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Abstract. We present an example of a zero-dimensional F -space that is not
strongly zero-dimensional.

Introduction

In this paper we present an example of a zero-dimensional F -space that is not
strongly zero-dimensional. We recall that a space is zero-dimensional if it is a
T1-space and its clopen subsets form a base for the topology. The fastest way to
define a space to be strongly zero-dimensional is by demanding that its Čech-Stone
compactification is zero-dimensional.

The question whether zero-dimensionality implies strong zero-dimensionality has
a long history, a summary of which can be found in [3, Section 6.2]. There are
by now many examples of zero-dimensional spaces that are not strongly zero-
dimensional, even metrizable ones, see [12], but the authors are not aware of an
F -space of this nature.

The question whether there is a F -space example was making the rounds already
in the 1980s but it seems to have been asked explicitly only a few years ago on
MathOverFlow, see [11]. Recently Ali Reza Olfati raised the question with the first
author in a different context.

In section 1 we give proper definitions of the notions mentioned above and indi-
cate why it may seem reasonable, but also illusory, to expect that zero-dimensional
F -spaces are strongly zero-dimensional.

In section 2 we construct the example and in section 3 we discuss some varia-
tions; the example can have arbitrary large covering dimension and its Čech-Stone
remainder can be an indecomposable continuum.

1. Preliminaries

In the introduction we defined zero-dimensional spaces as T1-spaces in which the
clopen sets constitute a base for the open sets and strong zero-dimensionality by
requiring that the Čech-Stone compactification is zero-dimensional.

The latter is a characterization of strong zero-dimensionality. The real definition
is akin to the large inductive dimension: a Tychonoff space X is strongly zero-
dimensional if any two completely separated sets are separated by a clopen set,
that is, if A and B are such that there is a continuous function f : X → [−1, 1]
with f [A] = {−1} and f [B] = {1} then there is a clopen set C such that A ⊆ C and
C ∩ B = ∅. One could reformulate the latter conclusion as: there is a continuous
function c : X → {−1, 1} such that c[A] = {−1} and c[B] = {1}. It is not hard to
show that this is equivalent to βX being zero-dimensional.
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Furthermore, for normal spaces strong zero-dimensionality is characterized by
the ‘normal’ sounding “disjoint closed sets are contained in complementary clopen
sets”.

There are many characterizations of F -spaces, see [4, Theorem 14.25], each of
which deserves to be taken as the definition but we take the one that at first glance
seems quite close to strong zero-dimensionality; it is number (5) in the theorem
referred to above. A Tychonoff space X is an F -space iff for every continuous
function f : X → R there is another continuous function k : X → R with the
property that f = k · |f |; so k is constant on the sets {x : f(x) > 0} and {x :
f(x) < 0} with values 1 and −1 respectively. Although k does seem to act like the
function c in our definition of strong zero-dimensionality, it does not.

In fact there are (compact) connected F -spaces, for example βR+ \ R+, where
R+ = {x ∈ R : x > 0}, see [4, 14.27] or [5]. In such spaces the function k takes on
all values in the interval [−1, 1] on the set {x : f(x) = 0}, which apparently need
not be as thin as we have come to expect from Calculus; in an F -space sets like
{x : f(x) > 0} and {x : f(x) < 0} are actually very far apart.

Our notation is standard, see [3] and [4] for topological notions, and [9] for Set
Theory.

2. A zero-dimensional F -space that is not strongly zero-dimensional

The construction in this section is inspired by an answer to a question on Math-
OverFlow, see [1], which in turn was inspired by Dowker’s example M in [2]. The
latter is a subspace of ω1 × [0, 1]; the example on MathOverFlow is a quotient
of ω1 × A, where A is Alexandroff’s split interval.

We replace the ordinal space ω1 by the Gδ-modification of the ordinal space ω2,
which we denote (ω2)δ; likewise (ω2 + 1)δ denotes the Gδ-modification of ω2 + 1.
We replace A by the split interval over a suitable ordered continuum.

We shall use an ordered continuum K with a dense subset D that can be enu-
merated as 〈dα : α ∈ ω2〉 in such a way that every tail set Tα = {dβ : β > α} is
dense in K.

Example 1. If CH fails then we can take K = [0, 1] and, like Dowker did, choose
ℵ2 many distinct cosets of Q, say {Qα : α ∈ ω2}, and enumerate their union D
as 〈dα : α ∈ ω2〉 in such a way that 〈dω·α+n : n ∈ ω〉 enumerates Qα ∩ (0, 1).

