
Good scalability

Modern Stream Processing on a Multicore Machine

1. Motivation

2. Key Mechanism: Cascading Containers for
Processing Stream Epochs in Parallel

3. Key Results

4. Ongoing and Future Work

PI: Felix Xiaozhu Lin, Purdue ECE NSF CSR #1619075
http://xsel.rocks/p/streambox

http://xsel.rocks

• Single multicore machine for stream processing:
• Terabyte DRAM, large numbers of cores, and fast I/O

• Challenges of stream processing on a multicore machine:
• Handling out-of-order input data
• Exploiting parallelism to harness tens of CPU cores
• Exploring memory hierarchy to minimize data move
• Achieving both high throughput and low latency

09:00

04:00

00:00

25:00 15:0020:00
(Upstream)

Window

Aggregation

Sink

OldestNewest

1

Mapper

Unclaimed
bundle

Retrieved bundle
(not consumed yet)

3
A2 A1A3

S4 S3 S2 S1

M1

W1

(Downstream)

2

W2

Flow of bundles
& watermarks

0

2000

4000

6000

4 12 32 56Th
ro

ug
hp

ut
 K

R
ec

/s

Cores

StreamBox Spark Streaming

7K 10K 10K 8K

Superior multicore performance compared
to popular streaming engines

Good multicore
scalability

• Optimizing streaming operator performance
• Making StreamBox dataflow NUMA-friendly
• Exploiting heterogeneous memory architecture, e.g.

Intel Knights Landing
• Guaranteeing data security, e.g. confidentiality and

integrity, during stream processing

 0

 1000

 2000

 3000

 4000

 5000

 4 12 32 56

Th
ro

ug
hp

ut
 K

Re
c/

s

Cores

Tweets Sentiment Analysis

CM56 (1sec)
CM56 (500ms)

CM12 (1sec)
CM12 (500ms)

Test platforms:

CM56: Dell PowerEdge R930. 4x Intel Xeon E7-4850v4 (14C/28T); 256GB DRAM; 1TB SSD
CM12: Dell PowerEdge R720. 2x Intel Xeon E5-2630v2 (6C); 256GB DRAM; 4x 3TB SAS HDD

• Built StreamBox from scratch in 23K SLoC C++
• Designed Cascading Container mechanism for

processing out-of-order stream in high concurrency
• Achieved both high throughput and low latency -–

20x lower than popular large-scale streaming
engines

Apache
Beam

