
MERCATOR: Supporting Irregular Behaviors

in Streaming SIMD Computations

Steve Cole, Jeremy Buhler, and Roger Chamberlain
Dept. of Computer Science and Engineering, WUSTL

SIMD (Single-Instruction, Multiple-Data) architectures such as GPUs naturally
support streaming computations that process a long stream of independent
data items. Items may be grouped into ensembles of size equal to the SIMD
width (e.g. GPU block size), with each element processed in parallel by a
single SIMD lane (= one GPU thread).

Most streaming computing frameworks, such as StreamIt2, primarily support
regular streaming computations in which each item in an ensemble
undergoes identical processing – hence every SIMD lane does the same
work. In contrast, irregular computations may perform different, data-
dependent work for each item. Irregularity leads to idled SIMD lanes and
divergent computation, which reduce application throughput.

Input Stream Results

Processing in Ensembles

SIMD architecture (width = 4)

x

x

Regular Streaming Irregular Streaming

Irregular streaming computations matter!

Decision cascades (image recognition,

biosequence analysis, sensor data processing)

Image: U. Buenos Aires Computer Vision Group

Big graph algorithms (belief propagation,

page rank, shortest paths, clustering)

Image: davidellis.ca

Tree traversal (decision tree

evaluation, suffix tree string matching)

Image: sequin.de

Pattern matching (e.g. network traffic)

The MERCATOR framework1 efficiently expresses
irregular streaming computations for SIMD platforms.

 Abstracts irregular behaviors using dataflow
representation of application

 Supports irregular behaviors (filtering,
divergence) efficiently, transparently using
SIMD-parallel algorithms

 Exposes opportunities for optimization

MERCATOR targets NVIDIA GPUs using the CUDA language.

Research and development on MERCATOR is supported by NSF CISE award 1500173.

The Programmer’s View

Applications are graphs of compute nodes connected by dataflow
edges. Data flows in at the (unique) source and out at one or more
sinks. Application graphs are trees but may be augmented with
limited back edges to permit cycles.

pipelines,
w/ or w/o loops

trees,
w/ or w/o loops

void Filter::run(int value, unsigned char nodeTag)
{

int x = f(value);
push(x, nodeTag, Filter::acc);

int y = g(x);
if (cond) push(y, nodeTag, Filter::acc);

}

The programmer implements each module type in a MERCATOR-generated function
skeleton. Each SIMD lane receives an input value and a node tag indicating which node
of this type received the value. Outputs are emitted (“pushed”) to a specified port
(connection to an edge) along with their tags, which preserve their node associations.

Programmer

MERCATOR

Describe
application
topology

Generate CUDA
skeleton and
support code

Write CUDA code
for compute

nodes

Connect host-side
data streams to

source/sinks

Compile all
with nvcc

MERCATOR Application Design Workflow

Under the Hood

A MERCATOR app is realized as an uberkernel4, with all nodes and
inter-node data management running on the GPU. The entire app
runs independently on each GPU processor. Replicates on all
processors share common source and sink data buffers.

MERCATOR inserts a queue in front of each node. When a module fires,
enough queued items are gathered to occupy all SIMD lanes. If multiple
nodes share the same module type, MERCATOR can combine their
queues’ contents in a single SIMD ensemble. Outputs are buffered in
each SIMD lane, then scattered to the appropriate downstream queues
based on the tags passed to push().

Infrastructure Implementation Challenges

 Avoid deadlock in app graphs with cycles

 Limit allocation of scarce GPU per-processor memory

 Limit and coalesce GPU global memory traffic

 Reduce overhead using SIMD-friendly algorithms for
 scheduling for module firings
 managing queues between nodes
 scatter/gather across queues for a module

GPU KernelHost-side Driver

Input Buffer

Output Buffer 2

Output Buffer 1

Output Buffer 3

Input
Queue(s)

M
o

d
u

le
 C

o
d

e

Ensemble Per-Lane Buffer

{ Width = # of SIMD lanes }

Downstream
Queue(s)

Nodes are specified with input and output data types, plus a maximum number of
outputs produced per input on each outgoing edge. Nodes may filter or amplify their
inputs data-dependently, so unlike in traditional SDF3, output rates are dynamic.

// A module type describes one or more
// nodes implementing the same code
#pragma mtr module Filter (int[128]->acc<int>:?2)

// Node declarations (w/module types)
#pragma mtr node sourceNode : SOURCE
#pragma mtr node filterNode1: Filter
#pragma mtr node filterNode2: Filter
#pragma mtr node sinkNode : SINK<int>

// Edge declarations
#pragma mtr edge sourceNode::out->filterNode1
#pragma mtr edge filterNode1::acc->filterNode2
#pragma mtr edge filterNode2::acc->sinkNode

sourceNode

filterNode1

sinkNode

these nodes produce
0-2 outputs per input

filterNode2

max inputs processed in
one call to module

name of
output port

Sample MERCATOR Application Topology Spec

Performance

Occupancy boost outweighed MERCATOR overhead for most filtering rates
when node execution took 100+ ms.

0

200

400

600

800

1000

1200

1400

1600

2000 4000 6000 8000 10000

E
x
e
c
u
ti
o
n
 T

im
e
 (

m
s
)

Query Size (DNA bases)

With queues No queues DNA Sequence Comparison Kernel

• Seed matching, ungapped alignment
pipeline from NCBI BLASTN5

• Compared human chromosome 1
(250 Mbases) to chicken seqs of
2-10 Kbases

• Again, compared MERCATOR app
with queues between stages to
baseline w/static mapping

Queueing boosted performance of BLASTN pipeline, especially for short queries.

Experiments1 conducted on an NVIDIA GTX 980Ti GPU w/CUDA 8.0

MERCATOR efficiently abstracts irregular streaming
GPU computations. Its runtime infrastructure helps
performance in the presence of irregular behavior.

Future work
 Expand set of apps expressible in MERCATOR
Nested loops, with guaranteed deadlock freedom
 Tagged reduction (e.g. edges of each vertex in a graph)

 Exploit optimization opportunities
 Trade off occupancy vs. overhead to maximize

throughput of nodes with small execution times
Allocate multiple inputs to each SIMD lane to hide latency
 Partition app execution across GPU processors to

load-balance nodes w/different service rates

References

1. SV Cole and J Buhler. “MERCATOR: a GPGPU framework for irregular streaming
applications.” Proc. 15th Int’l Conf. High Performance Computing and Simulation, to
appear 2017.

2. W Thies, M Karczmarek, and S Amarasinghe. “StreamIt: a language for streaming
applications.” Proc. Int'l Conf. Compiler Construction, 179-96, 2002.

3. EA Lee and DG Messerschmitt. “Synchronous data flow.” Proc. IEEE 75(9):1235-45, 1987.

4. S Tzeng, A Patney, and JD Owens. “Task management for irregular parallel workloads on
the GPU.” Proc. Conf. High Performance Graphics, 29-37, 2010.

5. SF Altschul, W Gish, W Miller, EW Myers, and DJ Lipman. “Basic local alignment search
tool.” J. Molecular Biology 215(3):403-10, 1990.

Design principle: programmer need not
explicitly code interaction among SIMD lanes!

Synthetic Benchmark

• Pipeline of 5 nodes + source, sink

• Each node passes on a fraction of its
inputs between 0 and 1, drops rest

• Each node does compute-bound
work (Black-Scholes iteration)

• Measured speedup of app with
queues between nodes vs. baseline
w/static work-to-SIMD-lane mapping