Example 2. For a ZFC example let M be the linearly ordered sum ω?2 + {0}+ω2,
where ω?2 denotes ω2 with its order reversed. Following [7] we let L = M0(ω),
that is, the set {x ∈ Mω : {m : xn 6= 0} is finite}, ordered lexicographically. It
is elementary to verify that the linear order is dense, in fact every interval has
cardinality ℵ2, and has no smallest or largest element.

We let K be the Dedekind completion of L (see [8, Kap. IV, § 5]), that is, the set
of initial segments that have no maximum (including ∅ and L), ordered by inclusion.
Then K is an ordered continuum and the set L itself serves as the desired dense
set, under any enumeration.

We need the following Lemma, which is a variation of a result of Van Douwen,
see [3, Problem 3.12.20.(c)].

Lemma 2.1. Let X be a compact Hausdorff space. The product (ω2)δ × X is
C-embedded in (ω2 + 1)δ ×X.



AN F -SPACE 3

Proof. Let f : (ω2)δ ×X → R be continuous.
Take α ∈ ω2 of cofinality ℵ1. For every x ∈ X and n ∈ ω one can find β(x, n) < α

and an open set U(x, n) in X such that x ∈ U(x, n) and

f
[
(β(x, n), α]× U(x, n)

]
⊆
(
f(α, x)− 2−n, f(α, x) + 2−n

)
By compactness we can take a finite subcover {U(x, n) : x ∈ Fn} of the cover
{U(x, n) : x ∈ X}. Let βn = max{β(x, n) : x ∈ Fn}, then for all x ∈ X and
γ ∈ (βn, α] we have

∣∣f(γ, x)− f(α, x)
∣∣ < 2−n+1.

Next let βα = sup{βn : n ∈ ω}, then βα < α and f is constant on each horizontal
line (βα, α]× {x}.

The Pressing-Down Lemma now gives us a single β such that f is constant
on (β, ω2)× {x} for all x. Those constant values give us our continuous extension
of f to (ω2 + 1)δ ×X. �

The rest of the section is devoted to the construction of our F -space.

Split intervals. Using the continuum K and the dense set {dα : α ∈ ω2} we create
a sequence 〈Kα : α 6 ω2〉 of ordered compacta, as follows:

Kα = {〈x, i〉 ∈ K × 2 : if x /∈ Tα then i = 0}

ordered lexicographically (reading from left to right). Thus Kα is a split interval
over K, where all points dβ with β > α are split in two; if α = ω2 then no points
are split and Kω2

is just K itself.
There are obvious maps qα,β : Kα → Kβ when α < β, defined by

qα,β(x, i) = 〈x, 0〉 when x /∈ {dγ : γ > β}
qα,β(dγ , i) = 〈dγ , i〉 when γ > β.

We abbreviate the maps q0,α by qα.
If α < ω2 then Kα is zero-dimensional. Here is where we use that every tail

set Tα is dense in K. This implies that the family Bα of all clopen intervals of the
form

[
minK, 〈e, 0〉

]
,
[
〈d, 1〉, 〈e, 0〉

]
, and

[
〈d, 1〉,maxK

]
, where d, e ∈ Tα, is base for

the topology of Kα. As Kα is compact it is strongly zero-dimensional as well.
For later use: the intervals in Bα belong to Bβ when β 6 α (when suitably

interpreted) and if I ∈ Bα is such an interval then it satisfies I = q←β,α
[
qβ,α[I]

]
whenever β 6 α.

Using compactifications. To get to our F -space we take, for every α 6 ω2, the
Čech-Stone compactification β(ω ×Kα) of the product ω ×Kα; we let Kα denote
this compactification and Xα denotes the remainder (ω × Kα)∗. The maps qα,β
induce maps from Kα to Kβ when α < β; we denote these by qα,β , and qα = q0,α
of course.

If α < ω2 then the product ω ×Kα is strongly zero-dimensional because Kα is;
this implies that Kα and Xα are zero-dimensional and hence, by compactness,
strongly zero-dimensional as well. Furthermore, by [4, 14.27], every Xα is an F -
space, including for α = ω2.

