-name of a one-to-one function from wy into X . Let Py € P be arbitrary
and choose recursively a descending sequence {pa: a< ul} € P and a sequence
{a, @<w} € X such that, for all a < W s Py ¥ A(a) = a . Now by

assumption there is a B < wy such that {aa: a < B} has an accumulation
point. Clearly Pgi1 IF {A(a) : @ <8} has an accumulation point. Now, suppose
P=Fn(s,2) and again let A be a P-name as above and q any element of P .

For each «a < wy choose P, € P P, <4, and a € X such that

w
1] . be chosen so that {pa: a € I}

pal-A(a) =8 . let p€P and I € [w
forms a A-system with root p > q . It is routine to check that for any

B <w, and accumulation point x of {aq: aelINg}, pkx is an

1
accumulation point of {A(a) ta€INg}.

3.2 Lemma. Let uZwl and ln-Fn(u,Z) Q is wl—closed. Let M be a

countable elementary submodel of Vs for a sufficiently large B so that
Fn(s,2) xQ € M . There is a Fn(u,2)-name 510 such that 1 # qo € Q and for
any Fn(u,2) X Q-generic G over V with (1,;;0> € G, the set

o eGnNM: pk éO < q} is MN Fn(g,2) % Q-generic over V .

Proof. 1t ig easily checked that there is a Fn(p N M,2)-name Q' such that
Tha g a countable atomless subposet of Q and M N (Fn(p,2) * Q) is
{somorphic ¢4 Fn(p N M,2) X Q' . Since M is only countable, we can find a
Fn(""z)“nmne F such that for any Fn(p N M,2)-generic G over V, val(i‘,a)
is Val(é'.a)—generic over V[G] (where val(i‘,a) is the usual Fn(p - M,2)-

n . 5
e for F) . Finally, since 1 IF is wl-closed, we choose q, to

Fn(u,2) ¢
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be a lower bound to F .

3.3 Lemma. Let p 2 Wy and let Q be a Fn(g,2)-name such that 1 |- d
Fn(u,2)

is wl-closed. If <X,m .is a Lindelof space, then 1 nth(p.,Z)*Q <X, Ty is

Lindelof.

Proof. Let ¥ be a Fn(u,2) * Q-name and assume that <p,c.1> F%cr is an

open cover of X . Let M be a countable elementary submodel of a large enough

VB and assume {%,<p,g>} € M . Choose (.10 as in 3.2 such that, in addition,

pF 2;0 <q . We claim <p,f;0> F%NM covers X . By 3.2 it suffices to prove

that for each x € X, 3 = {<p;,q;> € MN Fn(n,2) ¥ Q: thereisa UerNM

with x € U and <pj,q;> kU e} is MN (Fo(,2) * Q)-dense. So, let
{r,s> e M N (Fn(p,2) % Q) be arbitrary. Since <X,t> is Lindelof, and
e, > FU %=X , there are sequences {Un: n€w)<cr and

{(rn’én> i ne€wc{<r,s'> € Fa(p,2) *x Q : <r',s'> < <r,s>} such that

UU =X and <rn,én> [ ﬁn €% for each ne€w . Therefore, by elementarity,

nn
this is true in M . Furthermore, {Un: n€w €M and {<rn,én> :new €M

imply {Un: ne€wyu {<rn,sn> :n€w €M . Finally, HUn = X implies
<rn,sn> € :Dx for some ne w .
For a space X , a subset F of X and an indexed sequence

{aa: a<p} € X, let us say that {aa: a < pu} converges to F if every

neighbourhood of F contains {aa: B <a<p} for some B <p .

3.4 Lemma. Suppose X is a space and {aa: a<plcX-F 'converges to FcX

where p  has uncountable cofinality. If G is Fn(8,2)-generic over V , for

any 6 , then {aa: a < p} still converges to F in V[G] .

