
Classification Problems

Examples : o Fraud detection in credit card payments
•• Categorize digital images : day , cat, bas , house . .

. .

• Supervised learning : Similar to regression problems
,
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• Adding ridge / lasso like regularization term is possible .

• Optimization is non - trivial
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K- Nearest Neighbors classification :
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Algorithm : Input : Training set 5=4 ; ,y¥Y , parameter K .

Output : Function his :X→ Y sad that hold is the majority label among Ey*µ : is KJ.
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Feature selection : Natural language Processing spamfno spam classification

Q : Use studied approaches for text data? T ohiegaiang text items according
-

to topics
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"Michael","likes","walkinghneghbohood

2 .
Build vocabulary : Do this for a lot of documents :
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3 . Encoding :
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a) Count how often each ward in X occurs
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Modifications can include :
• Removal of common words such as
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I Better semantic understanding
⑦ Computationally more challenging as dictionary larger
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b) Term Frequency - Inverse Document Frequency EF- IBE)
choose It)w= freqw flog (F) +1)
freq w : freqency of word w in document *

K : nr
. of words

Nw : nr
. of documents containing ward w

.

④ Scales down importance of ward common across documents
.


