

Write locality and its optimization for persistent memory^[*]

Motivation

DRAM vs NVM

DRAM: faster but smaller and higher energy

NVM: larger, lower energy but limited write endurance Hybrid memory architecture

- (1) hierarchical model
- (2) side-by-side model

Leverage cache to minimize writes to NVM

Traditional locality theory

Reuse distance(rd)

Def: The number of distinct memory accesses between use and reuse.

if rd > cache size, then reuse is a cache miss

reference time	1	2	3	4	5	6	7	8	9
address	a	b	C	a	b	C	C	C	a

Footprint(fp)^[1]

Def: The averaged Working Set Size (WSS) for some specific window size.

if fp(rt) > cache size, reuse is a cache miss

reference time	1	2	3	4	5	6	7	8	9
address	a	b	С	a	b	C	C	С	а
WWS(1)	1	1	1	1	1	1	1	1	1
WWS(2)		2	2	2	2	2	1	1	2
WWS(3)			3	3	3	3	2	1	2
	a	?	?	a					
		3 > fp	(3) > 2						

Dong Chen, Chencheng Ye, Chen Ding Department of Computer Science, University of Rochester

dchen39@cs.rochester.edu, cye@cs.rochester.edu, cding@cs.rochester.edu

Write locality

Write interval

Def: The time window between two *consecutive* writes to the same location. No intervening writes to that location. Reads to that location or reads/writes to other locations are allowed.

reference time	1	2	3	4	5	6	7	8	9	10
address	a	b	C	a	b	C	С	С	a	b
access type write interval a	W	r -	W	r r	W	r -	W -	W -	W	W

Write reuse distance(wrd)

Def: The maximum reuse distance for w-r, r-r, r-w pairs inside each write interval.

if wrd > cache size, then the first write causes a writeback

Write reuse time(wrt)

Def: The maximum reuse time for w-r, r-r, r-w pairs inside each write interval.

if fp(wrt) > cache size, then the first write causes a writeback

Write back ratio curves for 29 SPEC CPU2006 benchmarks

10

10 b fp(1) = 1**2** fp(2) = 1.78

3 fp(3) = 2.5

Write

Optimal cache How to partitic

programs to m sharing, see [2]

cache

elasticity: the maximum miss ratio increment for each individual program in co-run groups.

elasticity	0%	10%	100%	10 x	100x	∞
2-prog.	4.09%	8.93%	9.95%	10.45%	10.8%	12.22%
3-prog.	23.97%	26.31%	26.61%	26.98%	27.21%	27.49%
4-prog.	33.93%	35.01%	35.24%	35.42%	35.45%	35.57%

Summary

Write locality is measured by write reuse distance and write reuse time and used to minimize cache write backs.

memory systems, 2016.

	ality opt	imization
partition on the ca ninimize 2])	to minimize co-r the with p cache w the writebacks? (Fo	un writebacks yays for m co-running or generalized partition
		m partitions
p-1 gaps		
	p-1 choose m-1	

Write back reduction by optimal partitioned cache VS shared

Reference

[1] "HOTL: a higher order theory of locality", Xiaoya Xiang, Chen Ding, Bin Bao, Hao Luo, The Symposium on Architectural Support for Programming Languages and Operating Systems, 2013.

[2] "Optimal cache partition-sharing", Brock, Jacob, Chencheng Ye, Chen Ding, Yechen Li, Xiaolin Wang, Yingwei Luo. International Conference on Parallel Processing, 2015.

[*] "Write locality and its optimization for persistent memory". Dong Chen, Chencheng Ye, Chen Ding. International symposium on