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Abstract
• Many large-scale data store uses the consistent 

hashing algorithm or its variants for better 
scalability and manageability, e.g. Dynamo, 
Cassandra, Ceph, Sheepdog.

• Lacking support for heterogeneous storage 
devices and elastic storage.

• Propose of a two-mode consistent hashing 
algorithm that better support heterogeneous 
storage devices to offer both performance 
improvement and balanced capacity utilization.

• Propose of an elastic consistent hashing algorithm 
to offer agile cluster resizing and selective data 
re-integration.

• Support heterogeneous storage
• Flash-based SSD and HDD co-exist in many 

large-scale storage system
• SSDs offer better performance but have small 

capacity
• HDDs have much more abundant capacity in 

most large-scale systems
• Consistent hashing only puts weights on 

storage servers according to their capacity, 
which could underutilize the SSDs’ 
performance

• Existing heterogeneous storage systems are 
managed via a caching layer or tiered storage 
solution, which requires an extra layer to 
manage heterogeneous devices

• Support elastic storage
• Many large-scale storage systems resize 

cluster according to workload demand to save 
power consumption

• Need an elastic data layout that a full data copy 
stored on a small set of servers

• Resizing may incur excessive data migration 
that degrades performance

• Existing study like SpringFS only works on 
HDFS-like distributed file systems

Consistent Hashing

Research Problem and Existing Solutions

Two-Mode Consistent Hashing

Summary
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• Consistent hashing algorithm is a promising solution for large-scale data stores
• We propose two variants of consistent hashing to achieve a high performance and power-efficient 

distributed data store

• Performance mode: weight of nodes proportional to device throughput
• Capacity mode: weight of nodes proportional to device capacity 

Elastic Consistent Hashing
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• Initially used for load balance in web caching
• Each server generates one or multiple nodes on a 

hash ring
• A key (data) generates a node on the ring as well 

and matches to the next server node in the 
clockwise direction
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• Capacity monitor: when variance of capacity exceeds threshold, 
switch to capacity mode for load balance

• IO monitor: when IO load is low, switch to capacity mode

• Findings:
1. Performance offer significant improvement on write 

performance
2. Two-mode does not increase data distribution time 

significantly (worst case is to use two distributors to 
locate data)

3. Mode transition overhead can be mitigated by 
background data migration
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• Non-elastic layout • Elastic layout
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• Findings:
• Elastic layout avoids delay of size-down
• Selective re-integration avoids extra 

migration workload that requires extra node 
to turn on, thus better machine hour saving

• Saves 8% to 12% machine hours compared 
to resizing via original CH 

1

2
3

5

4

6
7

8

9
10

Primary 
(always active)

Secondary 
(active)

Secondary 
(inactive)

1

2

5

4

6
7

8

9
10

3

Original data

1

9
4

9
4

Modified data

1

2

5

4

6
7

8

9
10

3

9
4

Resize Resize

2
3 4

1 2
3 4 1 2

3 4

1
1 2
3 4

2
3 4
1

• Selective data re-integration
• When sizing up, only migrate those 

data that have been modified
• Each resize is associated with a 

version
• The modified data in each version 

are recorded
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• Primary server design to achieve 
elastic data layout

• An elastic layout ensures that the first copy is 
always available if the primary servers are active
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