
A Scalable Second Order Method for

Ill-Conditioned Matrix Completion from Few Samples

Christian Kümmerle Claudio Mayrink Verdun
Johns Hopkins University TU Munich

ICML 2021



Problem: Low-Rank Matrix Completion

How to complete d1d2 −m missing entries

of rank-r matrix X0

from a subset of m entries y` = (X0)i`,j` ,

with Ω = (i`, j`)m

`=1
index set of m

locations?

Applications:
• Recommender systems
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• Signal processing:

◦ Sensor localization, . . .

• Dimensionality reduction
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Algorithms for Low-Rank Matrix Completion

Since [2003-]: Large literature proposing algorithms for

min
X∈Rd1×d2

rank(X) s.t. PΩ(X) = y (with PΩ : X 7→ (Xi`,j`)(i`,j`)∈Ω)

‘‘Rank minimization’’: Challenging as objective non-convex and non-smooth!

Q: What should a good algorithm fulfill?

• Data-efficient: Identify X0 from few samples, i.e., from m as small as possible,

preferably from

m ≈ degX0
= r(d1 + d2 − r).

• Scalable: Usable for large problems. Netflix prize data set: d1 ≈ 480000,

d2 ≈ 17000 with m ≈ 108.

• Provable: Guarantee solution of original problem under realistic assumptions.

• Handle Ill-Conditioning: κ := σ1(X0)/σr(X0) � 1.

Very common, e.g., in signal processing or discretization of PDEs.

Christian Kümmerle (JHU) A Scalable Second Order Method for Ill-Conditioned Matrix Completion 3



Algorithms for Low-Rank Matrix Completion

Since [2003-]: Large literature proposing algorithms for

min
X∈Rd1×d2

rank(X) s.t. PΩ(X) = y (with PΩ : X 7→ (Xi`,j`)(i`,j`)∈Ω)

‘‘Rank minimization’’: Challenging as objective non-convex and non-smooth!

Q: What should a good algorithm fulfill?

• Data-efficient: Identify X0 from few samples, i.e., from m as small as possible,

preferably from

m ≈ degX0
= r(d1 + d2 − r).

• Scalable: Usable for large problems. Netflix prize data set: d1 ≈ 480000,

d2 ≈ 17000 with m ≈ 108.

• Provable: Guarantee solution of original problem under realistic assumptions.

• Handle Ill-Conditioning: κ := σ1(X0)/σr(X0) � 1.

Very common, e.g., in signal processing or discretization of PDEs.

Christian Kümmerle (JHU) A Scalable Second Order Method for Ill-Conditioned Matrix Completion 3



Algorithms for Low-Rank Matrix Completion

Since [2003-]: Large literature proposing algorithms for

min
X∈Rd1×d2

rank(X) s.t. PΩ(X) = y (with PΩ : X 7→ (Xi`,j`)(i`,j`)∈Ω)

‘‘Rank minimization’’: Challenging as objective non-convex and non-smooth!

Q: What should a good algorithm fulfill?

• Data-efficient: Identify X0 from few samples, i.e., from m as small as possible,

preferably from

m ≈ degX0
= r(d1 + d2 − r).

• Scalable: Usable for large problems. Netflix prize data set: d1 ≈ 480000,

d2 ≈ 17000 with m ≈ 108.

• Provable: Guarantee solution of original problem under realistic assumptions.

• Handle Ill-Conditioning: κ := σ1(X0)/σr(X0) � 1.

Very common, e.g., in signal processing or discretization of PDEs.

Christian Kümmerle (JHU) A Scalable Second Order Method for Ill-Conditioned Matrix Completion 3



Most Popular and Well-Studied Approaches

. Convex optimization (Nuclear norm minimization): minX
∑

i σi(X) s.t. PΩ(X) = y .

• Data-efficiency: m > 3 · degX0
necessary • Scalability: • Guarantees:

. Gradient Descent on matrix factorization (non-convex) [Burer, Monteiro ’03]:
• Data-efficiency: • Scalability: • Guarantees:

. Riemannian optimization [Vandereycken ’13, Boumal, Absil ’15, Wei et al. ’20]:
• Data-efficiency: • Scalability: • Guarantees:

Typical theoretical guarantees:
• Assume uniform random model for m sampling locations, µ0-incoherent ground

truth X0 ∈ R
D×D of rank r , provide sufficient condition on m for convergence w.h.p.

• E.g., [Chi, Liu, Li ’20] for GD on matrix fac.: m = Ω
(
µ0

2κ14rdegX0
log(D)

)
,

where condition number κ := σ1(X0)/σr(X0). Thus, not applicable for κ � 1 !
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Are there any methods that complete very ill-conditioned

low-rank matrices from few samples m?