Proof. It suffices to show that if I is a Fn(8,2)-name and p € Fn(6,2)
with p IF Icp is cofinal, then q I {aa: a € I} has a limit point in F ,
P, < p such

for some q < p . Now, for each a < p , choose, if possible,

J cp be cofinal with minimum cardinality such that

that p I a € I. ILet
is an uncountable regular cardinal,

P, exists for each a € J . Since |J|
there is a subset J' ¢ J with |[J'| = |J| such that {pa: a€J'} forms a

A-system with roof q . Let x € F be a limit point of {a : a € J'} (since
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J' is cofinal in u) . Since q is the root of the A-system {pa: a€J},
(a€J' i q Fag i} is finite for any q' < q . Therefore qlF x is a limit

point of (aa: a € i:)

4. :R(l",Rz, metrizable)

Recall that a space X has tightness at most u# if for any x € X and
AcX with x a limit point of A there is a B € [A]SM such that x is a
limit point of B . Let "t < x" denote the class of regular spaces having
tightness at most % and let "X = R." denote the class of first countable

0
spaces.

The consistency of ®R(t < &1, Rz, metrizable) (relative to a large
cardinal) is still very much open and seems very similar to the problem of
producing a model with "¢ = R, and every normal Moore space is metrizable".
It is shown in [DTW] that ®R(t < Rl, c, metrizable) is consistent relative to a
strongly compact cardinal. However, in this section we intend to demonstrate
the consistency with "c 2 &2" of ®R(compact, Rz, metrizable). We shall also
consider the related problems of R(I, Rz, metrizable) where I' is one of
"Ro—compact", "Rl—compact" and "Lindelof" (recall that X is x-compact if
every subset of X of cardinality at least u has a limit point). Observe
that some assumption on I 1is necessary since obviously ®R(normal Hausdorff, x,
pmetrizable) fails for all x .

To begin, let us first show that ER(Rl—compact, _g+, metrizable) holds
(Juhasz [J] observes this for [ = "compact"). Note that if a space X is any
of compact, No—compact or Lindelof then X is Nl—compact. We shall give a
proof which we hope will aid in understanding the method of reflection rather
than the simplest proof which is to utilize Hajnal and Juhasz’s result that
%(Top, Rz, countable weight) holds where Top 1is the class of all topological

spaces. As discussed earlier, let X be a set and let T € X x 8@ x X code the

topology on X so that <X,t> € r (_g+, metrizable) where [’ is the class of

Rl-compact spaces. Let B be large enough and let M be an elementary

submodel of V, so that <X,r> €M, M| S¢c and [M]® cM (this can be done
by building M as the union of an elementary chain of length ul). Let
Y=MNX and let ' = TN M. We shall proceed by proving a series of facts.

Fact 1: <y, 'rIY> is Nl—compact.
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w
Proof. Let A € [Y] 1 and choose x € X such that x 1is a limit point of

A . Since AU {x} is metrizable as a subspace of X , there is an A' € (A

W

which converges to x . Therefore A' € M (since ([M] < M) and in fact

X € M since MFE 3x , X is the unique limit of A'
Fact 2: T NM= TIY (this is Step 4 of our method).

Proof. Suppose A 1is a TIY—closed subset of Y . Since A is an Rl—compact
metrizable subspace of X (recall that X e [ (g+, metrizable) and |A| S¢) |

A is separable. lLet A' € [A]w NMM be rt-dense in A . Now since A' €M

the formula "x is in the t-closure of A' " is absolute for M , hence A
is Tt N M-closed as well.

Finally we complete the proof by showing that Step 1 of our method holds.
Fact 3. <Y, t N M> is not metrizable.

Proof. By Fact 1, <Y, r N M is Rl—compact since T N M is always a
sub-topology of TlY (in fact the same, by Fact 2). Therefore, if this space
were metrizable it would have a countable base. By decoding our code T , we
would have a countable A< Y =XNM and a countable B< N M so that the
set {{yeXnNM: x,q,yD€er1NM} : x€A, a€B} is a base for

<Y , TN M> . However, both A and B are elements of M since [M]¥ cM
hence by absoluteness {{y € X : <x,a,y> € T} : x € A, « € B} really is a base

for X contradicting that X is not metrizable.