We consider the product (ω2)δ ×K0 and the union

K =
⋃{
{α} ×Kα : α < ω2}

as well as (ω2 + 1)δ ×K0 and K+ = K ∪ ({ω2} ×Kω2
).

Our example will be the union of the remainders:

X =
⋃{
{α} ×Xα : α < ω2}

and we also use X+ = X ∪ ({ω2} ×Xω2).
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A quotient map and the topology. We define q : (ω2 + 1)δ × K0 → K+ by
combining the maps qα:

q(α, x) =
〈
α, qα(x)

〉
We give K+ the quotient topology determined by q and the product topology
on (ω2 + 1)δ × K0. We show that q is a perfect map. The fibers of q are clearly
compact so we must show that q is closed.

To begin note that for each α the set {α} × Kα is closed and the map qα :
K0 → Kα is a closed map, so that the quotient topology on {α}×Kα is its normal
topology. Also, if α has countable cofinality then {α}×K0 is clopen in the product,
hence so is {α} ×Kα in K+.

Next let α be of uncountable cofinality, take x ∈ Kα and an open set O in
(ω2 + 1)δ ×K0 such that q←(α, x) = {α} × q←α (x) ⊆ O. By compactness there are
an open set V in K0 and β < α such that

{α} × q←α (x) ⊆ (β, α]× V ⊆ O

Because qα : K0 → Kα is closed there is an open set U in Kα such that q←α [U ] ⊆ V .
Then (β, α] × q←α [U ] is an open subset of (ω2 + 1)δ × K0. For γ ∈ (β, α) we have
qα = qγ,α ◦ qγ , hence q←α [U ] = q←γ

[
q←γ,α[U ]

]
.

It follows that q←[W ] = (β, α]× q←α [U ], where

W =
⋃{
{γ} × q←γ,α[U ] : β < γ 6 α

}
The set W is therefore open and q←[W ] ⊆ O.

This argument also shows that K is zero-dimensional because if α < ω2 the set U
can be taken to be a clopen set and the resulting set W is clopen as well.

Thus far we have topologized K+ and hence X+ and we have shown that X is
zero-dimensional. We now turn to showing that X+ is an F -space and that X is
C-embedded in X+. This will show that βX = βX+, hence X is an F -space as
well (by [4, 14.25]) but not strongly zero-dimensional because the one-dimensional
space Xω2 is a subspace of βX; we establish the one-dimensionality of Xω2 in the
next section.

C-embedding. To show that X is C-embedded in X+ we let f : X → R be
continuous and apply the proof of Lemma 2.1 to f ◦ q : (ω2)δ × X0 → R to find
an α < ω2 such that f ◦ q is constant on (α, ω2) × {x} for all x ∈ X, which then
determines the (unique) extension g : (ω2 + 1)δ ×X0 → R of f ◦ q.

We show that g(ω2, x) = g(ω2, y) whenever qω2(x) = qω2(y); for then g deter-
mines a continuous extension of f to X+. We assume x 6= y of course and take
disjoint neighbourhoods U and V of x and y in K0.

Using the compactness of K0 we find two sequences 〈In : n ∈ ω〉 and 〈Jn : n ∈ ω〉
of finite subfamilies of B0 such that the clopen sets I =

⋃{
{n} ×

⋃
In : n ∈ ω

}
and J =

⋃{
{n} ×

⋃
Jn : n ∈ ω

}
satisfy

• I ∈ x and J ∈ y (x and y are ultrafilters of closed sets), and
• I ⊆ U and J ⊆ V .

For each n let En be the set of points in K that occur as first coordinates of
endpoints of one of the intervals in In and Jn. The union, E, of these sets is
countable. Therefore there is a β > α such that E ∩ Tβ = ∅. This means that for
γ > β the restriction qγ,ω2 � E is injective.

Because qω2
(x) = qω2

(y) the intersection of qω2
[I] and qω2

[J ] is not compact.
For every n and intervals A ∈ In and B ∈ Jn the intersection of q[A] and q[B] is
contained in En. Therefore q[I] ∩ q[J ] is contained in F =

⋃{
{n} × En : n ∈ ω

}
and hence the common value of q(x) and q(y) belongs to clF . As the maps qγ,ω2

are injective on E for γ > β, so are the maps qγ,ω2 on Xγ ∩ clF whenever γ > β.
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It follows that for all γ > β we have qγ(x) = qγ(y) and therefore

g(γ, x) = f(γ, qγ(x)) = f(γ, qγ(y)) = g(γ, y)

and this implies g(ω2, x) = g(ω2, y), as desired.

