
Chao Peng and Yangzi Dong

GPU-Accelerated Multi-Display Applications for Large CAD Model
Visualization on a Commodity Desktop

Comparing to the desktop with a single GPU, a multi-GPU platform
makes more video memory available across the GPUs, and results in a
tiled large display by connecting each GPU to a display monitor.
However, a multi-GPU platform may not always increase the overall
rendering performance due to (1) imbalanced workload distribution
among the GPUs, and (2) performance overheads caused by inter-GPU
communication and synchronization.

Abstract
Parallel mesh simplification: The goal is to select a portion of
vertices and triangles that can fit into GPU memory to construct an
appropriately simplified version of the CAD model, which will
result in a good visual appearance from distance. Our parallel
algorithm speeds up the performance by removing the data
dependency in edge-collapsing operations that exist in the
traditional sequential simplification algorithms.

Department of Computer Science, University of Alabama in Huntsville, Huntsville, AL, United States

In this work, a novel parallel load balancing approach is developed. It
partitions the screen dynamically to determine the amount of vertices
and triangles fetched into each GPU. GPUs communicate to each other
only once per rendering cycle. The communication overhead is
minimized by transferring only a small amount of image pixels rather
than chunks of 3D data. Our approach is integrated seamlessly with the
state-of-the-art GPU acceleration techniques including parallel mesh
simplification, GPU out-of-core, and level-of-detail selection. As a
result, our multi-GPU solution achieves real-time rendering
performance on multiple displays for the CAD model composed of
hundreds of millions of vertices and triangles.

System Overview (illustrated with two GPUs)

AABBs Edge-collapsing arrays Vertices and triangles

LOD
Selection

Load
Balancing

GPU Out-
of-Core

Triangle
Reformation Rendering Frame

Exchange
Displayed

on monitors

AABBs Edge-collapsing arrays

Selected vertices and triangles Framebuffer

Frame portionsMPI
Initialization

LOD
Selection

Load
Balancing

GPU Out-
of-Core

Triangle
Reformation Rendering Frame

Exchange
Displayed

on monitors

Selected vertices and triangles Framebuffer

AABBs Edge-collapsing arrays

Selection result

GPU0

GPU1

Selection result

Data on the GPU Data on the CPU Initial data operations Data operations
at the runtime

Synchronization

Synchronization

Mouse & Keyboard
Operations

View frustum

Synchronization

View frustum

Execution order of
runtime components

Four
GPUs

Performance Breakdowns
Configurations
Vertex
budget
(million)

of
GPUs

FPS
of LOD
selected

triangles (million)

of transferred
triangles to each

GPU (million)

Runtime processing components (millisecond)

LOD
Selection

Load
Balancing

GPU Out-
of-Core

Triangle
Reformation Rendering Frame

Exchange

20
0.45

0.35 0.30
0.30 0.27 0.27 0.24

27.62
18.74
19.99
20.67

4.80
4.08
5.40

—
2.70
4.10

22.93
16.41
16.19

2.59
1.51
0.94

27.14
13.29
11.40

—
11.92
9.81

1
2
4

40
0.52

0.45 0.39
0.41 0.37 0.36 0.34

46.89
14.86
16.76
17.50

4.84
3.92
5.54

—
2.73
4.13

30.81
20.77
19.44

4.03
2.27
1.46

32.90
15.79
13.17

—
16.41
13.94

1
2
4

Research Novelty

Parallel load balancing: A frustum strip parallel scheme is
developed to partition the screen into regions and balance the
amount of vertices and triangles distributed across the GPUs.

Frame exchange: An efficient inter-GPU communication scheme
is developed to exchange the rendered frame among the GPUs.

Conclusion and Future Work

Implementation
We built a workstation
with an Intel 3.50
GHz CPU (12 cores),
64GB RAM, and four
Nvidia GTX980 Ti
6 G B G P U s . T h e
testing software was
implemented on the
64-bit Linux Mint
MATE 18.1 system
us ing C++ , MPI ,
CUDA and OpenGL.

The screen The view frustum

Four frustum
strips are
generated by
evenly splitting
the screen.

GPU0

GPU1

38.0M / 25.0M 26.6M / 17.5M 15.1M / 10.0M 7.4M / 5.0M
(# of triangles / # of vertices)

We developed GPU-based parallel algorithms to support the interactive rendering of large CAD models. We
demonstrated a load-balanced out-of-core rendering application on a quad-GPU platform. Our approach fully utilizes
distributed GPU memory. Advancing the state-of-the-art technologies such as SLI and Equalizer, our approach does not
require data to be replicated across the GPUs. In the future, we will evaluate our approach on a cluster system which
contains more than four GPUs.

Performance Comparison

14

15

16

17

18

19

20

21

22

0 2(1) 4(2) 8(3) 16(4) 32(5) 64(6) 128(7) 256(8) 512(9) 1024(10) 2048(11)
Number of frustum strips (Number of binary splits)

FP
S 3.05ms

(5.61%)

3.07ms
(5.64%) 5.00ms

(9.25%)

4.95ms
(9.49%)

4.84ms
(9.36%)

4.87ms
(9.54%)

4.95ms
(9.79%)

4.82ms
(9.59%)

4.81ms
(9.60%)

4.78ms
(9.64%)

4.73ms
(9.55%)

4.10ms
(9.65%)

4.87ms
(8.48%)

6.24ms
(11.18%)

7.69ms
(13.90%) 9.20ms

(16.25%) 10.50ms
(18.72%)

11.93ms
(21.01%) 13.42ms

(23.18%)

15.24ms
(24.98%) 16.73ms

(26.69%) 18.18ms
(28.34%)

Ours

Binary

We compared the FPS between the approach with our parallel load
balancing algorithm and the approach with a binary screen
partitioning load balancing algorithm. In the figure, each data point is
labeled with the algorithm execution time. The value in the
parenthesis is the percentage of the algorithm execution time taking
out of the total time.

file:///Users/chaopeng/Documents/Research/Papers/mmr_multi_gpu_paper/images/frustum_strips.graffle/

