
We proposed a reconfiguration approach for multicore SOCs:

 DCR on L1 private caches

 CP (cache partition) on the shared L2 cache

 the approach (Fig. 5) works in three steps: (1) static task

profiling on each core (2) dynamic algorithm to optimize

on each core (3) optimize among all cores to find the

partition scheme among all cores.

Experimental Results:

 Deadline and vulnerability threshold has impact on the

optimization process. (Fig. 6)

 Compared with the state-of-art, we gain significant

vulnerability reduction (on average 49.3%) with minor energy

overhead (on average 5.6%). (Fig. 7)

The goal of this project is to develop an

efficient dynamic reconfiguration framework to

enable adaptive computation, communication

and storage in heterogeneous multicore SoCs

under energy, performance, reliability, thermal

and real-time constraints.

 Reconfiguration Primitives

 Dynamic voltage and frequency scaling

 Dynamic task mapping to CPU/GPU cores

 Dynamic NoC reconfiguration

 Dynamic cache reconfiguration

 Objectives / Constraints

 Power, performance, energy, reliability,

temperature and real-time constraints

 Embedded systems are highly heterogeneous

computing platforms, which include multiprocessor

system-on-chip (MpSoC), touch displays, modems,

flash memory, camera, GPS modules, etc.

 MpSoC itself consists of many different processing

elements (PE) including multiple CPU cores,

graphical processing units (GPU), DSP cores and

video accelerators, as shown in Fig.1(a).

 Only a subset of the resources are invoked during the

lifetime of an application. For example, a navigation

application goes through a number of phases as

illustrated in Fig. 1(b).

 The task model is a graph where the nodes are the

set of tasks and edges indicate communication

between tasks.

 The tasks can be dependent or independent, periodic

or aperiodic with soft or hard deadlines.

 It is critical to distribute power budget efficiently between the

CPU and GPU.

 Our technique provides high throughput by efficient

distribution of power slack.

 Results using mobile platform show average increase of 15%

in frame rate compared to existing algorithms.

 Developed a dynamic reconfiguration framework for mulicore

SoCs, and demonstrated its feasibility through dynamic

cache reconfiguration as well as dynamic power budgeting.

 Our future work includes developing techniques for NoC

reconfiguration as well as exploring synergy between

computation, communication and storage reconfiguration

under energy, thermal, reliability and real-time constraints.

 Y. Huang and P. Mishra, Reliability & Energy-aware Cache Reconfiguration for Embedded

Systems, IEEE Intl. Symp. on Quality Electronic Design (ISQED), 2016. Best Paper Award

 M. Chen, X Zhang, G. Pu, X. Fu, P. Mishra, Resource Constrained Scheduling using

Parallel Structure-Aware Pruning Techniques, IEEE Trans. on Computers, 65(7), 2016.

 Y. Huang and P. Mishra. Vulnerability-aware Energy Optimization using Reconfigurable

Caches in Multicore Systems. Submitted to ICCAD 2017.

 Z. Wang, S. Ranka, P. Mishra, Task Partitioning and Scheduling for Thermal Management in

Multicore Processors, IEEE Intl. Symposium on Quality Electronic Design (ISQED), 2015.

 M. Chen, D. Yue, X. Qin, X. Fu and P. Mishra, Variation-Aware Evaluation of MPSoC Task

Allocation and Scheduling Strategies using Statistical Model Checking, DATE 2015.

 G. Singla, G. Kaur, A. K. Unver and U. Y. Ogras. Predictive dynamic thermal and power

management for heterogeneous mobile platforms. DATE 2015.

 U. Gupta, R. Ayoub, M. Kishinevsky, D. Kadjo, N. Soundararajan, U. Tursun and U. Y.

Ogras. Dynamic power budgeting for mobile systems running graphics workloads, IEEE

Transactions on Multiscale Computing Systems, 2017.

Acknowledgments: This work was partially supported by the NSF grant (CNS-

1526687) and Intel Corporation. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not

necessarily reflect the views of any of the sponsors.

Introduction Dynamic Cache Reconfiguration Dynamic Power Budgeting

Conclusion and Future Directions

Prabhat Mishra

University of Florida

Fig.1: (a) Heterogeneous MpSoCs, (b) application flow, and

(c) run-time change in requirements.

Motivation

Fig.2: Modeling of architecture, tasks and their mappings.

Compute the Power Slack ∆𝑃total
𝑘

Update the frame rate target

Δ𝜇𝑑
𝑘+1

Compute 𝑆cpu
𝑘 and 𝑆gpu

𝑘

Compute 𝑓cpu
𝑘 , 𝑓gpu

𝑘

Get Δ𝑝cpu
𝑘 , Δ𝑝gpu

𝑘 and Δ𝜇𝑑
𝑘

by solving 𝒃𝑘 = 𝑨𝑘𝒙𝑘

It
e
ra

te
 e

v
e
ry

 c
o

n
tr

o
l

in
te

rv
a
l

Fig. 3: A multicore system with Reconfigurable

L1 caches and way-partitioned L2 cache.

