
Quality of Service-Aware, Scalable Cache Tuning Algorithm in Consumer-
based Embedded Devices 

M. Hammam Alsafrjalani and Ann Gordon-Ross 
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA 

q  Consumer-based	Embedded	Devices	(CEDs)	are	ubiquitous	

q  High	consumer-de:ined	quality	of	service	(QoS)	expectations	
(consumer	goals)	and	stringent	energy	constraints,	often	
contending		

	

	
q  Goal:	innovate	a	CEDs	design	approach	that	enables	CEDs	to	

adhere	to	consumer	goals	and	energy	requirements,	
independently	of	applications/deployment	

q  Challenges	
	

q  Consumer	goals	must	be	known	during	design	time	
q  Implausible	given	ubiquity	nature	of	systems	(diverse	

consumers)	
q  Software	applications	must	be	known	during	design	time[1]	

q  Implausible,	given	rapid	growth	of	unknown	third	
party	applications	(~1.5	million+	apps	for	Android)	

Using	con0igurable	hardware	and	associated	
tuning	algorithms	
q  Con0igurable	hardware	

q  Contains	modi:iable/tunable	parameters	
q  Clock,	voltage,	memory,	etc.	

q  Parameter	values	change	to	application’s	hardware	
requirements	

q  Parameter	values	dictated	by	a	tuning	algorithm	
q  Tuning	algorithm	

q  Monitors	application	execution,	evaluate	energy	
consumption	and	quality	of	service	

q  Explores	the	design	space	(available	parameter	values)	
q  Adjusts	parameter	values	such	that	CED	

q  Meets	QoS	expectation	and	consume	lowest	energy	
q  Target	effective	component	

q  Cache	memory		
q  Has	high	impact	on	energy	and	performance	

Application-scalable	hardware	and	runtime	
tuning	algorithm		
q  Scalable	hardware	

q  Compressed	tuning	information	into	auxiliary	tables		
q  Employed	LRU	policy	to	enable	scalability	of	application-

tuning	
q  Only	4%	area	(hardware)	overhead	

q  Dynamic,	general	purpose	CED	cache-tuning	algorithm		
q  Requires	no	a	priori	knowledge	of	applications	
q  Flexible:	Conservative	and	Moderate	modes	

q  For	disparate	QoS	expectations	
q  Trades	off	energy	savings	for	higher	QoS	

	

Designing	approach	for	CED’s	
Saving	energy	does	not	require	a	priori	knowledge	of	
applications	
ü  Enables	scalability	to	an	arbitrary	number	of	
unknown	(future),	third-party	applications		

ü  Meets	consumer	goals	
Tuning	modes	provide	:lexible	adherence	to	QoS	
expectations	
ü  Can	incorporate	tuning	modes	for	disparate	
conditions/situations,	such	as		

	

	
Comparison	to	prior	work	
Prior	work[1][2]	saved	more	energy,	however	

q  (-)	Incurred	as	much	as	109.2%	and	132.5%	more	
tuning	overhead	while	tuning	

q  (-)	Requires	long	applications	execution	to	
amortize	the	tuning	overhead	

Prior	work	degraded	QoS	up	to	7X	more,	compared	to	
our	approach	
q  (-)	Can	be	completely	avoided	only	with	a	priori	

knowledge	of	applications[1]	

q  Not	possible	for	CEDs	

Interdisciplinary	collaboration	
Ø  Psychology	behind	consumer	expectations	and	its	
impact	on	design	constraints	

Ø  QuantiNication	of	consumer	feelings,	moods,	
and	thoughts	

Ø  Other	factors	such	as	time	of	use	(day,	night,	
etc.),	place	of	operation	(ofNice,	construction	
site,	on-route,	etc.),	...	

Architecture	innovations	
Ø  Performance	&	energy	expectations	vs.	privacy	&	
security	

Ø  Adaptability	to	Internet	of	Things	(IoT)	devices	

Ø  Tuning	through	IoT

[1]	Wang,	W.,	Mishra,	P.,	Gordon-Ross,	A.	“SACR:	Scheduling-Aware	Cache	
Recon:iguration	for	Real-Time	Embedded	Systems,”	Int.	Con.	on	VLSI	Design,	
2009.	
[2]	Zhang,	C.,	Vahid,	F.	“Cache	con:iguration	exploration	on	prototyping	
platforms,”	IEEE	International	Workshop	on	Rapid	Systems	Prototyping,	2003	

V.S.	

