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GPU-Accelerated Multi-Display Applications for Large CAD Model 
Visualization on a Commodity Desktop

Comparing to the desktop with a single GPU, a multi-GPU platform 
makes more video memory available across the GPUs, and results in a 
tiled large display by connecting each GPU to a display monitor. 
However, a multi-GPU platform may not always increase the overall 
rendering performance due to (1) imbalanced workload distribution 
among the GPUs, and (2) performance overheads caused by inter-GPU 
communication and synchronization. 

Abstract
Parallel mesh simplification: The goal is to select a portion of 
vertices and triangles that can fit into GPU memory to construct an 
appropriately simplified version of the CAD model, which will 
result in a good visual appearance from distance. Our parallel 
algorithm speeds up the performance by removing the data 
dependency in edge-collapsing operations that exist in the  
traditional sequential simplification algorithms. 
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In this work, a novel parallel load balancing approach is developed. It 
partitions the screen dynamically to determine the amount of vertices 
and triangles fetched into each GPU. GPUs communicate to each other 
only once per rendering cycle. The communication overhead is 
minimized by transferring only a small amount of image pixels rather 
than chunks of 3D data. Our approach is integrated seamlessly with the 
state-of-the-art GPU acceleration techniques including parallel mesh 
simplification, GPU out-of-core, and level-of-detail selection. As a 
result, our multi-GPU solution achieves real-time rendering 
performance on multiple displays for the CAD model composed of  
hundreds of millions of vertices and triangles.

System Overview (illustrated with two GPUs)
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Research Novelty

Parallel load balancing: A frustum strip parallel scheme is  
developed to partition the screen into regions and balance the 
amount of vertices and triangles distributed across the GPUs.

Frame exchange: An efficient inter-GPU communication scheme 
is developed to exchange the rendered frame among the GPUs.

Conclusion and Future Work

Implementation
We built a workstation 
with an Intel 3.50 
GHz CPU (12 cores), 
64GB RAM, and four 
Nvidia GTX980 Ti 
6 G B G P U s . T h e 
testing software was 
implemented on the 
64-bit Linux Mint 
MATE 18.1 system 
us ing C++ , MPI , 
CUDA and OpenGL.
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We developed GPU-based parallel algorithms to support the interactive rendering of large CAD models. We 
demonstrated a load-balanced out-of-core rendering application on a quad-GPU platform. Our approach fully utilizes 
distributed GPU memory. Advancing the state-of-the-art technologies such as SLI and Equalizer, our approach does not 
require data to be replicated across the GPUs. In the future, we will evaluate our approach on a cluster system which 
contains more than four GPUs.
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We compared the FPS between the approach with our parallel load 
balancing algorithm and the approach with a binary screen 
partitioning load balancing algorithm. In the figure, each data point is 
labeled with the algorithm execution time. The value in the 
parenthesis is the percentage of the algorithm execution time taking 
out of the total time.
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