Autoficial Neural Networks (Selective) Lifte History: (McCuellerch, Piffs (25): Mathamatica (model input sum for for neurous in brain. *** of up mation 8(.) *** of up to 100 y *** of up to 1950's: Perception; 1st numerical scheme to use allection of to de classification · 1980's: "Deeper" networks, successful training via backpropagation (training algorithm) · Since ~2007. D Efficient training (= determination of weights (wir) from training tata set) becomes possible for deeper netaorts - > regularization D Advances in compating technology: Use GPUs D'Autperformance of traditional learning methods (such support vector madrines)

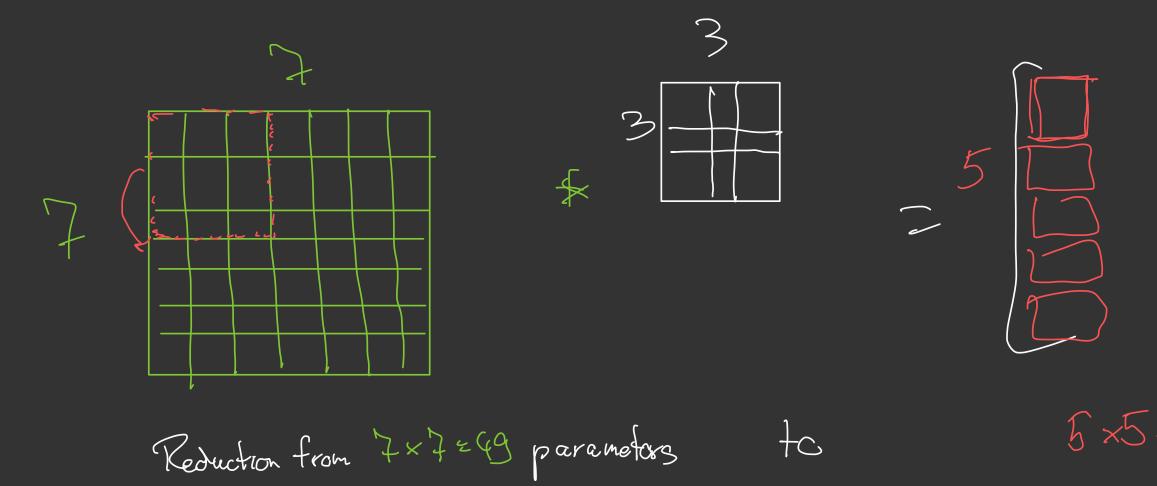
A typical hypothesis space J associated to an ANN: A tamplate for neural networks $f = Zh: X \longrightarrow Y:$ width $h(x) = B(W_{L}(B(W_{L-1}(B(\dots, B(W_{1}(x)))))))$ 3 non-linear acts componentwise We: RNeis RNe (affine) Linear Impart layer N2 02 W3 Octpart layer FL=1,--, L N: dimension of in part layor 1 sthidden 2 hiddon Loyer Cager Ni: _11_____ i-th hidden lager N: _ li of output layer depth $1 - layer NN (L= D_{r})$ Example: O (Malticlass) Logistic Regression: $8(\cdot) = \text{softmax}(\cdot)$ "signaidal" . "If I with L>1: Multilayer Perceptron

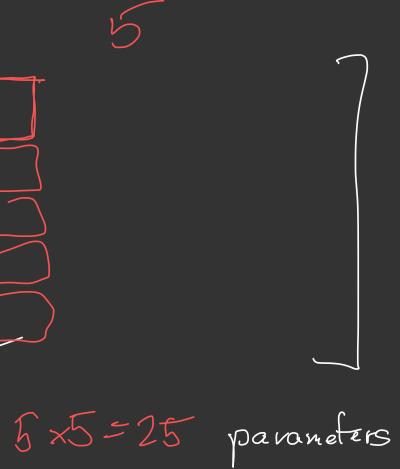
Mmi [Hornik, Cybanko]. '89 '31 Every measurable function can be approximate by a with at least L=2 lagers (if wide enough), Practical Q: D Itow many layers L, how wide each layer. D Choose which Loss fct. "Signicia"/Softmax D Which activation function. "ReLU" ► How to "train" the network (i.e., determine weights We) Some variant of statistic gradient descent (SGD), implemented via backpropagation (r.e., a very smart implementation of the chain rule from calculas)

Modifications Variants:

D Constrain weights to have certain properties: Convolutional Neural Network (CNN) good for imaging problems (enforces spatial invariance)

> Fever connections: -> often less overfitting D (Max/Average) Pooling: Reduces nr. of parameters, avoids overfitting


12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			


Dropaut: Drops (atrandom) connections between layers in training phase D Batch normalization: Normalizes input of a layer, Los faster training, better generalization poch. One pass through entire training data set.

Q 60

where object is

Example: Convolutional 3×3 filler

