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Abstract. It is known that for each continuous image of N∗, there is a nowhere dense
weak P-set of N∗ that maps irreducibly onto it. We generalize this for every compact
space of weight at most c. This allows us to show that there is a weak P-set in N∗ which
is homeomorphic to N∗. This generalizes a result of the first-named author and answers
a problem posed before 1990.

1. Introduction

Let N denote the discrete space of natural numbers. It is well-known that every countable
subspace of N∗ (=βN \ N) is C∗-embedded in βN, [21, 6O(6)] (cf. [33, 1.5.2]). Hence if D
is any countably infinite discrete subspace of βN, then its closure D is homeomorphic to
βN. The remainder D \D is contained in N∗ and is what van Douwen called a trivial copy
of N∗ in N∗. He asked around 19801 whether there also exist nontrivial copies of N∗ in N∗.
This problem was not explicitly stated in one of his published papers. But it can be found
as Question 20 in [23].

Non-trivial copies exist in abundance under the Continuum Hypothesis (abbreviated
CH) by Parovičenko [34] (for example, the boundary of any noncompact open Fσ-subset of
N∗). They can be forced to exist in models of Martin’s Axiom, and it was long suspected,
motivated by results in [17, 3.14.2] and related earlier results in [25] that under the proper
forcing axiom, PFA, these would not exist. In fact, Just [25] showed that it was consistent,
and by [17] the same holds under PFA, that no nowhere dense closed P-set of N∗ is home-
omorphic to N∗. This result is highly relevant to our present paper and we will come back
to it below.

In [13], the first author answered van Douwen’s problem in the affirmative: there does
exist a nontrivial copy of N∗ in N∗. The proof was anticipated in [12], and used several tools
that were developed in the theory of Čech-Stone compactifications following the results of
Chae and Smith [5] and van Douwen [6] on remote points, and Kunen [28] on weak P-
points. He used Aronszajn trees and remote point techniques to embed N∗ in a nontrivial
way in the absolute E(2ω1) of 2ω1 , and then applied the result in [31, 2.4] that E(2ω1) can
be embedded in N∗ as a weak P-set to conclude the proof.
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The aim of this paper is to show that there is a nowhere dense weak P-set copy of N∗
in N∗. This is a significant improvement of [13] and answers a question that was around
before 1990 (it was explicitly stated after Question 20 in [23] (we could not reconstruct its
origin)). Hence Just’s result just quoted cannot be generalized to weak P-sets. However,
our nontrivial copy of N∗ is not a c-OK set, so there is still room for improvement.

We say that a space X maps irreducibly onto a space Y , if there is a perfect map
f : X → Y which is irreducible; this means that if A is a proper closed subset of X, then
f(A) is a proper closed subset of Y .

As we stated above, the proof in [13] used that for every N∗ image there is a c-OK set
in N∗ that maps irreducibly onto it, [31, 2.4]. The condition about being an N∗-image is a
technical one needed in the proof. Our first main result is to show, somewhat unexpectedly,
that the condition is superfluous.

Theorem 1.1. For every compact space of weight at most c, there is a c-OK set in N∗ that
maps irreducibly onto it.2

This new result allows for broader applications than the old one. To put this into per-
spective, we note the following. It is known from [34] that every compact space of weight
at most ℵ1 is an N∗ image. Hence under CH, every compact space of weight c is an N∗
image. While the statement ‘every compact space of weight c is an N∗ image’ is consistent
with the failure of CH (see [4]), it is known to be consistent that there are many compact
spaces of weight c that are not N∗ images. For those compact spaces there exist c-OK
irreducible preimages by Theorem 1.1 but not by [31, 2.4]. An example of such a space is
ω2 + 1 (Kunen [26, 12.7 and 12.3]). For more examples, see [33]. Other examples include
the Stone space of the measure algebra of the real line, [14], and N∗ × N∗, [24]. For the
proof of our main result, we need the Stone space of the measure algebra of 2ω1 , which has
weight c and by the result in [14] is yet another example of a space for which it is consistent
that it is not an N∗ image.

As in [13], we use an Aronszajn tree in 2ω1 in the proof of our main result. We let every
node in the tree correspond to a remote point in the Stone space of a certain subalgebra
of the measure algebra Mω1 on 2ω1 . This allows us to conclude that the embedding we are
after is indeed a weak P-set.

Theorem 1.2. There is a nowhere dense weak P-set in N∗ that is homeomorphic to N∗.
Since st(Mω1) satisfies the countable chain condition, the nontrivial copy of N∗ in N∗ that
we get from this result is not a c-OK set. This prompts the following problem.

Question 1.1. Is there a nowhere dense c-OK set in N∗ that is homeomorphic to N∗?
We will now briefly explain the history of Kunen’s fundamental method from [28] for

creating weak P-points in N∗.
Its motivation came from questions about the homogeneity of Čech-Stone remainders.

Rudin [35] showed that N∗ contains a P-point under CH. From this he concluded that N∗

2During final revision of the present paper, we came across Simon’s paper [37] which contains a similar
result.
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is not homogeneous under CH. The same conclusion was reached by Froĺık [19] in ZFC
alone. His proof is based on a cardinality argument and does not yield two points in N∗
with obvious different topological behavior. Whether or not there are P-points in N∗ in
ZFC remained a formidable open problem in topology and set theory for a long time, until
it was settled by Shelah [39] in 1978: it is relatively consistent that P-points in N∗ do not
exist. Hence Rudin’s method can not be used to give an ‘honest proof’ (this terminology
is due to van Douwen) of the nonhomogeneity of N∗. But help came from Kunen. A little
earlier, he had a created in [27] a method for constructing special ultrafilters in ZFC. He
used large independent families of sets in order to prevent certain transfinite constructions
to stop prematurely. The ideas in [27] were refined in [28] for the construction of so-called
c-OK points in N∗ (in ZFC). Since every c-OK point is a weak P-point, this finally gave
an ‘honest proof’ of the nonhomogeneity of N∗. Instead of independent families, he used
a combinatorially very complicated independent matrix of sets to achieve this result. His
method for constructing special ultrafilters in ZFC was used extensively by himself (see
e.g., [1, 2]) and others (see e.g., [36], [8, 10,13], [30–32], [38]) to get more general results in
the same spirit. Kunen’s method is also a central tool in the present paper.

2. Preliminaries

We follow Kunen [29, p. 11] to let ‘⊂’ denote inclusion. Moreover, we let fin denote
the ideal of finite subsets of N. If A ⊂ N, then A∗ denotes the intersection of N∗ and the
closure of A in βN.

If X is a space and A ⊂ X is closed, then A is a weak P-set in X if for every countable
subset D of X \A, the closure of D and A are disjoint. A weak P-set consisting of a single
point, is called a weak P-point.

