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In the era of Internet of things, billions of embedded devices need to be powered with battery and tolerate the inconvenience come with recharging and replacing the battery. Energy harvesting is
appealing to embedded systems especially in sensing since while the performance of embedded systems is improving every year, the battery development is lagging. However, the energy
harvested from environment is usually weak and intermittent. With traditional CMOS based technology, whenever the power is off, the computation has to start from the very beginning. If we can
save the intermediate computation and resume it when the power comes back, we can compute larger tasks with intermittent power. Compared with existing CMOS based memory devices such
as SRAM which stores the data with charges, emerging Non-volatile memory devices such as PCM and STT-RAM, have the benefits of sustaining the data even when there is no power. These new
devices bring promising opportunities to the computing paradigm since they have extremely low leakage power and better scaling than CMOS technology. With Non-volatile computing, we can
turn off the processor and resume from where was left. In this way, we can either turn off processor on purpose to save energy or passively survive unstable power. This research focuses on
achieving non-volatile computing for modern embedded systems.
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Non-volatile memory technologies have extremely
low leakage power and better scaling.
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Energy harvesting has several
advantages over batteries in the
era of I0T:
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2)Environmentally friendly.
3)Pervasively available.
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The energy harvested from environment is usually weak and intermittent. With traditional CMOS based

technology, whenever the power is off, the computation has to start from the very beginning.

The length of computation is limited by the power you can obtain during this power cycle, which limits the
application of energy harvesting powered computing.

If we can save the intermediate computation and resume it when the power comes back, we can compute

larger tasks with intermittent power.
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Stack is a dynamic data structure, which increases and decreases along the program execution.

Main idea: instead of saving everything at the moment the interrupt signal is
received, we can let the processor continue the execution to a point where the
stack size is smaller. Then do the checkpointing.

Stepl: Figuring Out Feasible Backup Positions

Problem description: When an energy warning /N occurs, decide where to
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Step2: Determining The Backup Position
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Consistent execution

Rollback to a bad checkpoint causes inconsistency. Rollback to a good checkpoint avoids inconsistency.

Changing the checkpoint position can eliminate inconsistency error!
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and across different blocks.

In order to reduce the overhead, energy-
efficient checkpointing mechanism is proposed
by setting two thresholds for voltage level: T1

and T2.
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The benefits are twofold. First, we are making more progress. Second, we are saving less data and increase successful rate.
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Future Work

Ubiquitous Smart Low-Power Computing is Not Far Away.

More applications...
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