Corollary CH implies that ﬂ(Rl—compact, Rz, metrizable) holds.
We shall now show, with a very similar argument, the main result of this

section.

Theorem 4.1. If V is a model of CH and G is Fn(p,2)-generic over V
(for any pn) then R(Rl—compact, Rz, metrizable) holds in V([G] .

Corollary 4.2. Each of ®(compact, NZ’ metrizable), R(Ro—compact, Nz,
metrizable) and %®(Lindelof, Rz, metrizable) is consistent with the negation of

CH .
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Proof of Theorem 4.1. Let I be the class of &1—compact Hausdorf spaces and

let X be any cardinal. Suppose that T is an Fn(p,2)-name such that

1F<X, 7> el (Rz, metrizable) and <X,T> is not metrizable. As above, let M
be an elementary submodel of a sufficiently large VB so that [M| = Rl ,
[M]w c M and everything relevant is in M . We again proceed with a series of

Facts.

”
Fact 4. 1 “-Fn(uﬂM,Z) for any uncountable Y< XN M, Y has a countable
subset with a limit point in <X AM, T N M" .

Proof. Let A be a nice Fn(p N M,2)-name such that 1 I A is an uncountable

subset of XN M . Since Fn(n,2) is a ccc forcing, we can find
{aa: a< ul} such that 1F A c {aa: a < ul} . Furthermore, since
1k <X,1"> el (Rz, metrizable) (and using 2.4) there is an a< Wy such that

1FAN {aY: y < a} has a limit point. Now, in fact, there is a countable name

BcM such that 1+ B =AnN {a‘v: ¥ < a} (since
B=AN {a'v: ¥ < a} X Fn(p N M,2) , see [K] for details on nice names).

Therefore, BeM and by absoluteness "1 I B has a limit point” holds in M .

Fact 5. 1 "-Fn(uﬂM,Z) <XNM, T NM> is not metrizable.

Proof. This is basically the same as Fact 3. Indeed, by Fact 4, if it were

metrizable, it would have a countable name for a base. This name would be in M

and could not be a base by absoluteness.

Let us review what remains to be shown. In the model V(G N M] , we have

that <XN M, val(r N M, GNM)> is an Nl—compact non-metrizable space. We
must show (Step 3) that forcing with Fn(p — M,2) preserves that it is

non-metrizable and (Step 4) that, in V[G] , <X N M, val(r A M, GNM)> isa

subspace of <X , val(r,G)> . It has been shown in [DTW] that Fn(I,2)

preserves "X is not metrizable" for any set I and space X . However, in
this case, since we have so little H% reflection (just (M]® < M) and we are

not assuming that X is first countable, we have to work hard for Step 4 and in

doing so we can give an alternate proof for Step 3 as well.
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Fact 6. In V[G] , for any countable A< XNM the topologies on A generated

by val(r,G) and val(t N M, GN M) are the same.

Proof. By 2.4, we can asume that A is in V , hence in M (since

(M]® < M) . Since <X, val(7,G)> € I , val(t,G)|A has a countable base.

Therefore, there is a countable name for this base in M which implies that

val(r,8) [, < val(r N M, GN M)A .
Fact 7. In V[G] , <X N M, val(%,G)lng) is Rl—compact.

Proof. By 3.1 and Fact 4, <XN M, val(r N M, GN M)> has the property, in

V[G] , that every uncountable subset of X N M has a countable subset with a

val(r N M, G N M)-limit point in M . By Fact 6, this point is a val(+nc)'
limit point of this same countable set.

Now, similar to Fact 2, we can prove:

Fact 8. In V[G] , <XN M, val(r N M, GN M)> is a subspace of

<X , val(t,G)> .