A closed subset A of a space X is κ-OK, where κ is a cardinal, Kunen [28], if for every
sequence of neighborhoods {Un : n ∈ ω} of A, there is a κ-sequence of neighborhoods
{Vα : α ∈ κ} of A such that for all n ≥ 1 and α1 < α2 < · · · < αn < κ, Vα1∩· · ·∩Vαn ⊂ Un.
A κ-OK set consisting of a single point, is called a κ-OK point. It is clear that the
property of κ-OK gets stronger if κ gets bigger. Moreover, every ω1-OK set is a weak
P-set, Kunen [28].

For a space X, we let CO(X) denote its Boolean algebra of clopen sets.
Let B be a Boolean algebra. The underlying space of its Stone space, st(B), is the set

of all ultrafilters in B. Its topology is generated by the collection {b+ : b ∈ B}, where
b+ = {u ∈ st(B) : b ∈ u}. It is well-known that every compact zero-dimensional space X
is uniquely determined by CO(X).

A space X is extremally disconnected if the closure of any of its open subsets is open.
It is well-known, and easy to prove, that a compact zero-dimensional space is extremally
disconnected iff CO(X) is complete.

If E is a subalgebra of B, then there is a natural continuous surjection fB
E : st(B)→ st(E)

defined by fB
E (u) = u∩E. And if X and Y are zero-dimensional compact spaces for which

there is a continuous surjection f : X → Y , then E = {f−1(B) : B ∈ CO(Y )} is a
subalgebra of CO(X). Moreover, st(E) and Y can be identified, and fB

E agrees with f



4 ALAN DOW AND JAN VAN MILL

under this identification. This is of course nothing but the Stone Representation Theorem,
the details of which can be found in [22].

Let B be a Boolean algebra, E a subalgebra of it for which there exists an element
b ∈ B \ E such that B is generated by E ∪ {b}. Let X = st(B), Y = st(E), and f : X → Y
the canonical map. The element b ∈ B corresponds to a clopen subset B of X. Let
C denote its complement. Put BY = f(B) and CY = f(C), respectively. Since B is
generated by E∪{b}, is not difficult to show that f � B : B → BY and f � C : C → CY are
homeomorphisms. This means that we can (and will) think of X as being homeomorphic
to the subspace X ′ = (BY × {0}) ∪ (CY × {1}) of Y × 2. Hence f simply corresponds to
the restriction of the projection Y × 2→ Y to X ′.

Let X be a compact zero-dimensional space of weight κ ≥ ω. Then the Boolean algebra
CO(X) of clopen subsets of X has size κ. A moment’s reflection shows that we can find
subalgebras Bα of CO(X) for α ≤ κ, such that

(1) B0 = {∅, X},
(2) |Bα| ≤ |α| · ω,
(3) if β < α, then Bβ ⊂ Bα,
(4) Bα =

⋃
β<α Bβ, if α is a limit,

(5) if α is a successor, say α = β + 1, then there is an element B ∈ Bα \Bβ, such that
Bα is generated by {B} ∪Bβ,

(6) Bκ = CO(X).

We now recall the notion of an independent linked family from Kunen [28], which is one
of the central concepts in this paper.

Definition 2.1. Let F be closed subset of N∗, X a compact space and f : F → X a
continuous surjection.

(a) If 1 ≤ n ∈ ω, an indexed family {Ai : i ∈ I} of infinite subsets of N is precisely
n-linked with respect to (w.r.t) 〈F, f〉, iff for all σ ∈ [I]n, f(F ∩

⋂
i∈σ A

∗
i ) = X but

for all σ ∈ [I]n+1,
⋂
i∈σ Ai ∈ fin.

(b) An indexed family {Ain : i ∈ I, 1 ≤ n ∈ ω} is a linked system w.r.t. 〈F, f〉 iff
for each n, {Ain : i ∈ I} is precisely n-linked w.r.t. 〈F, f〉, and for each n and i,
Ain ⊂ Ai,n+1,

(c) An indexed family {Ajin : i ∈ I, 1 ≤ n ∈ ω, j ∈ J} is an I by J independent linked

family w.r.t. 〈F, f〉 iff for each j ∈ J , {Ajin : i ∈ I, 1 ≤ n ∈ ω} is a linked system
w.r.t. 〈F, f〉, and:

f
(
F ∩

⋂
j∈τ

⋂
i∈σj

(Ajinj)
∗) = X,

whenever τ ∈ [J ]<ℵ0, and for each j ∈ τ, 1 ≤ nj ∈ ω and σj ∈ [I]nj .

Lemma 2.2 (Kunen [28, 2.2]). There is a c by c independent family w.r.t. 〈F, f〉, where
F = N∗ and f : F → {0} is the constant function with values 0.

If X is a space then βX denotes its Čech-Stone compactification. Moreover, X∗ denotes
βX \X.
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3. The proof of Theorem 1.1

Let X be a compact space of weight at most c.
For the proof of Theorem 1.1, it suffices to assume that the weight of X is c. Indeed, if

X has weight less than c, then consider the topological sum Y = (X ×{0})∪ (2c×{1}) of
X and 2c. Then Y has weight c, and if Z is a c-OK set in N∗ that admits an irreducible
map π onto Y , then π−1(X × {0}) is a c-OK set in N∗ as well and π � π−1(X × {0}) is
irreducible.

It also suffices to assume that X is zero-dimensional, [33, 1.3.2].
So, to begin with the actual proof, let X be an arbitrary compact zero-dimensional space

of weight c. Moreover, write CO(X) as
⋃
α≤c Bα, where the Bα’s are as in §2. For every

α ≤ c, put Xα = st(Bα). Observe that X0 is a single point. Moreover, for β < α ≤ c, let
fαβ : Xα → Xβ be the canonical continuous surjection.

Let {Gµ : (µ < c) & (µ even)} enumerate all nonempty clopen subsets of N∗. Moreover,
let {〈Cµn : n ∈ ω〉 : (µ < c) & (µ odd)} enumerate all sequences of infinite subsets of N
such that Cµ,n+1 ⊂ Cµn for each n ∈ ω. We assume that each sequence is listed cofinally
often.

Let A = {Aβαn : α < c, 1 ≤ n ∈ ω, β < c} be a c by c independent linked family w.r.t.
〈N∗, f〉 (Lemma 2.2).