DCR in Multicore SoCs:
Multicore processors impose

unique opportunities as well as

challenges in applying cache

reconfiguration.

We consider a general cache

hierarchy in which each core has

its own L1 private cache and

groups of cores can share caches

(e.g., L2) at different levels.

L1 caches DCRhave impact on L2

CP in performance / energy /

vulnerability as in Fig. 4.

Fig. 4: Inter-dependence of L1 DCR and L2 CP on (a) L2 Misses, (b) IPC, (c) Runtime, (d) Energy

and (e) Vulnerability.

Fig.5: Three-step optimization for L1 DCR + L2 CP

Fig.6: Effects of deadline and vulnerability threshold on Core 1 for Task Set 1.

Energy consumption is smaller when threshold is not so strict. If threshold is too strict for

deadline or vulnerability, the optimization for this core can not find a solution.

Fig. 7: Comparison of energy consumption and vulnerability of different task sets.

MpSoCs contain several

processing elements (PE)

Graphics applications

demand high performance

High performance can lead

to thermal violations, as in

Fig. 8.

Power budget needs to be

dynamically allocated to

each PE

Fig. 8: Power budget violation for graphics applications

Fig. 9: CPU-GPU Work In Tandem

Fig. 10:Example Control Algorithm

Fig. 11: Total Power changes with number

of iterations.
Fig. 12: CPU power changes as we

choose different Pmax.

Fig. 13: Comparison of FPS (frame rates) for our approach, Heuristic-

dynamic, and Heuristic-static-90/10

Fig. 14: Comparison of average FPS (frame rates) for our approach,

Heuristic-dynamic, and Heuristic-static-90/10

Fig. 15: Total Power and FPS when there is no power constraint (a) and (b);

and when there is power constraint of Pmax (c) and (d).

Fig. 16: Power consumption when the application is CPU-Heavy, GPU-

Heavy in (a); and when the application is CPU-Light, GPU-Heavy in (b).

Umit Ogras

Arizona State University

Experimental Results

References
System Modeling

0 50 100 150 200 250 300
70

75

80

85

90
0 50 100 150 200 250 300

1

2

3

4

5

6

(b)

T
e

m
p

e
ra

tu
re

 (

C

)

Time (s)

T
o

ta
l
P

o
w

e
r

(W
)

Power Budget

Violation

(a)

3d
m

ar
k

G
Lben

ch
-T

re
x

G
Lben

ch
-E

gyp
t

Cita
del

Nen
am

ar
k2

Je
t-S

ki

Ave
ra

ge
0

5

10

15

40

50

60

70

%
 G

a
in

 i
n
 F

P
S

Pmax = 50% of Punconst Pmax = 70% of Punconst Pmax = 80% of Punconst Pmax = 90% of Punconst

3d
m

ar
k

G
Lben

ch
-T

re
x

G
Lben

ch
-E

gyp
t

Cita
del

Nen
am

ar
k2

Je
t-S

ki

Ave
ra

ge
-2

2

6

10

14

18

22

26

30

(d)(c)(b)(a)

3d
m

ar
k

G
Lben

ch
-T

re
x

G
Lben

ch
-E

gyp
t

Cita
del

Nen
am

ar
k2

Je
t-S

ki

Ave
ra

ge
-3
0
3
6
9

12
15
18
21
24
27

 Improvement over dynamic heuristic Improvement over static heuristic 90/10

3d
m

ar
k

G
Lben

ch
-T

re
x

G
Lben

ch
-E

gyp
t

Cita
del

Nen
am

ar
k2

Je
t-S

ki

Ave
ra

ge
-1

2

5

8

11

14

17

0.5 0.6 0.7 0.8 0.9

0.7

0.8

0.9

1.0

1.1

N
o

rm
a

li
z
e

d
 A

v
e

ra
g

e

F
P

S

P
max

/P
unconst

 Power buget controller

 Heuristic-dynamic

 Heuristic-static-90/10

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1 2 3 4 5 6 7 8 9 10
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

F
ra

m
e

 r
a

te
 (

F
P

S
)

Time (s)

CPU-Heavy
CPU-Light

CPU-LightCPU-HeavyCPU-Heavy CPU-Light

Time (s) Time (s)

F
ra

m
e

 r
a

te
 (

F
P

S
)

T
o

ta
l

P
o

w
e

r
(W

)

(d)(b)

T
o

ta
l

P
o

w
e

r
(W

)

 Pmax = 2.5 W Pmax = 1.8 W

(a) (c)

CPU-Heavy CPU-Light

 No power constraint

Time (s)

No power constraint

Pmax
 = 2.5 W

Pmax
 = 1.8 W

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 CPU GPU

CPU - Light, GPU - Heavy

No power constraint

Pmax
 = 2.5 W

Pmax
 = 1.8 W

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CPU - Heavy, GPU - Heavy

P
o

w
e
r

(W
)

