
Realizing API Virtualization on Android
Taeyeon Ki, Alexander Simeonov, Bhavika Pravin Jain, Chang Min Park, Keshav Sharma

Karthik Dantu, Steven Y. Ko, Lukasz Ziarek

I. Motivation

Mobile vendors control platform distribution channels.

Unlike mobile platforms, mobile apps are open for third parties.

II. Propose
q Injecting a replacement class

that contains custom code for
each platform API class that a
third-party developer wants to
replace

q Rewriting the binary of an app so
that the app code uses replace-
ment classes instead of platform
API classes

q Distributing the new implementa-
tion through standard app distri-
bution channels

27
28
29

Ca
ll

Av
er

ag
eT

im
e(

us
)

Original App
Instrumented App

ge
tL

in
e1

N
um

be
r

ge
tD

ev
ic

eI
d

ge
tC

el
lL

oc
at

io
n

isW
ifi

Co
nn

ec
te

d

ge
tL

as
tK

no
w

nL
oc

at
io

n

pu
tV

al
ue

In
Pr

ef
er

en
ce

ge
tV

al
ue

Fr
om

Pr
ef

er
en

ce

pu
tV

al
ue

In
Fi

le

ge
tV

al
ue

Fr
om

Fi
le

pu
tV

al
ue

In
SQ

Li
te

ge
tV

al
ue

Fr
om

SQ
Li

te

0
1
2
3
4

0 5 10 15 20 25 30
Time (s)

0

50

100

150

T
ot

al
H

ea
p

S
iz

e
(M

b)

Original App
Instrumented App

Call Latency to Invoke Platform Methods Heap Usage of Temple Run

Power Consumption Measurement

App Name Average Consumption 
(10 minutes / 5 runs) Std. Deviation

WatchESPN (Sports)
WatchESPN*

781.5
790.3

20.0
17.4

The Weather Channel (Weather) 
The Weather Channel *

170.2
181.4

13.6
8.9

TempleRun (Game)
TempleRun*

991.5J
992.95J

29.5J
22.3J

q Samsung Galaxy Nexus Devices running Android 4.4
q Enabling stay-awake mode
q Set CPU governor to “Performance” 

q To measure call latency, we use a 
micro-benchmark app that calls eleven 
platform methods from four categories: 
device information, network, storage, 
and sensing (GPS).

q To measure runtime memory usage, 
we use one popular game that uses 
accelerometer and gyroscopes on a 
mobile phone for game play, and 
contains a heavy UI component.

IV. Initial Results

III. Contribution
q Mitigating the lack of openness in mobile systems by proposing API Virtualization
q Exploring and addressing a unique set of challenges that API Virtualization brings in

order to correctly and completely handle all features of Android and Java.
q Realizing API Virtualization prototype, and showing its feasibility and practicality

App Name #Class APK Size Inst. Time

WatchESPN (Sports)
WatchESPN*

7192
9388

9.7M
11M

N/A
133.1 (sec)

The Weather Channel (Weather) 
The Weather Channel *

8377
10724

14M
16M

N/A
146.2 (sec)

TempleRun (Game)
TempleRun*

1213
2689

23.8M
24.7M

N/A
26.44 (sec)

() denotes application category and * denotes an instrumented app.

Instrumentation Statistics

V. Use Cases

1. Vendor-Tied Library Switching: Google Maps to Amazon Maps

2. Runtime Permissions: Runtime Internet Permission

Transformation

with API virtualization

Transformation

with API virtualization

Original AirBnb with Google Play 
Services on a Google device

Original AirBnb
on an Amazon device

Instrumented AirBnb
on an Amazon device

Original Twitter Instrumented Twitter with
a runtime Internet permission

VI. Conclusion

API Virtualization enables open innovation in Android. Also, it allows
third-party developers to inject custom code into an app binary. Through
API virtualization prototype on Android, we show the feasibility and
practicality of our API virtualization, and the low overhead that API
virtualization imposes.

Injecting a runtime 
Internet permission