v  Quad-core	system	
v  Con0igurable,	private	level	1	cache	memory	

Ø  Possible	con:igurations:	2KB	1-way;	4KB	1-	or	2-	
way;	and	8KB	1-,	2-,	or	4-way	

v  Hardware	cache	tuner	
Ø  Global,	monitors	all	cores	
Ø  Tunes	the	cores	based	on	the	tuning	algorithm	
Ø  Stores	tuning	information	in	lookup	and	auxiliary	

tables	

v  Information	 Input:	 Reads	 tuning	 information	 from	 lookup	 and	
auxiliary	tables;	tunes	to	best	con:iguration,	or		resumes	exploration	

v  Exploration:	Determines	the	con:iguration	to	tune	the	hardware	to,	
based	on	the	tuning	information	and	tuning	mode;	updates	the	tables	

v  Evaluation:	 Evaluates	 if	 the	 con:iguration	 saves	 energy	 and/or	
degrades	QoS;	decides	if	tuning	is	done	

39.76%	

20.68%	 19.00%	

0	
0.05	
0.1	
0.15	
0.2	
0.25	
0.3	
0.35	
0.4	
0.45	

Tuning	Mode	

Pe
rc
en

t	o
f	E

ne
rg
y	
sa
vi
ng
s	

Data	cache	

Aggressive	 Moderate	 Conserva>ve	

34.98%	

25.14%	 23.49%	

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

Tuning	Mode	

Pe
rc
en

t	o
f	E

ne
rg
y	
sa
vi
ng
s	

Instruc5on	cache	

Aggressive	 Moderate	 Conserva>ve	

ü  Aggressive(prior	work)	achieved	highest	savings	
Ø  However	required		priori	knowledge	of	

application		
ü  Moderate	and	conservative	modes	results	in	comparable	

energy	savings		

 
 

E(total)	=	E(sta)	+	E(dyn)	
E(dyn)	=	cache_hits	*	E(hit)	+	cache_misses	*	E(miss)	
E(miss)	=	E(off_chip_access)	+	miss_cycles	*	E(CPU_stall)	+	E(cache_fill)	
Miss	Cycles	=	cache_misses	*	miss_latency	+	(cache_misses	*	(line_size/16))																			

	*	memory_band_width)	
E(sta)	=	total_cycles	*	E(staCc_per_cycle)	
E(sta3c_per_cycle)	=	E(per_Kbyte)	*	cache_size_in_Kbytes	
E(per_Kbyte)	=	(E(dyn_of_base_cache)	*	10%)	/	(base_cache_size_in_Kbytes)	

	

QoS	Expecta3on	=	performance	>	threshold	
Threshold	=	minimum	acceptable	performance	
If	performance	<	threshold,	QoS_degradaCon	=	true	
Else 	 	QoS_degradaCon	=	false	

Energy	savings	and	QoS:	our	approach	vs.	base	
system	and	prior	work	
v  Energy	 savings:	 Measured	 application’s	 energy	 consumption	 of	

best	 con:iguration	 determined	 by	 the	 tuning	 algorithm,	 calculated	
energy	percent	decrease	with	respect	to	the	base	system,	and	averaged	
the	energy	savings	for	all	applications	(34	total)	

v  Quality	 of	 Service:	 Calculated	 the	 number	 of	 QoS	 degradation	
occurrences	 while	 tuning	 each	 application,	 compared	 the	 result	 to	 a	
perfect	 (no	 QoS	 degradation)	 system,	 and	 averaged	 the	 QoS	
degradation	for	all	applications	(34	total)		

v  Comparison	 to	 prior	work:	 Incorporated	 a	 tuning	mode	which	
represents	 prior	 work	 approach;	 an	 aggressive	 mode	 which	
determined	the	lowest-energy	con:iguration	without	considering	QoS	

7.70	

1.00	
0.41	

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Tuning	Mode	

Av
er
ag
e	
Q
oS
	d
eg
ra
da

5o
n	

Data	cache	

Aggressive	 Moderate	 Conserva>ve	
7.40	

1.00	 0.70	

0	

1	

2	

3	

4	

5	

6	

7	

8	

Tuning	Mode	

Av
er
ag
e	
Q
oS
	d
eg
ra
da

5o
n	

Instruc5on	cache	

Aggressive	 Moderate	 Conserva>ve	

Aggressive(prior	work)	imposed	QoS	degradation	as	high	
as	7X,	on	average	

ü  Moderate	mode	imposed	QoS	degradation,	at	most	1	
ü  Conservative	mode	average	QoS	degradation	<	1.00	

Otherwise	

Environmental	 Experience/Personal	


