CSR: Quality of Configuration in Large Scale Data Centers (CNS 4107876) PI: Krishna Kant, Temple University

Introduction

Misconfiguration Problem

- The vendors often advertise five 9's or better availability
- But, too many downtime episodes, to meet these goals.
- Substantial impacts in many areas:
- unsatisfactory online customer
- experience, lost revenue,
- lost customer goodwill,
- high infrastructure & operational costs

How bad are misconfigurations?

- Responsible for 62% of downtime and
- 65% of security exploits (2011 study). • Expected to continue increasing due to
 - Extensive virtualization,
- Architectural heterogeneity, and
- increasing size and complexity

Why Downtimes?

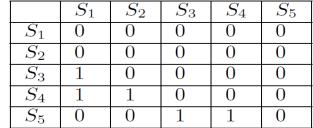
- Misconfigurations:
- inadequate or flawed operating procedures coupled with hardware and software
- misconfigurations and human mistakes, ad-hoc procedures are used in the first place,
- ad-hoc fixes are implemented to fix problems
- Failures:
- hardware failure.
- operating system or software failure, - intrusion, virus outbreak, or
- natural disaster
- Planned outages for relocations. upgrades, etc.

The goal

- Systematic analysis of the operational issues and misconfigurations to minimize downtime or impact on performance.
- Study mechanisms to improve the data center availability and resilience.

Progressive Recovery in Data Centers

Introduction


- Disruptions in data centers:
- Natural disaster \rightarrow Japan earthquake, Hurricane Sandy
- Storms or lightning took down Google's St. Ghislain data center operations for five days Technical hiccups (hardware, software failure, virus outbreak) affected the services of Bank
- of America and Amazon centers for 4-6 days - Relocation of data center or upgrade
- Problems in restoration
- Requires multiple stages \rightarrow sometimes take a
- few weeks to several months - In each stage, the partially recovered
- infrastructures are can provide limited services at some degraded service level

Key Design challenges

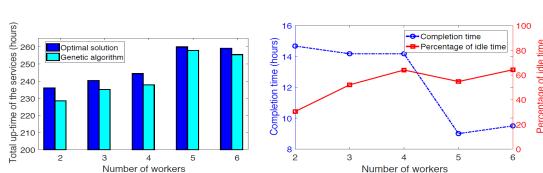
- Devise a restoration plan to support partial business continuity, that allows applications to progressively come back online after failures or disruptions.
- Speed of restoration limited by several factors
- A large disaster brings down multiple data center services
- Services in a data center are often interdependent
- Precise recovery sequence of services crucial to restore the most critical applications back first
- The availability of human resources with the desired expertise is limited

Proposed Heuristics

- The problem is NP-hard → Solved using a genetic algorithm based meta-heuristics
- The server restoration sequence is embedded in the chromosome structure \rightarrow a gene represents a server to be restored - S1—S2—S3—S4—S5
- Different than traditional genetic algorithm \rightarrow because of the inter-dependencies
 - Precedence constraint - S5—S4—S3—S2—S1 is a wrong chromosome
 - structure

data-center-after-a-natural-disaster/

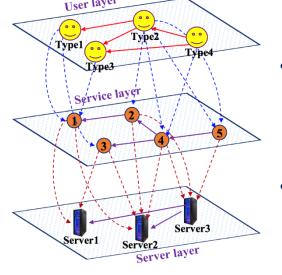
2-layer Interdependency Framework


- Service Layer: User level and low level helper services
- Human resource system, Active directory authentication, Microsoft DNS etc. Server Layer: Servers that need to be
- restored Web front end server, application server, database
- server etc. Inter-layer dependency:
- Human resources \rightarrow Application server, database server
- Intra-layer dependency:

– Email services, human resources and SharePoint \rightarrow depend on the DNS and Active Directory services Web client \rightarrow depends on the front and back end servers for email services