By induction on µ < c we construct Fµ, fµ : Fµ → Xµ and Kµ such that

(1) Fµ is a closed subset of N∗, fµ : Fµ → Xµ is a continuous surjection, Kµ ⊂ c, and
{Aβαn : α < c, 1 ≤ n ∈ ω, β ∈ Kµ} is an independent linked family w.r.t. 〈Fµ, fµ〉;

(2) K0 = c, F0 = N∗, and f0 = f ;
(3) ν < µ implies Fµ ⊂ Fν , Kµ ⊂ Kν , and the diagram

Fν

fν
��

Fµ

fµ
��

? _oo

Xν Xµ
fµνoo

commutes;
(4) if µ is a limit ordinal, Fµ =

⋂
ν<µ Fν , and Kµ =

⋂
ν<µKν ;

(5) for each µ, Kµ \Kµ+1 is finite;
(6) if µ is even, either Fµ+1 ⊂ Gµ, or fµ+1(Gµ ∩ Fµ+1) 6= Xµ+1;
(7) if µ is odd, and Fµ ⊂ C∗µn for every n, then there are clopen neighborhoods Eµα of

Fµ+1 for α < c in N∗ such that for all n ≥ 1 and all α1 < α2 < · · ·αn < c we have
Eµα1 ∩ · · · ∩ Eµαn ⊂ C∗µn.

Let us assume for a moment that this construction can indeed be carried out. Put
Fc =

⋂
µ<c Fµ. By compactness and the commutativity of the diagrams in (3), there is a
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continuous surjection fc : Fc → Xc = X such that for every µ ≤ c, the diagram

Fµ

fµ
��

Fc

fc
��

? _oo

Xµ Xc

f cµoo

commutes. Observe that by (7), Fc is a c-OK-set in N∗. Hence it suffices to check that fc is
irreducible. To check this, let B be a proper closed subset of F . For some µ < c, B ⊂ Gµ

and F \Gµ 6= ∅. Hence Fµ+1 6⊂ Gµ, and so by (6), fµ+1(Gµ∩Fµ+1) 6= Xµ+1. Hence, clearly,
fc(B ∩ Fc) 6= Xc.

Fix µ < c, and assume that the Fν , fν and Kµ have been found, for each ν < µ.
If µ is a limit, then Fµ and Kµ are determined by (4). Moreover, fµ : Fµ → Xµ is
uniquely determined by the commutativity of the diagrams in (3), and (1) is immediate
from compactness. Hence we may assume in fact that the Fν , fν and Kν have been found,
for each ν ≤ µ. We will construct Fµ+1, fµ+1 : Fµ+1 → Xµ+1 and Kµ+1.

Take an arbitrary β0 ∈ Kµ, and consider the sets C0 = Aβ01,0 and C1 = N\C0 and observe

that Aβ01,1 is almost contained in C1. Hence for k < 2, fµ(Fµ ∩ C∗k) = Xµ by our inductive
assumptions.

Consider the space Xµ+1. As we saw above, there is a closed cover {S0, S1} of Xµ such
that Xµ+1 can be thought of as the the subspace X ′µ+1 = (S0×{0})∪ (S1×{1}) of Xµ×2,

and fµ+1
µ : Xµ+1 → Xµ is the restriction of the projection Xµ × 2→ Xµ to Xµ+1.

For k < 2, put Lk = f−1µ (Sk) ∩ (Fµ ∩ C∗k). Clearly, fµ(Lk) = Sk for k < 2. Define

g : Y = L0 ∪L1 → Xµ+1 by g(x) = 〈fµ(x), k〉 if x ∈ Lk, k < 2. Observe that fµ+1
µ ◦ g = fµ.

Claim 1. {Aβαn : α < c, 1 ≤ n ∈ ω, β ∈ Kµ \ {β0}} is an independent linked family w.r.t.
〈Y, g〉.

Indeed, let τ ∈ [Kµ \ {β0}]<ℵ0 , and for j ∈ τ, 1 ≤ nj ∈ ω and σj ∈ [c]nj . Then by our

inductive assumptions, for k < 2 and P =
⋂
j∈τ
⋂
i∈σj(A

j
inj

)∗ we have

fµ(Lk ∩ P ) = fµ(f−1µ (Sk) ∩ (Fµ ∩ C∗k) ∩ P ) = Sk ∩ fµ(Fµ ∩ C∗k ∩ P ) = Sk,

from which the Claim is obvious.

Case 1. µ is even.

Put T = Gµ ∩ Y . If {Aβαn : α < c, 1 ≤ n ∈ ω, β ∈ Kµ \ {β0}} is an independent linked
family w.r.t. 〈T, g � T 〉, we set Fµ+1 = T , Kµ+1 = Kµ \ {β0} and fµ+1 = g � T . If not,
there is τ ∈ [Kµ \ {β0}]<ℵ0 , and for each j ∈ τ , 1 ≤ nj ∈ ω and σj ∈ [c]nj such that

g(Y ∩
⋂
j∈τ

⋂
i∈σj

(Ajinj)
∗) 6= Xµ+1.

Then let Fµ+1 = Y ∩
⋂
j∈τ
⋂
i∈σj(A

j
inj

)∗, Kµ+1 = Kµ \ ({β0} ∪ τ), and fµ+1 = g � Fµ+1.

Case 2. µ is odd.
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Assume first that there exists n such that Y 6⊂ C∗µn. Then put Fµ+1 = Y , Kµ+1 =
Kµ \ {β0} and fµ+1 = g � Y . If not, fix β ∈ Kµ \ {β0}, and let Kµ+1 = Kµ \ {β0, β}. For
every α < c, put Dµα =

⋃
1≤n∈ω A

β
αn ∩ Cµn, Fµ+1 = Y ∩

⋂
α<cD

∗
µα, and fµ+1 = g � Fµ+1.

We will show that these choices satisfy our inductive requirements.
That {Aβαn : α < c, 1 ≤ n ∈ ω, β ∈ Kµ+1} is an independent linked family w.r.t.
〈Fµ+1, fµ+1〉 is easy. By Claim 1, it suffices to observe that for arbitrary α1 < · · · < αn < c,

n⋂
k=1

D∗µαk ∩ Y ⊇
n⋂
k=1

(Aβαkn)∗ ∩ C∗µn ∩ Y =
n⋂
k=1

(Aβαkn)∗ ∩ Y.

To verify condition (7), let α1 < · · · < αn < c, and put

S = (Dµα1 ∩ · · · ∩Dµαn) \ Cµn.

If n = 1, then S = ∅. If n > 1, then

S ⊂ Aβα1,n−1 ∩ · · · ∩ A
β
αn,n−1.

Hence S is finite since these Aβαj ,n−1 are precisely (n−1)-linked. From this we conclude
that

(D∗µα1
∩ · · · ∩D∗µαn) ⊂ C∗µn,

as required.
The above proof was inspired by the proof of Theorem 3.1 in Kunen [28].
With precisely the same proof, we can generalize [31, 2.4], as follows. (We will not need

this generalization in the rest of the proof. For the definition of nice filter, see [31].)

Theorem 3.1. Let X = ω × Z, where Z is a nonempty compact space of weight at most
c and suppose that F is a nice filter on X. For any compact space Y of weight at most c,
there is a c-OK set A in X∗ such that A ⊂

⋂
F∈F F ∗ that maps irreducibly onto Y .

