GPU-Accelerated Multi-Display Applications for Large CAD Model
Visualization on a Commodity Desktop

Chao Peng and Yangzi Dong

Department of Computer Science, University of Alabama in Huntsville, Huntsville, AL, United States

Abstract Research Novelty

Comparing to the desktop with a single GPU, a multi-GPU platform |@ Parallel mesh simplification: The goal is to select a portion of
makes more video memory available across the GPUs, and results in a| vertices and triangles that can fit into GPU memory to construct an
tiled large display by connecting each GPU to a display monitor.| appropriately simplified version of the CAD model, which will
However, a multi-GPU platform may not always increase the overall| result in a good visual appearance from distance. Our parallel
rendering performance due to (1) imbalanced workload distribution| algorithm speeds up the performance by removing the data
among the GPUs, and (2) performance overheads caused by inter-GPU| dependency in edge-collapsing operations that exist in the

communication and synchronization. traditional sequential simplification algorithms.

In this work, a novel parallel load balancing approach 1s developed. It - N
partitions the screen dynamically to determine the amount of vertices| s = g “
and triangles fetched into each GPU. GPUs communicate to each other |55
only once per rendering cycle. The communication overhead is| 38.0M/25.0M 26.6M/17.5M 15.1M/10.0M
minimized by transferring only a small amount of image pixels rather (# of triangles / # of vertices)
than chunks of 3D data. Our approach is integrated seamlessly with the |® Parallel load balancing: A frustum strip parallel scheme 1s
state-of-the-art GPU acceleration techniques including parallel mesh| developed to partition the screen into regions and balance the
simplification, GPU out-of-core, and level-of-detail selection. As a| amount of vertices and triangles distributed across the GPUs.

7 o
O e
A BES1Ee o

7.4M/5.0M

result, our multi-GPU solution achieves real-time rendering e Four fiustum
performance o.n.multlple d.1sp1ays fO}‘ the CAD model composed of o |- strips are
hundreds of millions of vertices and triangles. '/ = generated by
i o) g | T evenly splitting
System OVerview usracd withtwoGPus) T = the screen.
“ [View frustum] [Selection result] [Selected vertices and trianglesj /(I:ramebuffer: The Screen The VIEW fl‘llStum
N~ N\ N\ T~ i
l LOD Load GPU Out- Triangl : F Displayed | o -
GPUs. Seiseton|| Balancing || or-Core || eformation 7| Fenerng [=b| (/FIE = R ers o Frame exchange: An efficient inter-GPU communication scheme
. g (Eelyeea Ealin) ; : |18 developed to exchange the rendered frame among the GPUs.)
T T S e — . it . \
T) g,) (Edoecotapsg s £ Performance Comparison
———————————— il abii ettt ittty ettty ialeiiiiaied , .
g (Edge-collapsing arrays) , , || We compared the FPS between the approach with our parallel load
| v v | . : : :
i LOD Load GPU Out- Triang| . F Displayed ||| balancing algorithm and th roach with 1nar reen
GPUIE “Selection:,> Balao:cing :,> of-Corue :‘/,\Refg?rzit?on:‘,> Rendering :‘,> Excr;l;ege :‘,>onlfnpo?1)i/teors i ba a C g d go t a d t C . app Oac A t d b d y SC ee
| | ~ 7 [|| partitioning load balancing algorithm. In the figure, each data point 1s
| [Vlew frustum] [Selectlon result] [Selected vertices and triangles | | Framebuffer i g) . . .
| D et on ho GPU QD Data on eGP s DS O on, . D oo labeled with the algorithm execution time. The wvalue 1n the

; _| parenthesis 1s the percentage of the algorithm execution time taking
Implementatlon out of the total time.

. . 22 -
We built a workstation .
with an Intel 3.50 | *'- tosme A8ams A8Ims LTSNS TS O
| < / 487MS o mooa (9.59%) (9.60%) 7 e
| MASE 25 W \EE, W b e~ | | GHz CPU (12 COI’CS), 20 - 4.95ms (49'%462}5) ©.58) O T —o—
| 8« NT1/4 %4 O B | 0 .36% ——
— e = | | 64GB RAM, and four B0TmS g oy OB e
HE ; S : ﬂ" B : ’ B i e . 19) (5 6 4%) /
1 - -' f. | oo : (9.25%)
Wl M | Nvidia GTX980 Ti St ——Ours

FPS

18 4 (5.61%) .
6GB GPUs.The \/@; D ~*-Binary

:] (11.18%) (13:90%) o, 11.93ms
Festllng softzlvare w}ells 17 487ms S20me osime Q10 10
|| 1mplemented on the 1270 LI
p .)) 16 - 15.24ms
64'b1t LlIlU.X Mlnt (24.98%) 16.73ms

(26.69%) 18.18ms

ey 1 1 11 1) S
=0T ot
a1 | 15 -
Sl MATE 18.1 system (28390

T] using C++, MPI, || H A 3) @ NG () 256 S120) 1024(10) 2048(11)
0 (1 3(3 16(4 32(5 64(6 128(7) 256(8) 512(9 2048(11
Perf()rm ance Bre akd()wns \ CUDA and OPGHGL- I Number of frustum strips (Number of binary splits))

Configurations # of LOD # of transferred Runtime processing components (millisecond)
Q’l‘fg‘e:t #of FPS| selected | ftrianglestoeach | |op Load |GPUOut-| Triangle |, . . | Frame
(miIIi%) GPUs triangles (million) GPU (million) Selection | Balancing| of-Core | Reformation 9| Exchange
1 18.74 0.45 4.80 — 22.93 2.59 27.14 —
20 2 119.99 27.62 0.35 0.30 4.08 2.70 16.41 1.51 13.29 11.92
4 |20.67 0.30[0.27(0.27(0.24 5.40 410 16.19 0.94 11.40 9.81
1 14.86 0.52 4.84 — 30.81 4.03 32.90 —
40 2 |16.76 46.89 0.45 0.39 3.92 2.7/3 20.77 2.2(15.79 16.41
4 |17.50 0.4110.37|0.36|0.34 5.54 413 19.44 1.46 13.17 13.94

Conclusion and Future Work

We developed GPU-based parallel algorithms to support the interactive rendering of large CAD models. We
demonstrated a load-balanced out-of-core rendering application on a quad-GPU platform. Our approach fully utilizes
distributed GPU memory. Advancing the state-of-the-art technologies such as SLI and Equalizer, our approach does not

require data to be replicated across the GPUs. In the future, we will evaluate our approach on a cluster system which m

contains more than four GPUs. THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE

- J

file:///Users/chaopeng/Documents/Research/Papers/mmr_multi_gpu_paper/images/frustum_strips.graffle/

