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Abstract Research Novelty

Comparing to the desktop with a single GPU, a multi-GPU platform |@ Parallel mesh simplification: The goal is to select a portion of
makes more video memory available across the GPUs, and results in a| vertices and triangles that can fit into GPU memory to construct an
tiled large display by connecting each GPU to a display monitor.| appropriately simplified version of the CAD model, which will
However, a multi-GPU platform may not always increase the overall| result in a good visual appearance from distance. Our parallel
rendering performance due to (1) imbalanced workload distribution| algorithm speeds up the performance by removing the data
among the GPUs, and (2) performance overheads caused by inter-GPU| dependency in edge-collapsing operations that exist in the

communication and synchronization. traditional sequential simplification algorithms.

In this work, a novel parallel load balancing approach 1s developed. It - N
partitions the screen dynamically to determine the amount of vertices| s = g “
and triangles fetched into each GPU. GPUs communicate to each other |55
only once per rendering cycle. The communication overhead is| 38.0M/25.0M 26.6M/17.5M  15.1M/10.0M
minimized by transferring only a small amount of image pixels rather (# of triangles / # of vertices)
than chunks of 3D data. Our approach is integrated seamlessly with the |® Parallel load balancing: A frustum strip parallel scheme 1s
state-of-the-art GPU acceleration techniques including parallel mesh| developed to partition the screen into regions and balance the
simplification, GPU out-of-core, and level-of-detail selection. As a| amount of vertices and triangles distributed across the GPUs.
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1 18.74 0.45 4.80 — 22.93 2.59 27.14 —
20 2 119.99 27.62 0.35 0.30 4.08 2.70 16.41 1.51 13.29 11.92
4 |20.67 0.30[0.27(0.27(0.24 5.40 410 16.19 0.94 11.40 9.81
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Conclusion and Future Work

We developed GPU-based parallel algorithms to support the interactive rendering of large CAD models. We
demonstrated a load-balanced out-of-core rendering application on a quad-GPU platform. Our approach fully utilizes
distributed GPU memory. Advancing the state-of-the-art technologies such as SLI and Equalizer, our approach does not

require data to be replicated across the GPUs. In the future, we will evaluate our approach on a cluster system which m

contains more than four GPUs. THE UNIVERSITY OF
ALABAMA IN HUNTSVILLE
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