Corollary 3.2. Let X = ω × Zn, where each Zn is a nonempty compact space of weight
at most c and suppose that F is a nice filter on X. For any compact space Y of weight at
most c, there is a c-OK set A in X∗ such that A ⊂

⋂
F∈F F ∗ that maps irreducibly onto Y .

Proof. Let Z be the one-point compactification of the topological sum of the spaces Zn.
The nice filter F on X is also a nice filter on ω × Z. Hence the more general result is an
immediate consequence of the previous result. �

Remark 1. By taking for F the co-finite filter on ω, we see that Theorem 1.1 is a conse-
quence of Corollary 5.3.

4. Proof of Theorem 1.2

4.1. Measure algebras. For all undefined notions on measure theory, see Fremlin [18].
We let µ denote the standard Haar measure on the elements of the σ-algebra generated

by the basic clopen sets, CO(2ω1), of 2ω1 . Hence for s ∈ Fn(ω1, 2), µ([s]) is equal to
2−| dom(s)|, where [s] denotes the usual basic clopen subset of 2ω1 determined by s.
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Let Mω1 denote the measure algebra on 2ω1 . That is, Mω1 consists of equivalence
classes of measurable subsets of 2ω1 , where two measurable sets are equivalent when their
symmetric difference has measure 0.

We treat CO(2ω1) as a subalgebra of Mω1 . That is, we identify each [s] where s ∈
Fn(ω1, 2) with its own equivalence class in Mω1 .

In case α ∈ ω1 and dom(s) ⊂ α, we let [s]α be the associated clopen subset of 2α. Let
prα denote the projection mapping from 2ω1 onto 2α where, prα(x) = x � α for x ∈ 2ω1 . If
needed, we will use prβα for the projection map from 2β onto 2α in case α ≤ β. Of course
[s]α = prα([s]).

For ω ≤ α ∈ ω1 we let Mα denote the measure algebra on 2α. Again, we treat CO(2α)
as a subalgebra of Mα. We will abuse notation and use µ(b) to also denote the measure of
b ∈ Mα since it should cause no confusion. The mapping ψα = pr−1α denotes a canonical
(measure preserving) embedding of Mα into Mω1 . We will let M ω1

α denote the range of
ψα. This leads to the following diagram:

Mα
ψα

=pr−1
α

// M ω1
α
� � // Mω1

CO(2α)
?�

OO

pr−1
α

// CO(2ω1)
� ?

OO

We note that Mω1 is equal to the union of the family {M ω1
α : α ∈ ω1}. For α ≤ ω1, let gα

be the induced canonical mapping from st(Mα) onto st(CO(2α))(= 2α). Similarly, there is
a canonical map from st(Mω1) onto st(Mα) which we will denote by hα. This leads to the
following diagram:

st(Mα)

gα

��

st(Mω1)
hαoo

gω1
��

st(CO(2α)) CO(2ω1)oo

2α 2ω1

pr
ω1
α

oo

The definition of hα(U ) for U ∈ st(Mω1) is the composition of U 7→ (U ∩M ω1
α ) 7→

ψ−1α (U ∩M ω1
α ). And since we identify 2α with st(CO(2α)), gα(U ) for U ∈ st(Mα) is

equal to U ∩ CO(2α).

4.2. Aronszajn trees. Let T ⊂ 2<ω1 be an Aronszajn tree; specifically, T is downward
closed, has no maximal elements, has no uncountable branches, and for α < β ∈ ω1,
Tα = T ∩ 2α is countable and for each t ∈ Tα, there is an extension of t in Tβ.

We first note that we may assume that there is a sequence {t(ω, n) : n ∈ ω} ⊂ Tω
satisfying that {tn = t(ω, n) � n+1 : n ∈ ω} is an antichain in 2<ω. Hence the collection of
basic clopen sets {[tn] : n ∈ ω} in 2ω1 is pairwise disjoint.

The following result is a consequence of [13, Lemma 2.9] (see also [11]).
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Lemma 4.1. There is a sequence T = {t(α, n) : ω ≤ α ∈ ω1, n ∈ ω} ⊂ T satisfying, for
all k ∈ ω and increasing {αj : j ≤ k} ⊂ ω1 \ ω,

(1) t(ω, n) = t(αk, n) � ω,
(2) there is an n̄ ∈ ω such that, for all j ≤ k and n > n̄, t(αj, n) = t(αk, n) � αj.

Proof. By [13, Lemma 2.9], there exists a family {s(α, n) : α ∈ ω1, n ∈ ω} ⊂ T such that

(3) for each α ∈ ω1, {s(α, n) : n ∈ ω} ⊂ Tα,
(4) for β < α, there is an n ∈ ω so that for all k ≥ n, s(β, k) ⊂ s(α, k).

The proof of [13, Lemma 2.9] shows that it is easy to arrange that t(ω, n) ⊂ s(α, n) for all
ω < α. (Here the t(ω, n)’s are as above.) Hence it is clear that by putting t(α, n) = s(α, n)
for all α ∈ ω1 \ ω and n ∈ ω, we have what we are looking for. �

Since t(α, n) is a point in 2α, we will abuse notation and let t̃(α, n) denote the Gδ-subset
g−1α ({t(α, n)}) of st(Mα).

The following result, which also was used in [13, Lemma 2.12], follows easily from the
fact that T does not have cofinal branches.

Lemma 4.2. If D is any countable subset of 2ω1, there is a δ ∈ ω1 such that prδ(D) is
disjoint from Tδ. Hence for all δ ≤ α ∈ ω1, prα(D) is disjoint from {t(α, n) : n ∈ ω}.

Corollary 4.3. If D is any countable subset of st(Mω1), there is a δ ∈ ω1 such that hδ(D)
is disjoint from

⋃
{t̃(δ, n) : n ∈ ω}.

4.3. Remote points. The point x ∈ X∗ is called a remote point of X if x 6∈ A for each
nowhere dense subset A of X. Here closure means closure in βX. It was shown by van
Douwen [6] and, independently, Chae and Smith [5], that every nonpseudocompact space
of countable π-weight has a remote point. Not all nonpseudocompact spaces have remote
points, [7]. The most general result about the existence of remote points is [9], where it was
shown that every nonpseudocompact space which satisfies the countable chain condition
and has π-weight at most ω1, has a remote point. Ideas that come from remote point
proofs were used frequently in set theoretic topology in the last decades, and for various
unrelated applications. For an example of this phenomenon in forcing, see e.g., [15, 16].

We will make good use of remote points in the proof of our main result.
Say that an ultrafilter (point) U ∈ st(Mα) is t̃(α, n)-remote if

(1) gα(U ) = t(α, n), and
(2) U is not in the closure of any nowhere dense subset of st(Mα) \ t̃(α, n).

We will say that a filter F on Mα is t̃(α, n)-remote if U is t̃(α, n)-remote for every
F ⊂ U ∈ st(Mα). Of course one could also consider defining a notion like t̃(α, n)-weak-P
or countable remote or whatever.