F -space. To see that X+ is an F -space let f : X+ → R be continuous. We seek a
continuous function k : X+ → R such that f = k · |f |.

As in the proof above we take α < ω2 such that f ◦q is constant on all horizontal
lines (α, ω2]× {x}.

Since Xω2
is an F -space we get a continuous function g : Xω2

→ R such that
f(ω2, x) = g(x) ·

∣∣f(ω2, x)
∣∣.

For all β > α we define kω2
on {β} ×Xβ by kω2

(γ, x) = g(qγ,ω2
(x)), and k+ on

{γ} × X0 by k+(γ, x) = g(qω2
(x)). Then k+ is continuous and k+ = kω2

◦ q on
(α, ω2]×X0, so that kω2

is continuous as well. Rename α as βω2
.

Now repeat this argument for every α of cofinality ℵ1. First find βα < α, as in
the proof of Lemma 2.1, such that f ◦q is constant on (βα, α]×{x} for all x, find a g
on Xα and define kα on {γ}×Xγ , for γ ∈ (βα, α] as above by kα(γ, x) = g(qγ,α(x)).

Finally, for every α of countable cofinality take kα : {α} × Xα → R such that
f(α, x) = kα(α, x) ·

∣∣f(α, x)
∣∣ for all x.

Since (ω2+1)δ is Lindelöf there is a countable subset C of ω2 consisting of ordinals
of cofinality ℵ1 such that the interval (βω2 , ω2] together with

{
(βα, α] : α ∈ C

}
covers all but countably many points of ω2 + 1. From this it is easy to construct
a pairwise disjoint clopen cover of (ω2 + 1)δ and combine the various kα into one
continuous function.

3. Some variations and questions

The construction of our main example admits various variations.

Arbitrarily large covering dimension. To get a zero-dimensional F -space of a
prescribed covering dimension n everywhere in the main construction replace Kα

by Kn
α . Then Kω2 = β(ω ×Kn). By the main result of [10] we have dimKn = n.

The proof of this establishes that the pairs of opposite faces of this ‘n-cube’ form
an essential family. To elaborate: write minK = 0 and maxK = 1 and for i ∈ n
put Ai = {x ∈ Kn : xi = 0} and Bi = {x ∈ Kn : xi = 1}. Then for every sequence
〈Li : i ∈ n〉 of partitions of Kn, with Li between Ai and Bi, the intersection

⋂
i∈n Li

is nonempty. By the Theorem on Partitions, [3, Theorem 7.2.15], this establishes
dimKn > n. In addition [10] establishes the inequality IndKn 6 n. We conclude
that dimKn = indKn = IndKn = n.

To see that dimXω2 = n as well, we consider the projection map π : ω×Kn → ω
and its extension βπ. In [5, Section 2] it is shown that the components of Kω2

are
exactly the fibers βπ←(u) for u ∈ βN.

Next we let Ai = cl(ω × Ai) and Bi = cl(ω × Bi) for i ∈ n. An elementary
topological argument will show that for every u ∈ N∗ the intersections of the Ai
and Bi with βπ←(u) form an essential family. This, together with the equality
dimβZ = dimZ ([3, Theorem 7.1.17]), shows that every component of Xω2 has
covering dimension n.

To see that in this case also dimX = n we first observe that dimX = dimβX >
dimXω2

= n. To get the opposite inequality we let U be is a finite open cover of X+.
Its restriction to Xω2 has a finite closed refinement of order n + 1, which can be
expanded to a finite family V of open sets that also has order n+1, covers Xω2 , and
refines U . The argument given below that βX \Xω2

is zero-dimensional produces
an α such that

⋃
β>α{β} × Xβ ⊆

⋃
V. The rest of the space,

⋃
β6α{β} × Xβ , is
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strongly zero-dimension so the restriction of U to this clopen set has a disjoint open
refinement.

This proof will also work if one takes Kω
α everywhere, in which case every com-

ponent of Xω2 will be infinite-dimensional.

Most of the other arguments in Section 2 do not rely on the particular structure
of the Kα, except the proof of C-embedding.

