Network-Level Design of Cyber-Physical Networks-of-Systems

Sabine Francis, Kamyar Mirzazad, Zhuoran Zhao, Andreas Gerstlauer

Electrical and Computer Engineering The University of Texas at Austin

The University of Texas at Austin Electrical and Comput **Electrical and Computer** Engineering Cockrell School of Engineering

Overview

Motivation & Objectives

- Increasingly networked cyber-physical systems
 - Internet of Things (IoT), Wireless Sensor Networks (WSNs)
 - Distributed data collection, aggregation and processing
- Tight computation and communication coupling
 - Non-obvious interactions and tradeoffs
 - Traditionally networks and systems are designed in isolation
 - Ignores joint optimization challenges and opportunities
- > Systematic computation/communication co-design
 - Comprehensive design space exploration
 - Joint consideration of design parameters from applications to network configurations and system platform definitions

Design Flow

- From network-level specification
 - Formal models of computation and communication for high-level network-of-systems (NoS) specification
 - Exposing network uncertainties
 - Dynamic aspects of adaptivity and reactivity
- To networked system implementation
 - Network and system co-design
 - Architecture definition and application mapping
 - Fast yet accurate network-of-systems (NoS) simulation for validation, prototyping and exploration
- Specification & implementation models for NoS design automation

Network-of-Systems (NoS) Specification

Motivation

- Traditional models \bigcirc
 - Models of computation require lossless communication and can not simultaneously capture streaming and reactive behavior
 - Models of communication support richer network semantics but do not account for expressing system computation & concurrency
- Unified models of computation and communication (MoCC) for NoS specification

Reactive and Adaptive Dataflow (RADF)

• Extension of existing (synchronous) dataflow models

Empty tokens (ø)

- Lost data and absence of sporadic events in input patterns
- Maintain guaranteed determinism

• Actor variants

- Different variants per token patterns
- Idle version executed when input patterns are all empty-tokens

Adaptivity

Empty tokens and actor variants: expose 0 network losses to the application level

Reactivity

Reactive island: firing idle variant of source actor triggers all subsequent connected actors to fire their idle variants

Performance Analysis

- Worst-case throughput and latency
- Conversion to scenario-based/modal model Ο leads to exponential complexity
 - Account for all possible actor variant combinations
- Calculate throughput & latency of the graph formed by taking the WCET of each actor
 - Lossy channels isolate actor variants
 - Might under-estimate the worst-case

Future Work

- Implementation of RADF semantics Ο
 - Multiple distributed implementation choices
- Analysis techniques for probabilistic Ο performance metrics
 - Tradeoff between latency, throughput and QoS versus token loss probability

References

S. Francis and A. Gerstlauer, "A Reactive and Adaptive Data Flow Model for Network-of-System Specification", IEEE ESL, 2017. (under review)

Network-of-Systems (NoS) Simulation

Motivation

- Traditional system models
 - · Transaction-level platform models combined with instruction-set or source-level/host-compiled software simulation
 - Over-simplified or no network channels/protocols
- Traditional network models \bigcirc
 - Analytical queuing, stochastic or network calculus models
 - Discrete event-based network simulators
 - Over-simplified system models

Exploration Parameters

Application

- Network/system co-simulation
 - Capture and emulate complicated system/network interactions
 - Fast and accurate to support large scale and complexity of NoS

CPU

• Flexible to instantiate a wide range of configurations

Host-compiled NoS Simulator

- Host-compiled (HC) system simulator Ο
 - Source-level back-annotated application model
 - Abstract operating system (OS) model
 - Network stack model (IwIP)
 - SystemC transaction-level modeling (TLM) base
- Network simulation backplane Ο
 - OMNeT++ network simulator

SystemC Simulation

- INET package for media access (MAC) and physical (PHY) layer simulation
- Host-compiled SystemC device instances in an overall OMNeT++/INET network topology

Data

Intr.

NIC

MAC

РНҮ

NoS Design Space Exploration

- IoT application case study Ο
 - ECG diagnosis application
 - 4 offloading stages (O-*n*)

Simulation speed

>0.18 simulated sec /

real sec on average

Ο

- Wireless client-server topology
- System/network parameters
 - Client/server core types and counts (SxSy/SxDy)

0.7

0.6 Å

0.5ഗ്

Communication protocols

് 0.35

t 0.30

ອັ 0.20

₽ 0.15

문 0.10