Proof. Let A< XNM be val(%,G)—relatively closed in XN M . Since we are

assuming that (X , val(r,G)) € I, val(t,G) | XN M is metrizable.

Furthermore, by Fact 7, A is Rl—compact, hence there is a countable D c A

which is val(r,G)-dense in A (and therefore val(t N M , G N M)-dense in A).
For any x € X N M , the two topologies agree on {x} U D by Fact 6. Hence, A

is val(r N M, G N M)-closed.

We conclude the proof with:
Fact 3. In V[G] , <X NM, val(%,G)lng> is not metrizable.

Proof. By 2.4 and Facts 5 and 8, val(%,G)XnM does not have a countable base.
Therefore it is not metrizable since, by Fact 7, it is Rl—compact.

With a very similar proof we can also show the following. Recall that a
cardinal is Mahlo if it is strongly inaccessible and it has a stationary subset

of strongly inaccessibles below it.
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Theorem 4.3. If © is Mahlo and G is Mi(8)-generic over V then
3(&1—compact, Rz, metrizable) holds in V(G] .

Proof. Recall from %2, that, in V[G] , ¢ = Rz = @ and, from this section,

that a(Rl-compact. g+. metrizable) holds. Therefore, to prove the theorem it

suffices to prove that R(Rl—compact, Rz. metrizable) holds for each topology

on 8. Let rc@O x 20 x 8 code a topology on © such that <8,r> e F(Nz,
petrizable) where [ is the class of Rl—compact spaces. We can assume that
forall A <8 and a <A theset ({8 : <A +n,B> €T} : ne€ew is a

neighbourhood base for a in the subspace <A , t|A> . Let T bea

Mi(8)-name for Tt . Since @ is strongly inaccessible, there is a continuous

increasing function g € eB such that, for each a €9 , TNax (ctw) X a is

a Mi(g(a))-name, 1 I-Mi(e) A X A x g(a) does not contain a base for g(a) for
each countable A € a and for each Mi(a)-name Y of an Rl—sized subset of

a IFMi(e) Y has a countable subset with a limit point less than g(«a) .
Since 6 is Mahlo, g has a strongly inaccessible fixed point A <8 .
Therefore Mi(A) has the A - cc and for each Mi(A)-name with

w
1|-?e[1]1,wecanassumethere is an «a <A such that Y is an

o :
Mi(a)-name and 1 I Y € [a] 1 since g(a) <A for a <A , it follows that

IFMi(A) each uncountable subset of A has a countable subset with a

rn Vx'li“'it point in A . By 3.1, 1 '-Mi(e) each uncountable subset of A
has a countable subset with a TN Vk—limit point in A . Also, for each
@<l , TNax (atw) X a contains a base for r|a and TNax (atw) X a is

an Mi(g(a))-name, hence, in V[G] , <« , val(; n VA », GN Mi(A)> 1is a subspace
of <g,7> . It follows that in V[G] , A , T|A> is Rl—compact. Again, since
A , t|A> is metrizable, every subset has a countable dense subset. Hence, for
any YA , there is an a <A such that YN a is dense in Y . For each
B <A , the neighbourhood trace of B on YU {8} is determined by its trace

on aU {8} . Therefore, by the first condition on g , <A , val(r N VA » G

is a subspace of <@,T> . However, by the second condition on g , no countable

subset of T N VA codes a base for A which contradicts that <A , T|]A> is
metrizable and Nl-compact.

In contrast to the above two theorems we have:
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Provosition 4.4. MA(wl) implies that ﬂ(&1~compact, Rz, metrizable) and

®(Lindelof, Rz, metrizable) fail.
Proof. Let Y be any subset of the unit interval I of cardinality Rl . Let
X=I-Yx {0} UYx {1} be a subspace of the usual Alexandroff double I x 2
where I x {1} are the isolated points. It is clear that X is Lindelof and

. <o
Furthermore, by MA(wl) , for any Z € [I] 5

not metrizable.
is a relative Gé 5

Z-Yx{0}UZNYx {l} is metrizable (each subset of Z

see [M]).