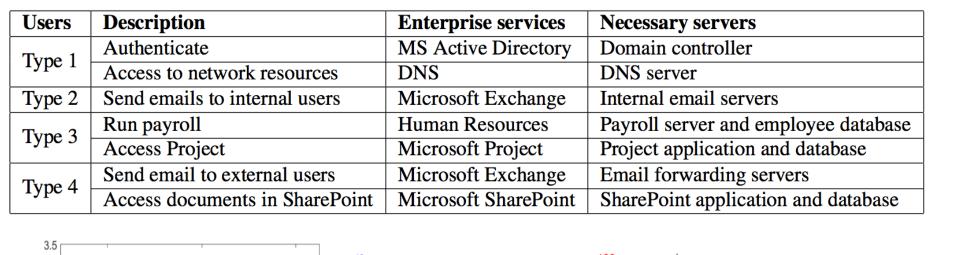
Performance Evaluations

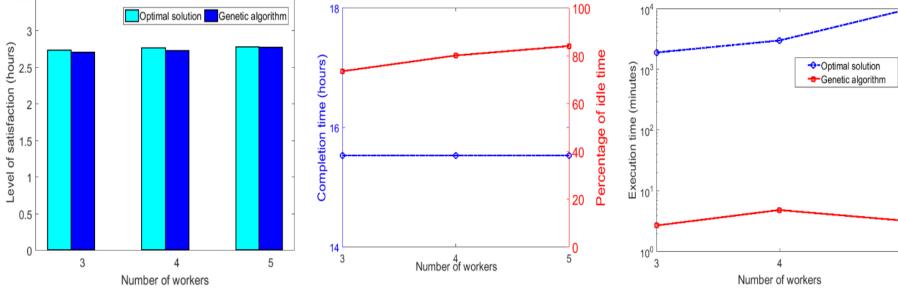
- The optimal solution obtained from PuLP solver
- The total up-time increases by ~12% as the number of workers increase from 2 to 6
- There is a significant worker idle time due to the
- inter-dependencies • The accuracy of the genetic algorithm is no
- worse than 1/1.04 times that of the optimal value