Definition 4.4. A T -sequence of ultrafilters is a sequence

UT = {U (α, n) : ω ≤ α ∈ ω1, n ∈ ω}
satisfying, for each ω ≤ α ≤ β ∈ ω1:

(1) U (α, n) ∈ st(Mα) and gα(U (α, n)) = t(α, n) for all n ∈ ω,
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(2) for all but finitely many n ∈ ω, ψα(U (α, n)) is a subset of ψβ(U (β, n)).

A T -sequence of remote ultrafilters will mean that U (α, n) is t̃(α, n)-remote for all ω ≤
α ∈ ω1 and n ∈ ω.

We let K(UT ) denote the closed subset of st(Mω1) that is equal to

(†)
⋂
{b+ : (∃ ω ≤ α ∈ ω1)(∃m ∈ ω)(∀n > m) b ∈ ψα(U (α, n)}.

Let us first discuss where the set K(UT ) is placed in st(Mω1). Recall the antichain {tn : n ∈
ω} ⊂ 2<ω described in the definition of the sequence T . We have adopted the convention
that we may regard [tn] as a member of Mω1 and thus {[tn]+ : n ∈ ω} is a sequence of
pairwise disjoint nonempty clopen subsets of st(Mω1). By condition (1) in Lemma 4.1,
[tn]+ ∈ ψα(U (α, n)) for every ω ≤ α ∈ ω1 and n ∈ ω. Let B be the closure of

⋃
n∈ω[tn]+ in

st(Mω1). By extremal disconnectivity of st(Mω1), there exists b ∈Mω1 such that b+ = B.
For every n ∈ ω, let bn = b \

⋃
m≤n[tm]+. Clearly, each bn is one of the elements in Mω1

that satisfies the condition in the definition of K(UT ). This means that

K(UT ) ⊂ b+ \
⋃
n∈ω

[tn]+.

Let g :
⋃
n∈ω[tn]+ → ω be such that g([tn]+) = n for all n ∈ ω. Since st(Mω1) is extremally

disconnected, the closure b+ of
⋃
n∈ω[tn]+ is its Čech-Stone compactification, [33, 1.2.2],

hence g can be extended to a continuous map f from b+ to βω satisfying that f([tn]+) = n
for all n ∈ ω.

We are now ready for the proof of our next main result in which we exploit the remote
points and make similar use of the properties of the Aronszajn tree from above, as in
[13, 2.10].

Theorem 4.5. If UT is a T -sequence of remote ultrafilters, then K(UT ) is a weak P-set
in st(Mω1) and is homeomorphic to N∗.

Proof. We prove first that K = K(UT ) is a weak P-set. Let D be any countable subset
of st(Mω1) that is disjoint from K. Choose δ ∈ ω1 large enough so that, for each d ∈ D
there is an α < δ and a bd ∈ M ω1

α \ d such that bd ∈ ψα(U (α, n)) for all but finitely
many n ∈ ω. This uses simply that d /∈ K(UT ). By possibly increasing δ, we can
also assume that hδ(D) is disjoint from

⋃
{t̃(δ, n) : n ∈ ω} as per Corollary 4.3. Since

U(δ, n) for n ∈ ω is t̃(δ, n) remote, this implies that the closure in st(Mδ) of hδ(D) is
disjoint from the sequence {U (δ, n) : n ∈ ω}. Fix any d ∈ D and choose nd ∈ ω so that
bd ∈ ψδ(U (δ, n)) for all n > nd (using Definition 4.4 (2)). Since bd ∈M ω1

δ and bd /∈ d, we
have that ψ−1δ (bd) /∈ hδ(d). Topologically, this means that st(Mδ)\hδ(b+d ) is a neighorhood
of hδ(d) that meets {U (δ, n) : n ∈ ω} in a finite set. This proves that A = hδ(D) and
B = {U (δ, n) : n ∈ ω} are weakly separated (i.e. A ∩ B and A ∩ B are empty). Since
st(Mδ) is extremally disconnected, weakly separated countable sets have disjoint closures,
[21, Problem 9H]. Therefore there is a b ∈ Mδ satisfying that b ∈ U (δ, n) for all n ∈ ω
and b /∈ hδ(d) for all d ∈ D. Of course this means that K ⊂ ψδ(b)

+ and ψδ(b)
+ ∩D = ∅.
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Now prove that K is homeomorphic to N∗. Consider the element b ∈ Mω1 and the
map f : b+ → βω, discussed right before the formulation of the theorem. Observe that
f(K) ⊂ ω∗. We will show that f � K is 1-to-1 and onto ω∗.

To prove that f � K is onto we consider any finitely many {b+j : j ≤ k} ⊂ Mω1 as
in the definition of K(UT ) (see (†)). Choose, for each j ≤ k, αj ∈ ω1 and mj so that
bj ∈ ψαj(U (αj, n)) for all n > mj. We may assume that αj ≤ αk for all j ≤ k. By
condition (2) of Definition 4.4, there is an m such that, for all n > m, b = ∧{bj : j ≤ k}
is an element of ψαk(U (αk, n)). Of course [tn]αk ∈ U (αk, n) for all n, and this shows that
b+ ∩ [tn] 6= ∅ for all n > m. It follows that f(b+) contains the closure of ω \m. Hence, by
what we observed above, f(K) = ω∗.

Now we prove that f � K is 1-to-1. Let U and W be distinct elements of K. Choose
any b ∈ Mω1 such that b ∈ U \ W . We may choose α ∈ ω1 such that b ∈ M ω1

α . Let
A = {n : b ∈ ψα(U (α, n))} and let a ∈ Mω1 be the element representing the equivalence
class of the Borel set

⋃
{[tn]\b : n ∈ A}∪

⋃
{[tn] : n ∈ ω\A} in 2ω1 . Since (a∪b)+ = a+∪b+

and, clearly K ⊂ (a∪b)+, it follows that a ∈ W . Finally, we note that A is in the ultrafilter
f(U ) and ω \ A is in f(W ). �

4.4. Existence of sequences of remote ultrafilters. We now show that the conditions
of Theorem 4.5 are met.

Theorem 4.6. There is a T -sequence, UT , of remote ultrafilters.

Proof. For each n ∈ ω, choose a sequence {s(ω, n, `) : ` ∈ ω} ⊂ 2<ω so that

(1) for each `, tn ⊂ s(ω, n, `),
(2) the members of {[s(ω, n, `)] : ` ∈ ω} are pairwise disjoint,
(3) the sequence {[s(ω, n, `)]ω : ` ∈ ω} converges to the point t(ω, n) in the space 2ω.