One still obtains finite sets Em of points in K that occur as end points of intervals
used to create clopen sets in {m}×Kn

0 and hence in ω×Kn
0 . One also still obtains

a β > α with E ∩ Tβ = ∅.
The set F is replaced by

⋃{
{m} × Gm : m ∈ ω

}
, where Gm is the grid on Kn

defined by {x : (∃i ∈ n)(xi ∈ Em)}. Then qγ,ω2
is injective on {γ} × clF for all

γ > β.
In case n = ω there is for every m a natural number km such that the supports

of the clopen rectangles used in {m} ×Kω
0 are contained in km. In that case one

takes Gm = {x : (∃i ∈ km)(xi ∈ Em)}.

Indecomposability. It is possible to make Xω2
an indecomposable continuum.

To this end we take a preliminary quotient of every ω×Kα by identifying 〈n, 1〉
and 〈n+ 1, 0〉 for every n (we still use 0 = minK and 1 = maxK). The result
is an infinite string of copies of Kα and in case α = ω2 the result is a connected
ordered space L, with a minimum, but no maximum. From a distance it looks like
the half line H = [0,∞) in R, with every interval [n, n+ 1] replaced by K.

The proof that H∗ is an indecomposable continuum, see [5, Section 4], goes
through without any changes to show that Xω2

= L∗ is indecomposable as well.
The proofs that X is zero-dimensional and C-embedded in the F -space X+ are

not affected by these identifications.
We note that if we assume ¬CH and use K = [0, 1] then Xω2 is actually equal to

the remainder H∗ of the half line.

Local compactness. In all variations the space Xω2 is the sole cause of the failure
of strong zero-dimensionality.

To see this note first that the sets Fα =
⋃
β>α{β} ×Xβ form a neighbourhood

base at {ω2} × Xω2 . Indeed if f : X+ → R is continuous and equal to zero
on {ω2} ×Xω2 then there is an α < ω2 such that f is constant and equal to zero
on Fα and the latter is a clopen subset of X+.

Furthermore the complement of such a set, Iα =
⋃
β6α{β}×Xβ , is strongly zero-

dimensional. The fastest way to see this is to note that the product (α+1)δ×K0 is
Lindelöf as a product of a compact and a Lindelöf space. Therefore Iα is Lindelöf
as well. By [3, Theorem 6.2.7] the zero-dimensional Lindelöf space Iα is strongly
zero-dimensional.

Therefore the union Z =
⋃
α∈ω2

cl Iα is an open cover of βX \Xω2
by compact

zero-dimensional sets and hence zero-dimensional.
It follows that Z is a locally compact zero-dimensional F -space that is not

strongly zero-dimensional.

Questions. Our examples have weight ℵℵ02 , so under CH the ZFC example cannot
be embedded into N∗. We do not know whether it can be embedded if CH fails. In
fact we do not know the answer to the following question, which has been asked
before but bears repeating often.

Question 1. Is there a subspace of N∗ that is not strongly zero-dimensional?
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Weight ℵ1. It is well-known, and easy to see, that every space of cardinality less
than c is strongly zero-dimensional.

A similar phenomenon can be observed among F -spaces.
If X is an F -space and f : X → R is continuous then for every r ∈ R the

closures of {x : f(x) < r} and {x : f(x) > r} are disjoint and the complement of
the union of these closures is an open set, Or say. It follows that if the cellularity
of X is less than c then there will be many r such that Or = ∅. For such r the
closures of {x : f(x) < r} and {x : f(x) > r} would be complementary clopen
sets. We find that F -spaces of cellularity less than c are automatically strongly
zero-dimensional. In case its cellularity is countable an F -space is even extremally
disconnected, which means that disjoint open sets have disjoint closures.

What our space leaves unanswered is what happens for F -spaces of weight ℵ1.
Of course if ℵ1 < c then the comments above show that there is nothing more to
investigate. Therefore we should assume the Continuum Hypothesis in order to
obtain non-trivial questions and results.

It has been a rule-of-thumb under the assumption of CH that F -spaces of weight ℵ1
show many parallels with separable metrizable spaces. In [6] one finds versions for
compact F -spaces of weight ℵ1 of some well-known theorems for compact metriz-
able spaces. In particular that the three main dimension functions coincide on this
class.

We ask whether this holds without the compactness condition, assuming CH of
course.

Question 2. Is every zero-dimensional F -space of weight ℵ1 strongly zero-dimen-
sional?

And more generally.

Question 3. Does the equality dimX = indX = IndX hold for every F -space of
weight ℵ1?
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