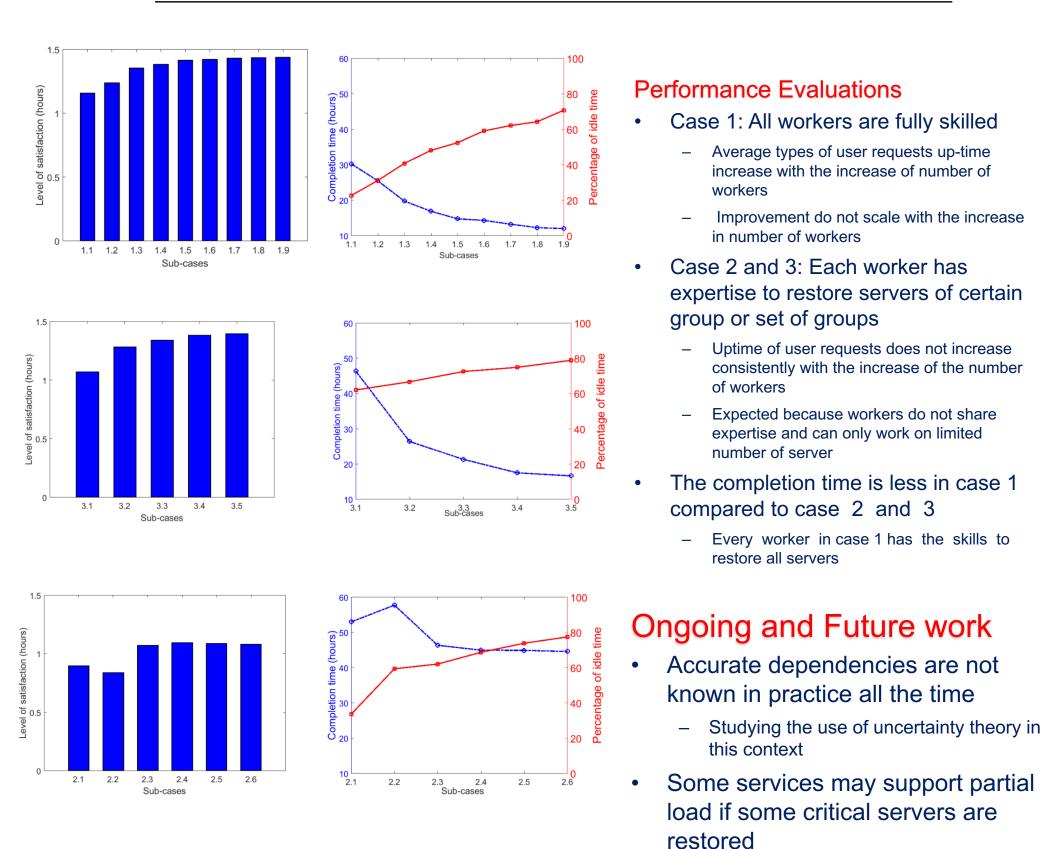

I. El-Shekeil, A. Pal, K. Kant, Progressive recovery of interdependent services in enterprise data centers, in: IEEE Resilience Week, 2016, pp. 27–32.

(Ibrahim El-Shekeil, Ph.D. Student, Amitangshu Pal, Postdoctoral Fellow)

Progressive Recovery in Data Centers


Contribution


- Characterize data center users based on their service requirements, and divide them in different types.
- Goal: Maximize #requests served during the entire recovery process.
- Considerations
- Interdependencies between various services & servers (or server features)
- Multiple types of user requests - Human-related constraints and
- expertise


3-layer Interdependency Framework

- Layer-1 or user layer consists of different types of user requests
- Layer-2 or service layer consists of the set of services that the enterprise provides
- Layer-3 or server layer consists of the servers that need to be restored to bring back the services