5. Small diagonal can imply metrizable.
Recall that a space X is said to have a small diagonal if for each

uncountable Y < X2 - & (where A = {(x,x) € Xz : X € X}) there is a

neighbourhood U of A such that Y \ U is uncountable. M. Husek proved that

if CH holds, then each compact space with countable tightness and small

diagonal is metrizable. H.-X. Zhou [Z] proved that the tightness assumption can

be dropped (but he still used CH) if homeomorphic copies of the ordinal space
w; in first countable spaces always have a neighbourhood base of cardinality
Rl.
consistent with CH relative to the existence of a strongly inaccessible
Zhou has also shown that MA + 2CH implies the existence of a
It is not

W.G. Fleissner had proven earlier that this latter condition was

cardinal.
Lindelof first countable non-—metrizable space with a small diagonal.
known, however, if it is consistent to have a (countably) compact first

countable non-metrizable space with a small diagonal. In this section, we prove

that (relative to a weakly compact cardinal) it is consistent with the negation

of CH that each compact first countable space with a small diagonal is

metrizable., Although Fleissner’s condition above holds in the resulting model

(35 of [DJW]) we do not know if the first countability assumption can be

dropped.
To fit this problem into the framework of our method we first show that if

c = Rz then it follows from 3(F,R2,P) for certain ' and ¥ . Indeed, let
I simply be the class of compact first countable spaces and let ¥(X,Z,A) be

2 is well ordered by e

the formula "if A = (aa: a€pnl cX®-A, where p

and has no countable cofinal set, then A does not Tt-converge to A" .
Proposition 5.1. If ¢ = Rz and 3(F,R2,?) holds (with I' and ¥ as above)

then each compact first countable space with a small diagonal is metrizable.
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R
Furthermore "first countable" can be dropped if 2 . < Rw and

R(compact, RZ’ ?) holds.

Proof. Let Y be a compact non-metrizable space. Let X be a compact

non-metrizable subspace of Y such that X has a dense subset of cardinality
at most Kz (recall that ®(compact, c+, metrizable) holds). Let p be the

pminimum cardinality of a family of open subsets of Xz such that A = Ax is
the intersection. Since X 1is compact and not metrizable w <p and p < Rw
(hence regular) since X has a dense set of cardinality Rz . Since X is
compact, 0 is also the minimum cardinality of a neighbourhood base for & .
Let {Uq: a < p} be such a neighbourhood base and choose, inductively

aaenfUB=3<°‘}‘[AU{aB:S<d}]CX2-—A for a<p . Now it is clear

that ?(X,7,A) fails where A = {ad: a c p} . By assumption, there is a
51
Z € [X] such that ¥¢(Z , 7|z , {aa: a € p} N Z) fails.  Therefore,

= {aep: a, € Z} has no countable cofinal set and | {aa: a € I} converges
to AZ . Let J be a cofinal subset of I of order type @y (I has
cardinality Rl since {aq: a<p} isa 1 -1 indexing) and observe that
each neighbourhood of Az (hence of AX) contains all but a countable subset

of {aa: a € J} . Therefore, Y does not have a small diagonal.

lemma 5.2. If © is weakly compact and G 1is Mi(@)—generic then, in V[G] ,
:R(I',RZ,P) holds where I is "compact first countable" and ¥(X,7,A) is the

formula "if A = {aa.: a€I}c X2 — A where I is well-ordered by € and has

no countable cofinal set, then A does not t-converge to A ".