Claim 1. There is a sequence {s(α, n, `) : ω ≤ α ∈ ω1, n, ` ∈ ω} satisfying

(1) {s(α, n, `) : n, ` ∈ ω} ⊂ Fn(α, 2),
(2) for all n, ` ∈ ω, s(ω, n, `) = s(α, n, `) � ω,
(3) the sequence {[s(α, n, `)]α : ` ∈ ω} converges to the point t(α, n) in the space 2α,
(4) for all ω ≤ β < α, there is an m ∈ ω such that for all n > m and ` ∈ ω,

s(β, n, `) = s(α, n, `) � β.

Proof of Claim: We prove the Claim by constructing the family by recursion on α ∈ ω1.
Assume that {s(β, n, `) : ω ≤ β < α, n, ` ∈ ω} have been defined satisfying the conditions
(1)-(4) of the Claim. Let {βαj : j ∈ ω} be an enumeration of α \ ω (with repetitions
allowed). For each k ∈ ω, let αk denote the maximum member of {βαj : j ≤ k}. Choose by
our inductive hypotheses and Lemma 4.1(2), any strictly increasing sequence {mk : k ∈ ω}
chosen so that for all n > mk, all ` ∈ ω and all j ≤ k, s(βαj , n, `) = s(αk, n, `) � βαj and
t(βαj , n) = t(α, n) � βαj (apply Lemma 4.1(2) on {βαj : j ≤ k} ∪ {α}). To see that mk can
indeed be chosen independently of `, use the inductive assumption on convergence in (3).

For each k ∈ ω and mk < n ≤ mk+1 we define the sequence s(α, n, `). First choose `0
large enough so that t(αk, n) � ({βαj : j ≤ k}\{αk}) ⊂ s(αk, n, `) for all ` > `0 (by inductive
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assumption (3)). For ` ≤ `0, let s(α, n, `) = s(αk, n, `). For ` > `0, define s(α, n, `) to be
the union of s(αk, n, `) and t(α, n) � ({βαj : j ≤ `} \ αk). Since dom(s(αk, n, `)) ⊂ αk,
s(αk, n, `) ∈ Fn(α, 2). Evidently, s(αk, n, `) = s(α, n, `) � αk for all ` and since the family
{[s(αk, n, `)]αk : ` ∈ ω} is pairwise disjoint, so too is the family {[s(α, n, `)]α : ` ∈ ω}. We
verify that {[s(α, n, `]α : ` ∈ ω} converges to t(α, n). Consider any finite H ⊂ α. Since the
family {[s(αk, n, `)]αk : ` ∈ ω} converges to t(αk, n) = t(α, n) � αk, there is a ¯̀ large enough
so that t(αk, n) � (H ∩ αk) ⊂ s(αk, n, `) for all ` > ¯̀. We may choose ¯̀ large enough so
that H ⊂ {βαj : j < ¯̀} and it then follows that t(α, n) � H ⊂ s(α, n, `) for all ` > ¯̀. We
also note that for j < k and ` ∈ ω, s(βαj , n, `) = s(αk, n, `) � βαj = s(α, n, `) � βαj .

It follows that for all k ∈ ω, n > mk and ` ∈ ω we have that s(βαk , n, `) = s(α, n, `) � βαk .
This completes the proof of the Claim. �

Fix any n, ` ∈ ω and α ∈ ω1, and let L (α, n, `) be the set of all b ∈Mα such that

(1) b ⊂ [s(α, n, `)]α,

(2) b has measure greater than 2`−1
2`
µ([s(α, n, `)]).

Claim 2. Let n, ` ∈ ω and suppose that bj ∈ L (αj, n, `) for each j ≤ k < ` where ω ≤ α0 ≤
. . . ≤ αk ∈ ω1 satisfies that s(αj, n, `) = s(αk, n, `) � αj. Then

⋂
j≤k ψαj(bj) ∩ [s(αk, n, `)]

is not empty.

Proof of Claim: Of course ψαj(bj) ∈M ω1
αj

and is a subset of [s(αj, n, `], that has measure

greater than 2`−1
2`

times the measure of [s(αj, n, `)]. Hence it follows from the fact that

s(αj, n, `) = s(αk, n, `) � αj, that ψαj(bj) ∩ [s(αk, n, `)] has measure greater than 2`−1
2`

times the measure of [s(αk, n, `)]. Let J = | dom(s(αk, n, `))| and since the measure of

ψαj(bj)∩ [s(αk, n, j)] is greater than 2`−1
2J+`

, it follows that the measure of [s(αk, n, `)]\ψαj(bj)
is less than 1

2J+`
. Since k+1

2J+`
≤ `

2J+`
< 1

2J
, it follows that

⋂
j≤k bj ∩ [s(αk, n, `)] is not

empty. �

Claim 3. For all α < β and n, ` ∈ ω such that s(α, n, `) = s(β, n, `) � α,

ψα(L (α, n, `)) = {ψα(prα(b)) : b ∈ ψβ(L (β, n, `))}.

Proof of Claim: Let S0 = ψα(L (α, n, `)) and S1 = {ψα(prα(b)) : b ∈ ψβ(L (β, n, `))}.
Consider any b ∈ L (α, n, `) and we show that ψα(b) ∈ S1. It suffices to show that ψα(b)∩
[s(β, n, `)] has measure greater than 2`−1

2`
µ([s(β, n, `)]. Since µ(b) > 2`−1

2`
µ([s(α, n, `)]), we

may choose a finite family A ⊂ {s ∈ Fn(α, 2) : s(α, n, `) ⊂ s} so that a =
⋃
{[s] : s ∈

A } ∈ L (α, n, `) and 2`−1
2`
µ([s(α, n, `)]) + µ(a∆b) < µ(a). Since ψα is measure preserving,

to show that ψα(b) ∈ S1, it suffices to show that ψα(a) ∩ [s(β, n, `)] has measure greater

than 2`−1
2`
µ([s(β, n, `)]). This fact now follows from the fact that for each s ∈ A

µ([s]α)

µ([s(α, n, `)]α)
=

1

2|dom(s)|−J =
µ([s]β ∩ [s(β, n, `)]β)

µ([s(β, n, `)]β)
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where J = | dom(s(α, n, `))|. The reverse inclusion, namely that S2 ⊂ S1, follows similarly
from the fact that for s(β, n, `) ⊂ s ∈ Fn(β, 2),

µ([s � α]α)

µ([s(α, n, `)]α)
=

1

2|dom(s�α)|−J ≥
1

2|dom(s)|−Jβ
=

µ([s]β)

µ([s(β, n, `)]β)

where Jβ = | dom(s(β, n, `))|. �

We define a filter F (α, n) on Mα for all n ∈ ω ≤ α ∈ ω1. We let b ∈ F (α, n) if b ∈Mα

and there is an `b ∈ ω such that b ∩ [s(α, n, `)] ∈ L (α, n, `) for all ` > `b.
Recall the definitions in the second paragraph of subsection 4.3.