Cases	Sub-cases	W	Worker skills		
	1.1	3		# of Servers	
Case 1	$\frac{1.1}{1.2}$	<u> </u>	$\frac{1}{1} \text{Oracle DB} 3$	30	
	1.2	6	WW WW Croup 1.7	8	
	1.3	8	NAV NAV Croup 1.7	28	
	$\frac{1.4}{1.5}$	<u> </u>		7	
	$\frac{1.5}{1.6}$	$\frac{10}{12}$	$\frac{\mathbb{W}_1 - \mathbb{W}_{10} \rightarrow \text{Group 1-7}}{\mathbb{W}_1 - \mathbb{W}_{10} \rightarrow \mathbb{G}_1 - \mathbb{W}_1} = 5 \qquad \text{Microsoft} \qquad 7$	7	
	$\frac{1.0}{1.7}$		$\frac{\mathbb{W}_1 - \mathbb{W}_{12} \rightarrow \text{Group 1-7}}{\mathbb{W}_1 - \mathbb{W}_{12} \rightarrow \mathbb{G}_{12} + \mathbb{G}_{12}} = \frac{5}{6} \qquad \text{Oracle App} = 1$	10	
		14	$\frac{\mathbb{W}_1 - \mathbb{W}_{14} \rightarrow \text{Group 1-7}}{\mathbb{W}_1 - \mathbb{W}_{14} - \mathbb{G}_{12} - \mathbb{G}_{12}} = \frac{1}{7}$	17	
	1.8	16	$\mathbb{W}_1 - \mathbb{W}_{16} \to \text{Group 1-7}$		
	1.9	20	$\mathbb{W}_1 - \mathbb{W}_{20} \to \text{Group 1-7}$		
	2.1	2	$\mathbb{W}_1 \to \text{Group 1,6,7}; \mathbb{W}_2 \to \text{Group 2-5}$		
Case 2	2.2	3	$\mathbb{W}_1 \to \text{Group 1-2}; \mathbb{W}_2 \to \text{Group 3-4}; \mathbb{W}_3 \to \text{Group 5-7}$		
	2.3	4	$\mathbb{W}_1 \to \text{Group 1}; \mathbb{W}_2 \to \text{Group 2,4,5}; \mathbb{W}_3 \to \text{Group 3}; \mathbb{W}_4 \to \text{Group 6,7}$		
	2.4	5	$\mathbb{W}_1 \to \text{Group 1}; \mathbb{W}_2 \to \text{Group 2,4,5}; \mathbb{W}_3 \to \text{Group 3}; \mathbb{W}_4 \to \text{Group 6};$		
			$\mathbb{W}_5 \to \text{Group 7}$		
	2.5	6	$\mathbb{W}_1 \to \text{Group 1}; \mathbb{W}_2 \to \text{Group 2,5}; \mathbb{W}_3 \to \text{Group 3}; \mathbb{W}_3$	$\mathbb{V}_4 \rightarrow \text{Group } 4;$	
			$\mathbb{W}_5 \to \text{Group 6}; \mathbb{W}_6 \to \text{Group 7}$		
	2.6	7	$\mathbb{W}_1 \to \text{Group 1}; \mathbb{W}_2 \to \text{Group 2}; \mathbb{W}_3 \to \text{Group 3}; \mathbb{W}$	$V_4 \rightarrow \text{Group } 4;$	
			$\mathbb{W}_5 \to \text{Group 5}; \mathbb{W}_6 \to \text{Group 6}; \mathbb{W}_7 \to \text{Group 7}$		
	3.1	4	$\mathbb{W}_1 \to \text{Group 1}; \mathbb{W}_2 \to \text{Group 2,4,5}; \mathbb{W}_3 \to \text{Group 3}; \mathbb{W}_4$		
Case 3	3.2	8	$\mathbb{W}_1, \mathbb{W}_2 \rightarrow \text{Group 1}; \mathbb{W}_3, \mathbb{W}_4 \rightarrow \text{Group 2,4,5}; \mathbb{W}_5, \mathbb{W}_6$	$_6 \rightarrow$ Group 3;	
			$\mathbb{W}_7, \mathbb{W}_8 \to \text{Group } 6,7$		
	3.3	12	$\mathbb{W}_1 - \mathbb{W}_3 \rightarrow \text{Group 1}; \mathbb{W}_4 - \mathbb{W}_6 \rightarrow \text{Group 2,4,5}; \mathbb{W}_7 - \mathbb{W}_7$	$\mathbb{W}_9 \to \text{Group } 3;$	
			$\mathbb{W}_{10} - \mathbb{W}_{12} \rightarrow \text{Group 6,7}$		
	3.4	16	$\mathbb{W}_1 - \mathbb{W}_4 \rightarrow \text{Group 1}; \mathbb{W}_5 - \mathbb{W}_8 \rightarrow \text{Group 2,4,5}; \mathbb{W}_9 - \mathbb{W}_9$	$V_{12} \rightarrow \text{Group 3};$	
			$\mathbb{W}_{13} - \mathbb{W}_{16} \rightarrow \text{Group 6,7}$		
	3.5	20	$\mathbb{W}_1 - \mathbb{W}_5 \rightarrow \text{Group } 1; \mathbb{W}_6 - \mathbb{W}_{10} \rightarrow \text{Group } 2,4,5; \mathbb{W}_{11} - \mathbb{W}_{10} \rightarrow \mathbb{W}_{10} = 0$	$\mathbb{V}_{15} \rightarrow \text{Group } 3;$	
			$\mathbb{W}_{16} - \mathbb{W}_{20} \rightarrow \text{Group } 6,7$		

I. El-Shekeil, A. Pal, K. Kant, PRECESION: Progressive Recovery and Restoration Planning of Interdependent Services in Enterprise Data Centers, Submitted to Elsevier DCN Journal

We will examine this consideration in

our model to make it more practical

IP Address Consolidation and Reconfiguration in Enterprise Networks

Introduction

- Private IP addressing is used inside enterprise networks
- Different enterprises or even different locations/business units of the same enterprise use the same IP address ranges As long while those networks are separate
- During mergers and acquisitions, or network consolidations within an enterprise
 - Overlapped and conflicted IP segments (subnets) arise frequently
 - Result in misrouting or endless looping of traffic if not corrected Must be identified and resolved
 - The combined network may unnecessarily
 - use many disparate IP address ranges Increases the size of the routing tables Makes routing integrity verification difficult

