Quality of Service-Aware, Scalable Cache Tuning Algorithm in Consumer-

based Embedded Devices

M. Hammam Alsafrjalani and Ann Gordon-Ross

@ UNIVERSITY OF

FLORIDA

#% LTOKIDY

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

INTRODUCTION
Background & Motivation

a Consumer-based Embedded Devices (CEDs) are ubiquitous

o High consumer-defined quality of service (QoS) expectations
(consumer goals) and stringent energy constraints, often

contending
alyn

o Goal: innovate a CEDs design approach that enables CEDs to
adhere to consumer goals and energy requirements,
independently of applications/deployment

a Challenges

o Consumer goals must be known during design time
consumers)

o Implausible, given rapid growth of unknown third
party applications (~1.5 million+ apps for Android)

Methodology
Using configurable hardware and associated
tuning algorithms
a Configurable hardware
a Contains modifiable/tunable parameters
a Clock, voltage, memory, etc.

o Parameter values change to application’s hardware
requirements

o Parameter values dictated by a tuning algorithm
o Tuning algorithm
o Monitors application execution, evaluate energy
consumption and quality of service
a Explores the design space (available parameter values)
o Adjusts parameter values such that CED
o Meets QoS expectation and consume lowest energy
o Target effective component
a Cache memory
o Has high impact on enerqgy and performance

Contribution

Application-scalable hardware and runtime
tuning algorithm

o Scalable hardware

o Compressed tuning information into auxiliary tables
a Employed LRU policy to enable scalability of application-
tuning
a Only 4% area (hardware) overhead
o Dynamic, general purpose CED cache-tuning algorithm
o Requires no a priori knowledge of applications
o Flexible: Conservative and Moderate modes
a Fordisparate QoS expectations
o Trades off energy savings for higher QoS

o Implausible given ubiquity nature of systems (diverse

o Software applications must be known during design time!

\

()

Configurable Design Dynamic Tuning
Hardware Algorithm
4 Read auxiliary | Informationnput
‘ Main Memory ‘ table State
$ 7 7 7
v i v y
Data Cache Data Cache Data Cache Data Cache
Level 1 Cache Level 1 Cache. Level 1 Cache. Level 1 Cache.
Instruction Instruction Instruction Instruction
Cache Cache Cache Cache
11 It T 11
Cache Tuner
= .
v § v § i v { ¥
’ Core 1 ‘ ’ Core 2 ‘ ‘ Core 3 ‘ ‘ Core 4 ‘
Hardware Specifications
+ Quad-core system

- Configurable, private level 1 cache memory N /

» Possible configurations: 2KB 1-way; 4KB 1- or 2- s
way; and 8KB 1-, 2-, or 4-way Algorlth

Stages

- Information Input: Reads tuning information from lookup and
auxiliary tables; tunes to best configuration, or resumes exploration

+ Hardware cache tuner
> Global, monitors all cores
X X + Exploration: Determines the configuration to tune the hardware to,
- Tunes the cores based on the tuning algorithm based on the tuning information and tuning mode; updates the tables
» Stores tuning information in lookup and auxiliary .

tables

Evaluation: Evaluates if the configuration saves energy and/or
degrades QoS; decides if tuning is done

\
Energy Model

E(total) = E(sta) + E(dyn)

Evaluation Methodology
E(dyn) = cache_hits * E(hit) + cache_misses * E(miss) Dl i e sttt s Lass

E{miss) = E(off_chip_access) + miss_cycles * E(CPU_stall) + E(coche_fit) SyStem and prior work

Miss Cycles = cache_misses * miss_latency + (cache_misses * (line_size/16)) .
* memory_band_width)

E(sta) = total_cycles * E(static_per_cycle)

E(static_per_cycle) = E(per_Kbyte) * cache_size_in_Kbytes

E(per_Kbyte) = (E(dyn_of_base_cache) * 10%) / (base_cache_size_in_Kbytes)

Quality of Service Logic

Energy savings: Measured application’s energy consumption of
best configuration determined by the tuning algorithm, calculated
energy percent decrease with respect to the base system, and averaged
the energy savings for all applications (34 total)

Quality of Service: Calculated the number of QoS degradation
occurrences while tuning each application, compared the result to a
perfect (no QoS degradation) system, and averaged the QoS
degradation for all applications (34 total)

QoS = pei
= mini acceptable p = Comparison to prior work: Incorporated a tuning mode which
If perf e < th d, QoS_ = true represents prior work approach; an aggressive mode which
Else QoS_degradation = false determined the lowest-energy configuration without considering QoS
T

Experimental Results)

Energy Savings Results

= nggressive M Moderate

Quality of Service Impact Results

Conservative B Aggressive B Moderate = Conservative Conservative

= Ageressive B Moderate.
740

Percent of Energy savings

§2
100
i)

Tuning Mode.
Data cache

Tuning Mode
Data cache

Aggressive(prior work) imposed QoS degradation as high
as 7X, on average

Tuning Mode:
Instruction cache

Tuning Mode
Instruction cache

Otherwise
v’ Aggressive(prior work) achieved highest savings _'—)
» However required priori knowledge of
v Moderate mode imposed QoS degradation, at most 1
v Conservative mode average QoS degradation < 1.00

application
v Moderate and conservative modes results in comparable
energy savings

[Conclusion h

Designing approach for CED’s
J Saving energy does not require a priori knowledge of
applications
+ Enables scalability to an arbitrary number of
unknown (future), third-party applications
+ Meets consumer goals
Tuning modes provide flexible adherence to QoS
/ expectations
~ Can incorporate tuning modes for disparate
conditions/situations, such as

Environmental Experience/Personal

%
[&

Comparison to prior work
Prior work!!l?l saved more energy, however

b © (-) Incurred as much as 109.2% and 132.5% more
tuning overhead while tuning

o (-) Requires long applications execution to
amortize the tuning overhead

Prior work degraded QoS up to 7X more, compared to
our approach
o (-) Can be completely avoided only with a priori
knowledge of applications!!!
o Not possible for CEDs

e

Future expansion
Interdisciplinary collaboration

» Psychology behind consumer expectations and its
impact on design constraints

» Quantification of consumer feelings, moods,
and thoughts
» Other factors such as time of use (day, night,
etc.), place of operation (office, construction
site, on-route, etc.), ...
Architecture innovations
» Performance & energy expectations vs. privacy &
security
» Adaptability to Internet of Things (IoT) devices

» Tuning through IoT
References

[1] Wang, W., Mishra, P., Gordon-Ross, A. “SACR: e Cache
Reconfiguration for Real-Time Embedded Systems,” Int. Con. on VLSI Design,
2009.

[2] Zhang, C., Vahid, F. “Cache configuration exploration on prototyping
platforms,” IEEE International Workshop on Rapid Systems Prototyping, 2003

Tty

\ S

.