Claim 4. For each n ∈ ω ≤ α ≤ β ∈ ω1,

(1) F (α, n) is a t̃(α, n)-remote filter, and,
(2) if t(α, n) = t(β, n) � α, then ψα(F (α, n)) ⊂ ψβ(F (β, n)),
(3) if t(α, n) = t(β, n) � α, then {ψα(prα(b)) : b ∈ ψβ(F (β, n))} = ψα(F (α, n)).

Proof of Claim: It follows from Claim 2 that ψα(F (α, n)) is a filter on M ω1
α , which of

course ensures that F (α, n) is a filter on Mα. For each `0,
⋃
{[s(α, n, `)]α : ` > `0} ∈

F (α, n), which ensures by (3) in Claim 1 that gα(U ) = t(α, n) for all F (α, n) ⊂ U ∈
st(Mα).

Suppose that F (α, n) ⊂ U ∈ st(Mα). It remains to show that U is a remote t̃(α, n)-
filter. Let D ⊂ st(Mα) be nowhere dense and disjoint from t̃(α, n). For each ` ∈ ω, the set
D` = D ∩ [s(α, n, `)]α is nowhere dense. Let A` denote the set of b ∈ Mα satisfying that
b ⊂ [s(α, n, `)]α and b+ ∩D` = ∅. In fact A` is an ideal in the complete Boolean algebra
Mα and the join of A` = [s(α, n`)]α since D` is nowhere dense. Therefore µ([s(α, n, `)]α)
is the least upper bound of the set {µ(b) : b ∈ A`}. Choose b` ∈ A` such that µ(b`) >
2`−1
2`
µ([s(α, n, `)]α).

The element b =
⋃
`∈ω b` ∈ F (α, n) and b+∩D` = b+` ∩D` = ∅ for all ` ∈ ω. Furthermore

b+ ⊂ t̃(α, n) ∪
⋃
`∈ω b

+
` , and so b+ ∩D is empty.

Statements (2) and (3) of the Claim follow immediately from Claim 3. This completes
the proof of Claim 4. �

We are now almost done with the proof. Recall that we aim at constructing a sequence
such as in Definition 4.4. The following notion is convenient for the rest of the proof.

(?) For δ ∈ ω1, a Tδ-sequence of F -ultrafilters is a sequence
{U (α, n) : ω ≤ α < δ, n ∈ ω} satisfying for each ω ≤ α ≤ β < δ:

(a) F (α, n) ⊂ U (α, n) ∈ st(Mα), hence gα(U (α, n)) = t(α, n) for
all n ∈ ω,

(b) for all but finitely many n ∈ ω, ψα(U (α, n)) is a subset of
ψβ(U (β, n)).

Claim 5. If {U (α, n) : n ∈ ω ≤ α < δ} is a Tδ-sequence of F -ultrafilters for some δ ∈ ω1,
then there is a sequence {U (δ, n) : n ∈ ω} so that the sequence extends to a Tδ+1-sequence
of F -ultrafilters.
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Proof of Claim: Fix a monotone increasing sequence {αk : k ∈ ω} cofinal in δ. By the
assumptions (Lemma 4.1, Claim 4 and (?)), there is a corresponding strictly increasing
sequence {nk : k ∈ ω} satisfying that, for all n > nk:

(1) t(αk, n) = t(δ, n) � αk,
(2) ψαj(U (αj, n)) ⊂ ψαk(U (αk, n)) for all j ≤ k,
(3) ψαk(F (αk, n)) ⊂ ψδ(F (δ, n)),
(4) {ψαk(prαk(b)) : b ∈ ψδ(F (δ, n))} ⊂ ψαk(F (αk, n)).

Fix any k ∈ ω and nk < n ≤ nk+1. Since F (αk, n) ⊂ U (αk, n), it follows from (4),
that the family G (δ, n) = ψαk(U (αk, n))∪ψδ(F (δ, n)) has the finite intersection property
in M ω1

δ . We may therefore choose U (δ, n) ∈ st(Mδ) such that F (δ, n) ⊂ U (δ, n) and
G (δ, n) ⊂ ψδ(U (δ, n)). Similarly, by (2), we have that ψαj(U (αj, n)) ⊂ ψδ(U (δ, n)) for
all j ≤ k. For this reason, it follows that for all n > nk, ψαk(U (αk, n)) ⊂ ψδ(U (δ, n)).

Now let α < δ. Choose any k ∈ ω so that α ≤ αk. By the definition of Tδ-sequence
of F -ultrafilters, there is an m ∈ ω such that ψα(U (α, n)) ⊂ ψαk(U (αk, n)) for all n >
m. Therefore, for all n > max(m,nk), we have that ψα(U (α, n)) ⊂ ψδ(U (δ, n)). This
completes the proof of Claim 5. �

Hence we are done. �

In view of Theorem 1.1, there is a c-OK set in N∗ that maps irreducibly onto st(Mω1).
That map must be a homeomorphism by the fact that st(Mω1) is extremally disconnected.
Since a weak P-subset of a weak P-subset of a space is a weak P-set in that space, this
completes the proof of Theorem 1.2.

5. Remarks

Let us first remark that st(Mω1) satisfies the countable chain condition. This implies
that the nontrivial copy of N∗ in N∗ that we get from the proof of Theorem 1.2, is not an
ω1-OK set (and hence not a c-OK set) by Kunen [28, 1.4]. This explains Question 1.1,
which we repeat here for the sake of completeness.

Question 5.1. Is there a nowhere dense c-OK set in N∗ that is homeomorphic to N∗?

In the area ‘special points in compact spaces’, many problems motivated by Kunen’s
results are still open. An important one the affirmative solution of which would yield an
‘honest’ proof of Froĺık’s theorem from [20], is:

Question 5.2 (Dow [8]). If X is extremally disconnected and compact, does X contain a
point x such that for any countable discrete subset D ⊂ X \ {x} we have x 6∈ D?

It was shown in [3], that the answer is affirmative for compact extremally disconnected
spaces X satisfying πχ(X) = πw(X) ≤ c.

Another one, that goes in a completely different direction, is:

Question 5.3 (Kunen [30, 6.1]). Let X be a compact space of weight c in which every
nonempty Gδ has nonempty interior. Is there a weak P-point in X?
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It is clear that this is true under CH.
These are just a couple of the many open problems of the type: is there a set (or point)

in a given space which cannot be ‘touched’ by elements of a given collection of subsets in
its complement?

Going in a different direction we suggest the following question.

Question 5.4. Is every closed subset of N∗ homeomorphic to a subset that is a weak P-set?

We finish by stating and sketching the proof of another result in the same spirit as
Theorem 1.2, which is an example of this and also illustrates the flexibility of the techniques
used in this paper.

Theorem 5.1. There is a copy X of N∗ in N∗ having the following properties:

(1) There is a countable subset E contained in N∗ \ X such that the closure of E
contains X,

(2) for every countable discrete subset F in N∗ \X, the closure of F misses X.