Not really so far, but we propose a method (MatrixIRLS) to do this.



Our Approach: Non-Convex Rank Surrogates

Replace rank(X) by (smoothed) logdet-objective (as minimizers coincide very often):

log det(X) =
∑

i

log(σi(X)) = lim
p→0

∑
i

σi(X)p − 1

p
,

limit case of Schatten-p quasi-norm for p → 0.

• Prior work: From concavity, smoothing + first order Taylor: Iteratively Reweighted

Trace Minimization [Fazel, Boyd, Hindi ’03] and Iteratively Reweighted Least

Squares (IRLS) [Fornasier, Rauhut, Ward ’11], [Mohan, Fazel ’12]

◦ Data-efficiency: Methods are

able to complete X0 from very

few samples m.

◦ Guarantees: Challenge:

Non-convexity of F .

◦ Scalability: Storage and SVDs

of O(d1d2) matrices.
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Our Approach: Matrix Iteratively Reweighted Least Squares

Our Contributions [K. 19’, K, Mayrink Verdun ’20, ’21]:

• Propose IRLS method MatrixIRLS with weight operator that utilities second-order/
curvature information of smoothed rank surrogate (unlike the ones of [Mohan,
Fazel ’12], [Fornasier, Rauhut, Ward ’11])

• Provide guarantee: Local convergence for minimal sample complexity

m = Ω
(
µ0degX0

log(D))
)

with locally quadratic convergence rate .

• Improve scalability by orders of magnitude compared to IRLS of [Mohan, Fazel
’12], [Fornasier, Rauhut, Ward ’11] and [K, Sigl ’18] :

◦ Implicit representation of iterates in low-rank + sparse format, computed in time

complexity O ((mr + r2D) · NCG), space complexity same as matrix factorization.1

◦ Avoid ill-conditioning of weighted least-squares problems.

1NCG : Nr. of inner iterations used in conjugate gradient solver of weighted least squares.
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Empirical Performance: Very Ill-Conditioned Matrices

Experiment: Complete 1000 × 1000-matrix X0 of rank r = 5 with κ := σ1(X0)/σr(X0) = 105 from

m = ρ · degX0
entries. Observed: Median relative Frobenius error of algorithm output over 100

realizations vs. oversampling factor ρ.

Comparison of MatrixIRLS to state-of-the-art algorithms R2RILS [Bauch, Nadler, Zilber ’21], LRGeomCG

[Vandereycken ’13], RTRMC [Boumal, Absil ’15], LMaFit [Wen et al. ’12], ScaledASD [Tanner, Wei ’16],

ScaledGD [Tong et al. ’20] and NIHT [Tanner, Wei ’13], R3MC [Mishra, Sepulchre ’14]
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Summary

• Second-order methods for the optimization of non-convex rank surrogates rare in

literature: We propose one such method, MatrixIRLS, attaining state-of-the-art
results especially for low-rank matrix completion problems with small sample sizes

that are ill-conditioned.

• IRLS (if done right) fits into a sweet spot for the optimization of very non-convex

rank surrogates:

Quadratic local convergence & fast escape from saddle points.

• Scalability of MatrixIRLS is comparable to (Burer-Monteiro type) matrix

factorization approaches.

Caveat:
• Convergence guaranatee is only local, most guarantees for other algorithms are

global.

Code available: https://github.com/ckuemmerle/MatrixIRLS.
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Theoretical Guarantees for Matrix Completion Algorithms

Sufficient conditions on sample complexity m for uniform random sampling model,

µ0-incoherent ground truth X0 ∈ R
D×D of rank r :

Nuclear Norm Min. [Recht ’11, Chen ’15] Ω
(
µ0degX0

log2(D)
)

OptSpace [Keshavan, Montanari, Oh ’10] Ω(µ0κ2degX0
max(log(D), κ4r))

AltMin [Hardt, Wootters ’15] Ω
(
µ0

2 log(κ)r8degX0
log2(D)

)
GD on matrix fac. [Chi, Liu, Li ’20] Ω

(
µ0

2κ14rdegX0
log(D)

)
ScaledGD [Tong, Ma, Chi ’20] Ω

(
µ0κ2rdegX0

max(log(D), µ0κ2)
)

Necessary condition Ω
(
µ0degX0

log(D)
)

Note: Large gap between necessary condition and guarantees for many methods

if condition number κ := σ1(X0)/σr(X0) � 1.
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