- Resolving IP ranges overlaps and conflicts – IP subnet change Need to coordinate changing firewall rules,
 - DNS entries, proxy servers, load balancers,
 - Network Address Translation (NAT) NAT an alternative solution to IP change Some applications don't work natively with
- NAT: additional administration cost Networks may use many dis-contiguous IP address ranges
- Increases the size of the routing tables
- Makes routing integrity verification difficult The problem is further complicated in case
- of partial merger Company A may split itself into parts A1 and A2 A2 merges with company B
- Routes between A1 and A2 must be restricted via suitable firewalls
- It is necessary to establish new routes between A2 and B that do not go through A1 Existing misconfigurations, overlaps and conflicts within and across entities make this transition more challenging

Subnet Addr

10.1.0.0/24

10.1.1.0/24

10.1.2.0/24

10.2.0.0/24

10.1.3.0/24

10.2.2.0/24

10.2.3.0/24

10.2.1.0/24

subject to $x_i + x_j \le 1$, $\forall (i, j) \in E$

 $x_i \in \{0,1\} \quad \forall i \in V$

10.1.3.0/24

Subnet no | Location L

 $w_i = \sum_t \eta_i^t \omega^t$

Maximize $\sum w_i x_i$

 s_{10}

 s_{11}

#Active IPs of type

1 2

200 0 0

200 0 0

200 10 0

200 10 0

200 0 0

0 10 0

200 0 0

2.00

10.1.0.0/22 500 0 0

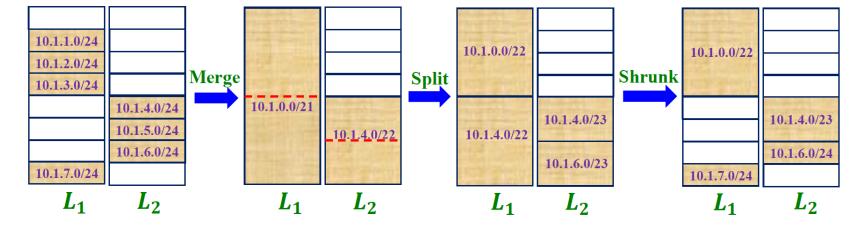
10.1.3.0/24 0 0 100

Contribution:

• We identify different conflict scenarios and consider ways of resolving those conflicts to minimize manual changes

- Consolidating the subnets in large organizations
- Such that the reassignment of IP addresses (which often must be done manually) is minimized - The number of distinct routes that must be recorded in the routing table is minimized

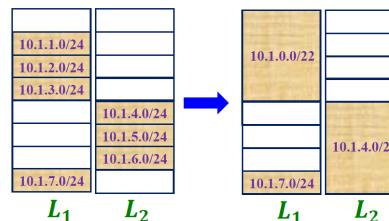
Address Conflict Resolution


- Objective: Minimize IP address change cost to resolve all conflicts
- Step1: Identify subnets for movement - Subnets in location L3 overlap with locations L1, L2 and L4
 - There are overlaps in between locations L1, L2 and L4 itself.
- Step 2: Form the conflict graph Vertices: subnets, Edges: conflicts
- The cost (weight) of a subnet (vertex)
- The number of physical entities that needs to be manually
- Their relative importance depending on their types • Step 3: Build the Maximum weight independent
- set (WIS) of the conflict graph
- To retain the best possible combination of subnets and change others
- The WIS problem is NP-hard

Address Space Consolidation

• After the conflict resolution and reallocation stage the subnets are now in a non-conflicting stage

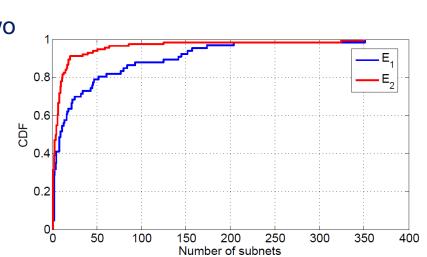
- Address space consolidation stage
- Purpose: Routing table entries of the routers and gateways are largely minimized


• Step1: Generate a coalition formation game for this consolidation operation

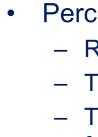
• Step2: Resolve another level of conflicts that may arise due to the consolidation phase Removing conflict due to the consolidation

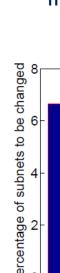
- After the coalition formation stage there may be some overlapping summary addresses