We recall that the proof in [13], roughly speaking, boils down to the following. In 2ω1 , we
attach a compatible ultrafilter in the absolute E(2ω1) of 2ω1 , to every node of an Aronszajn
tree in 2ω1 . In the proof of Theorem 1.1, we did the same thing in the Stone space of
the measure algebra Mω1 , with a subtle difference: the compatible ultrafilters were chosen
to be remote points. And that last fact combined with Theorem 1.1 exactly made our
construction work. The remote points in the proof were found by exploiting the natural
measure on st(Mω1). But this does not work in E(2ω1) for example because in 2ω1 there
are many closures of countable discrete sets with positive measure. Hence the proofs of
Theorems 1.2 and 5.1 are different when it comes to remote points. Instead of measures,
we use the ideas in [5], [6] and [31, Lemma 1.2]. The reader who made it this far, will have
no problem checking that the proof of Theorem 5.1 can be completed along the same lines
of that of Theorem 1.2, once the following facts about remote points have been verified.

It will be convenient to say that a collection of nonempty subsets F of a space X is
remote if for every nowhere dense subset D of X there exists F ∈ F such that D∩F = ∅.
Moreover, F is n-linked if for all G ∈ [F ]≤n we have

⋂
G 6= ∅. If F is a collection of

subsets of a set X, and f : X → Y , then f(F ) denotes the collection {f(F ) : F ∈ F}.
Let n ≥ 1, and let F be an n-linked collection of sets. For every 1 ≤ i ≤ n, let

F(i) =
{⋂

G : G ∈ [F ]≤i
}
.

Hence F = F(1) ⊂ F(2) ⊂ · · · ⊂ F(n), and ∅ 6∈ F(n).
For the remainder of this section, X and Y are zero-dimensional compact spaces of

countable weight, and f : X → Y is a continuous, open surjection. (X stands for 2α and
Y for 2β for certain ω ≤ α ≤ β < ω1, and f for the projection 2β → 2α.) Moreover, for
some n ≥ 1, F is an n-linked remote collection of clopen subsets of Y . Hence Y 6= ∅, and
the same is true for X.

We will now show how to find an n-linked remote collection of clopen subsets of X which
is compatible with f and F . This is what we need to make the proof work.
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Lemma 5.2. For each nowhere dense subset D of X, there exists a nonempty clopen subset
C of X such that C ∩D = ∅ and f(C) ∈ F .

Proof. Let D be any nowhere dense subset of X. We assume without loss of generality
that D is closed. Put

E = {y ∈ Y : f−1(y) ⊂ D}.
Then E is closed in Y (since f is open) and obviously nowhere dense. Hence we may pick
F ∈ F such that F ∩E = ∅. Now, for every y ∈ F we have that f−1(y) \D 6= ∅. Since F
is clopen, for such y we may pick a clopen subset Cy in X such that Cy ⊂ f−1(F ) \D and
Cy ∩ f−1(y) 6= ∅. The clopen cover {f(Cy) : y ∈ F} of F has a finite subcover. Hence
we may pick a finite A ⊂ F such that

⋃
y∈A f(Cy) = F . We conclude that the clopen set

C =
⋃
y∈ACy is as required. �

Put U (0) = {X}, and for every 1 ≤ i ≤ n, let

U (i) = {U ∈ CO(X) : f(U) ∈ F(i)}.
Observe that for 0 ≤ i ≤ n, ∅ 6∈ U (i).

Corollary 5.3. For each 0 ≤ i ≤ n−1, U ∈ U (i) and nowhere dense subset D in X, there
is some U ′ ∈ U (i+1) such that U ′ ⊂ U \D.

Proof. Fix 0 ≤ i ≤ n−1, and U ∈ U (i). Let g = f�U : U → f(U). Then g is a continuous
and open surjection. Moreover, G = {F ∩ f(U) : F ∈ F} is a remote (n−i)-linked
collection of clopen subsets of f(U). If D ⊂ X is nowhere dense, then D ∩ U is nowhere
dense in U (as well as in X). Hence by Lemma 5.2, there exist a clopen subset U ′ in U
and an element F ∈ F such that U ′ ⊂ U \D and g(U ′) = f(U ′) = F ∩ f(U). Hence U ′ is
as required. �

Lemma 5.4. There is a remote collection G of clopen subsets of X such that for every
m ≤ n and M ∈ [G ]m, f(

⋂
M ) contains an element from F(m). Hence G is n-linked.

Proof. Let D be the collection of all nowhere dense subsets of X, and fix D ∈ D for a
while.

Recall that U (0) = {X}. Let 1 ≤ i ≤ n. Enumerate U (i) as {U i
k : k ∈ ω} (repetitions

permitted). Moreover, for an arbitrary nowhere dense set D ⊂ X, put

H(D, i) = {k ∈ ω : U i
k ∩D = ∅}.

By Corollary 5.3, H(D, 1) 6= ∅. Let κ(D, 1) = minH(D, 1), and, for 2 ≤ i ≤ n, define
κ(D, 2), . . . , κ(D,n) by recursion, as follows:

κ(D, i) = min{k ∈ ω : (∀ s ≤ κ(D, i−1))(∃ t ≤ k)(t ∈ H(D, i) &U i
t ⊂ U i−1

s )}.
Again by Corollary 5.3, κ(D, i) is well-defined. Finally, put

F (D) =
n⋃
i=1

⋃
{U i

k : k ≤ κ(D, i) and k ∈ H(D, i)}.

Observe that F (D) is clopen, misses D, and is nonempty.
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Claim 1. If L is a subfamily of D of cardinality e, where 1 ≤ e ≤ n. then
⋂
L∈L F (L) ⊇

U e
l for some l ≤ max{κ(L, e) : L ∈ L }.

We prove this by induction on e. The case e = 1 is trivial, so assume the claim to be
proven for all 1 ≤ i < j, where j ≤ n. Let L be a subfamily of D of cardinality j. Put

κ = max{κ(L, j − 1) : L ∈ L },
and take L0 ∈ L such that κ = κ(L0, j − 1). Put L ′ = L \ {L0}. By our inductive
assumption, ⋂

L∈L ′

F (L) ⊇ U j−1
l′

for some l′ ≤ max{κ(L, j − 1) : L ∈ L ′}. Since

l′ ≤ max{κ(L, j − 1) : L ∈ L ′} ≤ κ(L0, j − 1),

there is some l ≤ κ(L0, j) such that U j
l ⊂ U j−1

l′ . Therefore,
⋂
L∈L F (L) ⊇ U j

l and since
l ≤ κ(L0, j) ≤ max{κ(L, j) : L ∈ L }, this completes the inductive proof.

Hence G = {F (D) : D ∈ D} is as required. �
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