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• Single multicore machine for stream processing:
• Terabyte DRAM, large numbers of cores, and fast I/O

• Challenges of stream processing on a multicore machine:
• Handling out-of-order input data 
• Exploiting parallelism to harness tens of CPU cores
• Exploring memory hierarchy to minimize data move
• Achieving both high throughput and low latency
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Superior multicore performance compared 
to popular streaming engines

Good multicore 
scalability

• Optimizing streaming operator performance
• Making StreamBox dataflow NUMA-friendly
• Exploiting heterogeneous memory architecture, e.g. 

Intel Knights Landing
• Guaranteeing data security, e.g. confidentiality and 

integrity, during stream processing
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Test platforms:

CM56: Dell PowerEdge R930. 4x Intel Xeon E7-4850v4 (14C/28T); 256GB DRAM; 1TB SSD
CM12: Dell PowerEdge R720. 2x Intel Xeon E5-2630v2 (6C); 256GB DRAM; 4x 3TB SAS HDD

• Built StreamBox from scratch in 23K SLoC C++
• Designed Cascading Container mechanism for 

processing out-of-order stream in high concurrency
• Achieved both high throughput and low latency -–

20x lower than popular large-scale streaming 
engines
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