- Solve the WIS:
 - Vertices are the coalitions
- Edge weights are the cumulative weights of all the subnets in that coalitions




Performance Evaluations


• Simulations are done based on real-world data from two

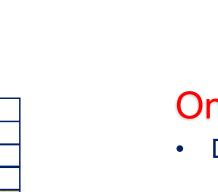

- recent mergers E_1 and E_2 Distribution of the number of subnets in different
- locations
- The distribution is highly skewed
- 80-90% of the locations have < 50 subnets
- Maximum number of subnets at any location is around 350

Scenario	Locations	Subnets
E_1	66	2473
E_2	113	1726
$E_1 + E_2$	179	4199

Conclusions

	0	
•	We	di
	ado	dre
	ado	dre
	_	De
	_	Di

– P		m
	_	Ρ


Introduction

- Fault diagnosis comprises of detection and localization
- Challenging problem
- Many components,
- large set of configuration parameters
- restrictions on parameter values, - interdependencies between parms, services,
- etc. - Virtualization makes finding the root cause of
- failures and localization of faults even more complex.
- Testing some services require simultaneously running tests from multiple stations

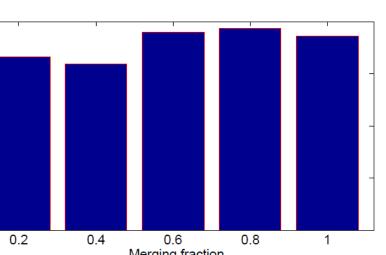
Ongoing Works

- Fault localization
- set of tests that detected a failure is not sufficient for fault localization
- goal is to minimize the diagnoses time by selecting the optimal set of tests that lead to finding the fault.

I. El-Shekeil, A. Pal, and K. Kant. "Fast Diagnosis and Localization of Problem Area(s) in Data Centers". Work in progress

Performance Evaluations

• Percentage of subnets to be changed for a conflict-free merging of E_1 and E_2 Number of subnets that needs to be changed varies from 6-8%


- By changing few subnet addresses the enterprises can effectively remove all conflicts - The amount of change needed does not vary significantly with the increase in merging fraction

• Because of the highly skewed nature of the subnet distribution in these enterprises

• Percentage of subnet entries reduced after the consolidation process Reduce the subnet entries by 80-90%

- The subnet consolidation is also effective even within an enterprise

- The amount of improvement does not change significantly with the increasing merging fraction \rightarrow skewed nature of the distribution

discussed the problem of resolving IP ress conflicts and consolidating the IP

- ess space in large enterprises Devised a conflict resolution scheme
- Discussed an address space consolidation nechanism
- Preliminary study to overcome the address space issues in large enterprises especially at the time of merging
- Resolve the subnet conflicts by changing 6-8% of the subnet addresses
- Reduces the number of subnet entries by
- 80-90% by consolidating the subnet entries.

Ongoing and Future work

- Studying the aggressive change of subnet addresses
- Tradeoff between the extent of IP address changes and the resulting reduction in number of subnets • Optimal ordering of the address change
- may be too expensive On-line methods of conflict resolution/consolidation that can be run concurrently with the normal operation of the network
- A complete solution to ensure smooth functioning of all resources that depend upon IP addresses (e.g., firewalls, routers, DNS, load balancers, etc.)

I. El-Shekeil, A. Pal, and K. Kant. "IP Address Consolidation and Reconfiguration in Enterprise Networks". In: 2016 25th International Conference on Computer Communication and Networks (ICCCN). 2016, pp. 1–9.

Fast Diagnosis and Localization of Problem Area(s) in Data Centers

- Detection failures
 - Select the minimal number of tests to detect failures

Goal

- Develop mechanisms to find the optimal set of tests to localize the fault(s) in the presence of multiple layers of capabilities/services and interdependencies.
- media 0 e

E. Ivov, "Hangout-like video conferences with jitsi videobridge and xmpp," 2013.

signalling

Web servers	 Active Directory
Application servers	
All databases	Dedicated application servers for search components

Technical diagrams for SharePoint 2013, https://technet.microsoft.com/enus/library/cc263199.aspx