
31st IEEE International Parallel &
Distributed Processing Symposium , May 29 – June 2, 2017
Buena Vista Palace Hotel, Orlando, Florida USA

Building Faster, Elastic, and Durable Large-scale Data Store with Consistent Hashing

Wei Xie and Yong Chen
Department of Computer Science, Texas Tech University

Abstract
• Many large-scale data store uses the consistent 

hashing algorithm or its variants for better 
scalability and manageability, e.g. Dynamo, 
Cassandra, Ceph, Sheepdog.

• Lacking support for heterogeneous storage 
devices and elastic storage.

• Propose of a two-mode consistent hashing 
algorithm that better support heterogeneous 
storage devices to offer both performance 
improvement and balanced capacity utilization.

• Propose of an elastic consistent hashing algorithm 
to offer agile cluster resizing and selective data 
re-integration.

• Support heterogeneous storage
• Flash-based SSD and HDD co-exist in many 

large-scale storage system
• SSDs offer better performance but have small 

capacity
• HDDs have much more abundant capacity in 

most large-scale systems
• Consistent hashing only puts weights on 

storage servers according to their capacity, 
which could underutilize the SSDs’ 
performance

• Existing heterogeneous storage systems are 
managed via a caching layer or tiered storage 
solution, which requires an extra layer to 
manage heterogeneous devices

• Support elastic storage
• Many large-scale storage systems resize 

cluster according to workload demand to save 
power consumption

• Need an elastic data layout that a full data copy 
stored on a small set of servers

• Resizing may incur excessive data migration 
that degrades performance

• Existing study like SpringFS only works on 
HDFS-like distributed file systems

Consistent Hashing

Research Problem and Existing Solutions

Two-Mode Consistent Hashing

Summary

Acknowledgements
The research studies are supported in part by the National Science Foundation under grant CNS-
1162488, CNS-1338078, and CCF-1409946.

• Consistent hashing algorithm is a promising solution for large-scale data stores
• We propose two variants of consistent hashing to achieve a high performance and power-efficient 

distributed data store

• Performance mode: weight of nodes proportional to device throughput
• Capacity mode: weight of nodes proportional to device capacity 

Elastic Consistent Hashing

Node for server 1
Node for server 2

Node for server 3

key1key2

• Initially used for load balance in web caching
• Each server generates one or multiple nodes on a 

hash ring
• A key (data) generates a node on the ring as well 

and matches to the next server node in the 
clockwise direction

Data Distributor

Distributor Selector

Capacity Monitor

IO Monitor

Performance-
based 

Distributor

Capacity-
based 

Distributor

Data Objects

Storage Nodes

• Capacity monitor: when variance of capacity exceeds threshold, 
switch to capacity mode for load balance

• IO monitor: when IO load is low, switch to capacity mode

• Findings:
1. Performance offer significant improvement on write 

performance
2. Two-mode does not increase data distribution time 

significantly (worst case is to use two distributors to 
locate data)

3. Mode transition overhead can be mitigated by 
background data migration

server number

Da
ta

 re
pl

ic
as

First replica
Second replica
Third replica

server number

Da
ta

 re
pl

ic
as

Primary servers Secondary servers

First replica
Second replica
Third replica

• Non-elastic layout • Elastic layout

0 50 100 150 200 250
Time (minutes)

0

20

40

60

80

100

120

140

160

180

Nu
m

be
r o

f s
er

ve
rs

CC-b Trace

Ideal
Original CH 
Primary+full 
Primary+selective

• Findings:
• Elastic layout avoids delay of size-down
• Selective re-integration avoids extra 

migration workload that requires extra node 
to turn on, thus better machine hour saving

• Saves 8% to 12% machine hours compared 
to resizing via original CH 

1

2
3

5

4

6
7

8

9
10

Primary 
(always active)

Secondary 
(active)

Secondary 
(inactive)

1

2

5

4

6
7

8

9
10

3

Original data

1

9
4

9
4

Modified data

1

2

5

4

6
7

8

9
10

3

9
4

Resize Resize

2
3 4

1 2
3 4 1 2

3 4

1
1 2
3 4

2
3 4
1

• Selective data re-integration
• When sizing up, only migrate those 

data that have been modified
• Each resize is associated with a 

version
• The modified data in each version 

are recorded

1

2
3

5

4

6
7

8

9

Primary server 
(always active)

Secondary server
(active)

Secondary server 
(inactive)

Data object

D1

D2

1

2
3

5

4

6
7

8

9

D1

D2

10

10

skip inactive

skip secondary

skip primaryskip inactive

• Primary server design to achieve 
elastic data layout

• An elastic layout ensures that the first copy is 
always available if the primary servers are active

User input throughput (MB/s)
0 1000 2000 3000 4000 5000

To
ta

l I
O

 th
ro

ug
hp

ut
 (M

B/
s)

0

200

400

600

800

1000

capacity mode
performance mode


