Outlier-robust estimation involves estimating some parameters (e.g., 3D rotations) from data samples in the presence of outliers, and is typically formulated as a non-convex and non-smooth problem. For this problem, the classical method called …
We consider the nonlinear inverse problem of learning a transition operator A from partial observations at different times, in particular from sparse observations of entries of its powers $A,A^2,...,A^T$. This Spatio-Temporal Transition Operator …
We advance both the theory and practice of robust $\ell_p$-quasinorm regression for $p \in (0,1]$ by using novel variants of iteratively reweighted least-squares (IRLS) to solve the underlying non-smooth problem. In the convex case, $p=1$, we prove …
The recovery of sparse data is at the core of many applications in machine learning and signal processing. While such problems can be tackled using $\ell_1$-regularization as in the LASSO estimator and in the Basis Pursuit approach, specialized …
We propose an iterative algorithm for low-rank matrix completion that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric proximal gradient method applied to a …
We propose an iterative algorithm for low-rank matrix completion that can be interpreted as both an iteratively reweighted least squares (IRLS) algorithm and a saddle-escaping smoothing Newton method applied to a non-convex rank surrogate objective. …
We prove new results about the robustness of noise-blind decoders for the problem of re- constructing a sparse vector from underdetermined linear measurements. Our results imply provable robustness of equality-constrained l1-minimization for random …
We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing a low-rank matrix that is linearly structured, e.g., that possesses a Hankel, Toeplitz or block-Hankel/Toeplitz structures, which is of relevance for …
We propose a new Iteratively Reweighted Least Squares (IRLS) algorithm for the problem of completing or denoising low-rank matrices that are structured, e.g., that possess a Hankel, Toeplitz or block-Hankel/Toeplitz structure. The algorithm optimizes …
We propose a new iteratively reweighted least squares (IRLS) algorithm for the recovery of a matrix $X \in \mathbb{C}^{d_1 \times d_2}$ of rank $r \ll \min(d_1,d_2)$ from incomplete linear observations, solv- ing a sequence of low complexity linear …