Proof. Let G be Mi(B)-generic and suppose that <X,t> is in I and that
P(X,7,A) does not hold. We ‘may assume therefore, that X =8 and
TCHXwXO codes, as usual, the compact first countable topology on & (we
can assume all compact first countable topologies are on @ by Arkangelskii’s
result). We may also assume that p is a feg'ular cardinal with uncountable

2

cofinality and that A = {aa: a<p} €8” \ A converges to A in the

t-topology. Obviously, for each a<p , {B <p : a = aa} is not cofinal in

L hence we may assume that a_ #a for a<B <p=<6 . Itis not difficult

B
to find Hi formulas which are equivalent to I' and =P respectively. Let T
and {e.xd: a <p} be Mi(B)-names for T and {aa: a < p} respectively and

assume that 1 forces that Tt and (éa: a < p} have all the relevant
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i = ¥
properties. Now 1 “-Mi ®)

Hi sentence which holds in Ve (see [DTW] for more about why this is

<@,t> is compact and -<P(® ,T , (Eid: « < n}) is
nr
. s 0y 1

etc.). Since © is weakly compact, there is a strongly inaccessible )\ < )

a

such that V is a model of 1y, 4y » 70 Vy> 1is compact and

~PQA , TN \77L 0 {éa: a<pu} N V)\) . Since all quantifiers in the above sentence

can be restricted to subsets of V}\ we have that 1 D—Mi()\)<k , v N V)\> is

compact and -P(QA , TN V)\ s {éa: a < p} N VK) also holds in V . Let G' be

G N Mi(A) and let T‘=Val(‘.rﬂVR,G'). let I={xep:a, sV} and

= val(éa,G') for o€ I . Note that -P(QA , v , {Val(.aa,G') T ae 1))
holds in V[G'] . By 2.4, I does not have a countable cofinal set in V[G] ,
hence it remains only to prove that forcing with Mi(8) (= Mi(8)/Mi(\))

preserves that {a& : « € I} converges to A)\ (i.e. only Step 3 in the method

remains). By 3.3, <A,t'> , hence A}\ , remains Lindeldf in V[G] . Therefore,
2
if U <A™ is a neighbourhood of 8, in V[{G] , there is a countable subset 3

of the topology gemerated by r' such that 4, cU(BxB : Be® U . By 2.2

(iii), any countable subset of V[G'] 1in V[G] is actually added by the Cohen

real part of the forcing. Therefore, % € V[(G] where G is G' union G

restricted to the Cohen real part of Mi(8)

(i.e. the conditions whose support
contains no odd ordinals above 1).

By 3.4, there is a y € I so that, in

. It follows that
{ac'x :a€I-«}cU (in V[G]), hence {a'q : a € I} converges to A)\

Finally, our main theorem is a corollary to 5.1 and 5.2.

Theorem 5.3. If G is Mi(®)-generic, for a weakly compact © , then, in

V(G] , each compact first countable space with a small diagonal is metrizable.

Remark 5.4. It is frustrating that we can only prove 5.2 and 5.3 for first

countable spaces. The place where this assumption is used in the proof is to

show that Step 4 holds. As mentioned in the introduction there are wesker

assumptions listed in [DTW] which still ensure that Step 4 is valid. In this

case we could weaken the assumptions to "the space has countable tightness and

countable subspaces are first countable". However, we do not even see how to

weaken it down to Husek’s original countable tightness assuption. Another
possible strengthening of 5.3 is to assume that © is only Mahlo or perhaps
even strongly inaccessible. The place where we used the full strength of weak

compactness was to reflect that "X is compact", i.e. to ensure that
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IFMi(A)Q , TN VA) is compact. As we showed in 4.3, we can find a strongly

inaccessible X <@, if @ is Mahlo, so that 1k, . Q4 , rn V> s
Rl-coapact (and Ro—compact). A space is called initially Rl-conpact if it is
both Ro-compact and Rl—compact. The author and, independently, van Douwen
have shown that CH implies that each initially R1~cmpact space with
countable tightness is compact. It is an open question as to whether or not
this holds in ZFC , however, it is very promising that Frealin and Nyikos have

recently shown that it follows from PFA .
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